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Abstract

The overwhelming majority of participants in current genetic studies are of European ancestry. To 

elucidate disease biology in the East Asian population, we conducted a genome-wide association 

study (GWAS) with 212,453 Japanese individuals across 42 diseases. We detected 320 

independent signals in 276 loci for 27 diseases, with 25 novel loci (P < 9.58 x 10−9). East Asian-

specific missense variants were identified as candidate causal variants for three novel loci, and we 

successfully replicated two of them by analyzing independent Japanese cohorts; p.R220W of 

ATG16L2 associated with coronary artery disease and p.V326A of POT1 associated with lung 

cancer. We further investigated enrichment of heritability within 2,868 annotations of genome-

wide transcription factor occupancy, and identified 378 significant enrichments across nine 

diseases (FDR < 0.05) (e.g. NKX3-1 for prostate cancer). This large-scale GWAS in a Japanese 

population provides insights into the etiology of complex diseases and highlights the importance 

of performing GWAS in non-European populations.

INTRODUCTION

Currently, large-scale genetic studies are dominated by European-descent samples, and fail 

to capture the level of diversity that exists globally1-5. Due to differential genetic 

architectures, transferability of genetic findings between populations is generally limited. 

Therefore, this imbalance poses a limitation in our understanding of the genetic architecture 

of complex diseases in non-European populations. Moreover, this imbalance could result in 
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unequal benefits of precision medicine, as polygenic risk sores (PRS) based on large-scale 

genetic studies in European populations have high predictive power of clinical outcomes in 

European samples6-10 but poor predictive power in non-European samples1,11. Therefore, 

increasing the ethnic diversity of participants is an essential direction of genetic studies for 

the equality of genetic findings.

In addition, diversifying the ethnicity of participants is important for the discovery of novel 

disease etiology12. Even in large-scale European studies, causal variants might be missed if 

they have low frequencies or are monomorphic in European populations; such examples 

include p.E508K of HNF1A identified in Latino populations13 and p.R684* of TBC1D4 
identified in a Greenlandic population14, both associated with type 2 diabetes (T2D). 

Therefore, differences in allele frequencies across populations can be an advantage for 

discovering genetic signals which were failed to be identified in European populations.

Here we report a GWAS of 42 common diseases in the BioBank Japan Project (BBJ)15,16, 

one of the largest non-European biobanks consisting of around 200,000 individuals. We 

provide detailed discussion of the biology of these diseases using multiple genomic 

annotations. We also examined inter-sex differences in genetic signals. Moreover, by 

incorporating previous genetic findings, we discussed the extent to which genetic signals are 

shared across populations while also investigating East Asian-specific genetic signals. Our 

study provided multiple insights into the etiology of complex traits, and highlighted the 

importance of conducing genetic studies in non-European populations.

RESULTS

Genome-wide association study of 42 diseases.

We conducted a genome-wide association study (GWAS) of 42 diseases in a Japanese 

population, comprising 179,660 patients who participated in BBJ and 32,793 population-

based controls (Table 1 and Supplementary Table 1). The 42 diseases encompassed a wide-

range of disease categories; 13 neoplastic diseases, five cardiovascular diseases, four allergic 

diseases, three infectious diseases, two autoimmune diseases, one metabolic disease, and 14 

uncategorized diseases. By including patients with unrelated diagnoses into control samples, 

we maximized the power of our GWAS (Methods, Extended Data Figure 1, and 

Supplementary Table 1). We employed a generalized linear mixed model in our association 

analysis using SAIGE17. After imputing our genotypes with 1000 Genomes Project Phase 3 

reference data (1KG Phase3)18, we tested 8,712,794 autosomal variants and 207,198 X 

chromosome variants for association with 42 diseases. For 35 diseases for which we have 

both male and female patients, we also conducted male- and female-specific GWAS.

To quantify the heritability and the bias in our GWAS results, we analyzed them using 

linkage disequilibrium score regression (LDSC) analysis19 (Supplementary Table 2). 

Consistent with a recent finding in the European population20, heritability estimation was 

improved by incorporating the baselineLD model21 which includes functional annotations, 

LD-dependent architectures, and minor allele frequency (MAF)-dependent architectures 

(Supplementary Figure 1 and Supplementary Table 2). Although we observed high genomic 

inflation factors (λGC) for some diseases (e.g. λGC = 1.3 for T2D; Supplementary Table 2), 
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LDSC analysis indicated that the majority of the inflated chi-squared statistics originated 

from polygenic effects rather than confounding biases (e.g. intercept = 1.01 for T2D; 

Supplementary Table 2).

To confirm that our GWAS produced reasonable signals, we examined how much of the 

previously identified risk alleles were replicable in our GWAS results (Extended Data Figure 

2, Table 1, and Supplementary Table 3). By analyzing all diseases together, 1,219 out of 

1,396 previously reported risk alleles were replicated with the same effect direction (sign 

test P = 1.47x10−191). In East Asian populations of 1KG Phase3, MAF of non-replicated 

alleles are significantly lower than those of replicated alleles (Extended Data Figure 3). 

Therefore, the replication failures might be due to insufficient statistical power. The high 

replicability of previous GWAS signals suggested that genetic etiologies are generally 

shared across populations.

Considering that more than 1.5 million variants in our study are rare variants (MAF < 1%) 

(Supplementary Figure 2), applying the conventional genome-wide significance threshold (P 
< 5 x 10−8), which assumes 1 million independent tests, might increase type-I errors. 

Therefore, to empirically estimate the appropriate P value threshold, we conducted GWAS 

using 1,000 random binary phenotypes and analyzed distributions of minimum P values 

(Pmin) for each phenotype. The 95-th percentile of Pmin was 2.87 x 10−8, and we defined this 

P value as an empirical genome-wide significance threshold at a significance level of α = 

0.05 (Extended Data Figure 4). In addition, we considered the multiple testing burden of 

analyzing sex-specific GWAS; each variant was tested for sex-combined, male-specific, and 

female-specific analyses. Therefore, we set the significance threshold for our GWAS at P = 

2.87 x 10−8 / 3 (= 9.58 x 10−9), and considered P = 5 x 10−8 as a threshold of suggestive 

associations.

We defined a locus as a genomic region within ± 1 Mb from the lead variant, and we 

considered a locus as novel when it does not include any previously reported variants (P in 

previous GWAS < 5.0 x 10−8). In sex-combined analysis, we detected significant 

associations for 27 diseases at 260 autosomal loci (outside of the HLA region) and nine loci 

on the X chromosome (P < 9.58 x 10−9; Supplementary Table 4 and 5). Associations at the 

HLA region have been investigated in detail in a separate article22. We further performed 

conditional analyses in these 269 loci to explore associations independent of the lead 

variants. We detected 44 additional independent signals for 9 diseases (P < 9.58 x 10−9; 

Supplementary Table 6). The largest number of independent signals in a single locus was 

seven, found in the FAM84B/POU5F1B locus associated with prostate cancer. In the sex-

specific analysis (male- and female-cases were analyzed separately), we detected 4 

additional loci for 3 diseases which were not identified in a sex-combined analysis (P < 9.58 

x 10−9; Supplementary Table 7). We tested heterogeneity between effect size estimates for 

males and females using Cochran’s Q test. This analysis found all of the four loci showed 

nominally significant differences in effect size estimates between sexes (P values of 

heterogeneity (Phet) < 0.003). As we will introduce below, three variants with novel 

suggestive associations (P < 5.0 x 10−8) passed the significance threshold after meta-

analyzing with independent replication studies (P < 9.58 x 10−9). In total, we detected 320 

independent significant signals in 276 loci for 27 diseases, of which 25 loci were novel (P < 
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9.58 x 10−9; Figure 1a, Table 1, and Table 2). At three novel significant loci, the lead 

variants are rare variants with large effect size (MAF < 0.01 and odds ratio (OR) > 2; Figure 

1b), and two of them are missense variants.

To understand the characteristics of novel and known disease-associated variants in our 

study, we examined their allele frequencies in East Asian and European populations of 1KG 

Phase3. Intra-population MAF comparison showed that novel variants have significantly 

lower allele frequencies than known variants in European populations but not in East Asian 

populations (Extended Data Figure 5). Trans-ethnic MAF comparison showed that both 

novel and known variants have higher MAF in East Asian populations than in European 

populations (Figure 1c and d). However, trans-ethnic MAF differences are more pronounced 

in novel variants (Figure 1e). These observations suggested that the high allele frequencies 

of disease-associated variants in our cohorts increased the statistical power to detect their 

significance, especially for novel variants. This highlights the importance of performing 

GWAS in non-European populations.

We sought to refine the previously identified association signals in European GWAS. We 

counted the number of variants in LD with the lead variants in our GWAS and those of 

previous European GWAS (r2 > 0.8 in respective populations in 1KG Phase3) 

(Supplementary Table 4). The average number of variants in LD with the lead variants is 

25.9 in European GWAS and 29.3 in our GWAS. On the other hand, the average number of 

variants in LD with both lead variants is 12.9. Therefore, our study successfully limited the 

number of potential causative variants.

Since a disproportionate number of patients with T2D and coronary artery disease (CAD) 

were included in the controls of GWAS for other diseases, our study design might create 

spurious associations mirroring the effects of risk alleles of T2D and CAD. However, this 

possibility was ruled out by the following observations; (i) excluding all patients from 

control samples did not affect effect size estimates (Extended Data Figure 1); (ii) risk loci 

detected in our GWAS for other diseases were not enriched within T2D or CAD known loci 

(Supplementary Figure 3); and (iii) effect directions of the known protective alleles of T2D 

or CAD were not significantly biased to positive values in our GWAS for other diseases 

(Supplementary Figure 4). Thus, we confirmed that our study results were not biased by 

having many patient samples in control groups.

Biological interpretation of disease-associated variants.

We next investigated the potential impact of the disease-associated variants on protein 

functions (Supplementary Table 8). We linked the GWAS association and the missense 

variant when the lead variant and the missense variant are in LD (r2 > 0.6 in East Asians of 

1KG Phase3) and the missense variant is included in 95% credible set (Methods). Using 

these criteria, seven novel significant signals (P < 9.58 x 10−9) are linked to missense 

variants. Although four missense variants are not the lead variant, conditioning on these 

missense variants cancelled the signal of the lead variant (Figure 2a and Supplementary 

Figure 5). Importantly, three missense variants are monomorphic in Europeans and Africans 

(1KG Phase3); p.R220W of ATG16L2 (rs11235604) associated with CAD; p.V326A of 

POT1 (rs75932146) associated with lung cancer; and p.E62G of PHLDA3 (rs192314256) 
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associated with keloid (Figure 2, Extended Data Figure 6, and Table 3). Considering the 

relevance of these findings, we additionally included two independent cohorts in a Japanese 

population (2,855 CAD cases and 15,211 controls; and 2,440 lung cancer cases and 467 

controls). This replication study successfully confirmed the associations at ATG16L2 and 

POT1 loci, and fixed-effect meta-analysis improved statistical significance; the suggestive 

association at POT1 locus passed significance threshold (P < 9.58 x 10−9) (Supplementary 

Table 9 and 10). Here, we discuss each of the three East Asian-specific missense variants in 

detail. First, ATG16L2 is an autophagy-related gene highly expressed in immune cells, and 

previous studies reported that p.R220W of ATG16L2 is also associated with immune related 

traits; serum level of non-albumin protein in a Japanese population23 and Crohn's disease in 

a Chinese population24. Previous GWAS for CAD in European populations did not detect 

significant associations at ATG16L2 locus25 (Figure 2a), suggesting that p.R220W of 

ATG16L2, absent in Europeans, may be the causal variant. Therefore, dysregulated 

autophagy in immune cells might have an important role in CAD. Second, POT1 is a 

member of the telombin family and this protein binds to telomeres, regulating telomere 

length. Missense variants of POT1 have been described as being responsible for several 

familial cancers26-28. In addition, our study showed that p.V326A of POT1 is also positively 

associated with the risk of five other neoplastic diseases (P < 0.05; Extended Data Figure 7). 

These findings suggest this variant might increase the risk of neoplastic diseases in general. 

p.V326A of POT1 is more strongly associated with lung cancer in females than males; OR 

for female is 2.29 and OR for male is 1.26 (Phet = 7.7x10−4) (Figure 2b and Supplementary 

Table 7). We sought to figure out whether the sex-dependent effect can be explained by other 

factors, and conducted an association test stratified by histological and smoking status 

(Supplementary Table 10). However, we could not reach a definitive conclusion due to 

limited statistical power, and hence further large-scale studies will be required to answer this 

question. Together with a known association at the TERT locus (Supplementary Table 4), we 

provide additional evidence that telomere dysregulation is pathogenic for lung cancer. Third, 

p.E62G of PHLDA3 is predicted to have a deleterious effect to its protein function (SIFT 

score29=0; CADD score30=33), and we detected a large effect size for keloid (odds ratio = 

9.56; 95% CI 5.91-15.45). We confirmed that genotyping of rs192314256 (p.E62G of 

PHLDA3) was not biased by batches of genotyping experiments or geographic areas 

(Supplementary Figure 6). PHLDA3 is known to be a suppressor of AKT31, and upregulated 

AKT signaling pathway is related to increased collagen production from dermal 

fibroblasts32. Therefore, damaged PHLDA3 may activate the AKT pathway, promoting the 

development of keloid. Together, our study successfully identified novel potential causal 

genes which would be hard to be discovered by GWAS in European populations due to 

restrictive European allele frequencies.

We also investigated the potential impacts of the disease-associated variants on the mRNA 

levels using the GTEx database of expression quantitative trait loci (eQTL)33. Since the 

eQTL data are generated in European populations, we could not apply formal colocalization 

tests34,35 which assume the same LD-structures between GWAS and eQTL studies. 

Therefore, we linked the GWAS association and the eQTL variant when the GWAS lead 

variant and the eQTL variant are in LD (r2 > 0.6 both in East Asian and European 

populations of 1KG Phase3) and the eQTL variant is included in 95% credible set. We found 
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that seven novel significant signals (P < 9.58 x 10−9) and five novel suggestive signals (P < 5 

x 10−8) can be explained by at least one eQTL variant (Supplementary Table 11). Among 

them, the eQTL signals for ATP2B1 which were linked to a novel, suggestive variant of 

cerebral aneurysm (rs11105352; P = 1.22 x 10−8) is highly specific to arterial tissues (Figure 

3). Since the loss of ATP2B1 in vascular smooth muscle cells induced blood pressure 

elevation in mice36, decreased expression of ATP2B1 in arteries might induce hypertension, 

which leads to increased risk of cerebral aneurysm.

Replication with European GWAS results.

Replication analysis in the same population is a critical part of genetic studies. Although we 

included two independent replication studies for CAD and lung cancer in a Japanese 

population, we were not able to prepare replication cohorts in a Japanese population for 

other diseases. Therefore, we conducted replication studies using previous European GWAS 

results. We utilized publicly available GWAS summary statistics of European populations 

for 10 diseases (asthma, atrial fibrillation, breast cancer, CAD, congestive heart failure, 

glaucoma, ischemic stroke, prostate cancer, rheumatoid arthritis, and T2D; see Methods for 

selection of diseases), and tested for consistency in direction of effect. For these 10 diseases, 

our GWAS detected suggestive associations at 218 known and 19 novel loci (P < 5 x 10−8); 

among them, statistics of European GWAS were available at 149 known and 15 novel loci. 

We first conducted replication analysis at the known loci. We restricted this analysis to 112 

known loci with significant associations also in European GWAS (P < 5 x 10−8) to exclude 

loci where the European GWAS had insufficient power. Effect directions are consistent 

between BBJ- and European-GWAS at 109 out of 112 loci; but opposite at 3 loci (Extended 

Data Figure 8 and Supplementary Table 12). These three replication failures are probably 

due to differences in LD structure between populations (Extended Data Figure 8). We then 

conducted replication analysis at the novel loci. Among 15 novel variants, 12 were 

replicated with the same effect direction (Supplementary Table 13). Meta-analysis using 

fixed-effect model increased the level of significance in six of them; and two suggestive 

novel variants passed significance threshold (P < 9.58 x 10−9) (rs2277339 and rs17105012 

associated with T2D; Table 2 and Supplementary Table 13). Among the three variants that 

failed replication, rs13227841 is a missense variant originally identified as a potential causal 

variant at this locus (p.W78R of WBSCR28; Supplementary Table 8), which suggests that 

variants in LD with rs13227841, not rs13227841 itself, may be responsible for the observed 

associations. The other replication failures might be due to different LD-structures or the 

absence of the causal variants in European populations. Further efforts to conduct a 

replication analysis in a Japanese population will be required to confirm the associations 

which we failed to replicate in these European studies.

Genetic correlation between male- and female-specific GWAS.

To understand differences in the genetic risks between males and females, we assessed 

genetic correlations using LDSC37 between the results of sex-specific GWAS for the 20 

diseases (see Methods for selection of diseases). Although most correlations are close to 

one, the correlation of asthma was significantly smaller than one (genetic correlation = 0.63 

(S.E. = 0.12) and P = 2.2 x 10−3 < 0.05/20; Extended Data Figure 9). This finding suggested 

that genetic risks of asthma might be different between males and females. To explore the 
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biological mechanism underlying this finding, we estimated the enrichment of the 

heritability of male or female asthma in the 220 cell-type specific regulatory regions using 

stratified LD-score regression (S-LDSC)38. We found significant enrichments for either male 

or female asthma in three annotations; Th0, Th1, and colonic mucosa (P < 0.05/220; 

Extended Data Figure 9). Among them, the colonic mucosa annotation showed significant 

heterogeneity in the enrichment of heritability (Phet = 0.006 < 0.05/3). Recent studies 

suggested that host-microbiome interactions at intestinal mucosa (gut-lung axis) have 

important roles in the development of asthma39,40, and our study suggested that the gut-lung 

axis might have sex-dependent roles in asthma. Considering their marginal significance, a 

replication study will be required to confirm these findings.

Transcription factors underlying the etiology of diseases.

To acquire more insights to disease biology, we estimated the heritability enrichments in the 

binding sites of a variety of transcription factors (TFs) using S-LDSC. We included TF 

binding sites defined by 2,868 publicly available chromatin immunoprecipitation sequencing 

(ChIP-seq) datasets for 410 unique TFs (Supplementary Table 14). To make mutually 

comparable data, we began our analysis from the raw sequencing data, and defined TF 

binding sites using a uniform protocol (Methods). Using LD-scores of all TF binding sites, 

we grouped them into 15 clusters (cluster name was defined by the most dominant TF), and 

performed uniform manifold approximation and projection (UMAP)41 to project all TF 

binding sites into a two-dimensional space (Methods; Figure 4a and Supplementary Figure 

7). To scale the performance of this analysis, we first analyzed previously reported GWAS 

for red blood cell-related traits23 where the critical role of GATA1 was supported by 

multiple pieces of evidence42-46, and we successfully recapitulated this biology (Figure 4b). 

We then applied this analysis to our 24 GWAS results (see Methods for selection of 

diseases), and detected 378 significant enrichments for nine diseases (FDR < 0.05) (Figure 

4c, Extended Data Figure 10, and Supplementary Table 15). Biologically plausible TFs were 

highlighted by this analysis; RELA, a subunit of NF-κB, for atopic dermatitis, rheumatoid 

arthritis (RA), and Graves’ disease; sex hormone receptors (AR and ESR1) for prostate 

cancer; and FOXA2, which regulates insulin secretion in pancreatic beta-cells47, for T2D 

(Figure 4c). This analysis also suggested that NKX3-1, a prostate-specific homeobox gene, 

has an important role in the biology of prostate cancer (Figure 4c). In addition to this 

polygenic analysis, the importance of NKX3-1 was also suggested by the regional analysis 

integrating eQTL databases; the risk allele of prostate cancer at the NKX3-1 locus 

(rs4872174-C) was suggested to decrease the expression of NKX3-1 (Supplementary Table 

11). Consistently, loss of NKX3-1 expression in human prostate cancers was reported to be 

correlated with tumor progression48. Together, our results confirmed and expanded our 

current understanding of complex traits in the context of TF activity.

DISCUSSION

Our study demonstrated the advantages of conducting genetic studies in non-European 

populations. Typically, LD acts as a major hurdle limiting the identification of causal 

variants in GWAS. However, jointly analyzing GWAS results from populations with 

different LD structures can narrow down causal variants12. Indeed, when we consider 
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variants in LD with a lead variant as candidate causal variants (r2 > 0.8), our study 

successfully reduced the number of candidate causal variants at 68 loci which were 

originally discovered in previous European GWAS (Supplementary Table 4). In addition, 

some novel variants in our study have been missed in larger GWAS in European populations 

due to restrictive European allele frequencies. Therefore, diversifying the ethnicity of 

participants is important not only for the equality of genetic findings but also for the 

discovery of novel disease etiology.

Although previous studies already reported important roles of TFs in the etiology of 

complex traits49-51, our TF enrichment analysis has two distinguishing features from 

previous studies. One feature is the comprehensiveness; we included 2,868 TF annotations, 

more than those used in most previous studies. The second feature is the method of the 

enrichment test; we utilized S-LDSC, whereas most previous studies utilized naïve 

enrichment tests using genome-wide significant variants. S-LDSC evaluates enrichment of 

GWAS signals irrespective of significance, and it is robust to the biases coming from the 

overlapping annotations. Therefore, by incorporating a comprehensive catalog of TF 

annotations with a sophisticated method to test heritability enrichment, we provided 

evidence of TF importance in complex diseases from a polygenic angle.

The critical limitation of this study is insufficient replication analyses to validate novel 

signals. Among 25 novel loci (P < 9.58 x 10−9), we were able to prepare East-Asian 

replication datasets for only two of them; p.R220W of ATG16L2 associated with CAD and 

p.V326A of POT1 associated with lung cancer. To supplement this insufficiency, we utilized 

European GWAS results when data was available; we tested replicability of eight novel 

signals (P < 9.58 x 10−9) and observed evidence of heterogeneity in effect size estimates for 

three of them (Phet < 0.05; Supplementary Table 13). This may be the case for several 

reasons; the locus might possess different LD structures between populations and the variant 

might tag the causal variant only in East Asian populations (as illustrated in Extended Data 

Figure 8); effect sizes might be truly different between populations; or they might be false 

positives. Therefore, until further replication studies in East-Asian populations are 

conducted, we need to be cautious about the validity of these putatively novel variants since 

we were not able to provide evidence of replicability.

In summary, we conducted a large-scale GWAS of 42 diseases in a non-European population 

and provided rich public resources for genetic studies. Our study provided multiple insights 

into the etiology of complex traits by integrating annotations of missense variants, eQTL 

variants, and transcription factor binding site tracks. Currently, genetic studies are 

overwhelmed by European-descent samples, making the clinical translation of genetic 

findings far more beneficial to European individuals than other populations1. Our study 

contributed to broaden the population diversity in genetic studies and should potentially 

mitigate the problems originating from this imbalance.
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ONLINE METHODS

Subjects

All case samples in this GWAS were collected in the BioBank Japan Project (BBJ; https://

biobankjp.org/english/index.html)15,16, which is a biobank that collaboratively collects DNA 

and serum samples from 12 medical institutions in Japan and recruited approximately 

200,000 patients with the diagnosis of at least one of 47 diseases. Among them, cases with 

dyslipidemia were not analyzed in this study because it was already reported as a 

quantitative trait in our previous study23. Amyotrophic lateral sclerosis and febrile seizure 

were also not analyzed due to limited sample size. Cases with myocardial infarction, stable 

angina, and unstable angina were re-classified into a single disease category (coronary artery 

disease). Thus, we analyzed 42 disease in this study. For control samples, we used samples 

from the population-based prospective cohorts; the Tohoku University Tohoku Medical 

Megabank Organization (ToMMo), Iwate Medical University Iwate Tohoku Medical 

Megabank Organization (IMM)53, the Japan Public Health Center–based Prospective Study 

and the Japan Multi-institutional Collaborative Cohort Study. In addition, we also included 

samples in BBJ without related diagnoses into control group (Extended Data Figure 1 and 

Supplementary Table 1). The sample sizes and the demographic data are provided in 

Supplementary Table 1. All participating studies obtained informed consent from all 

participants by following the protocols approved by their institutional ethical committees. 

We obtained approval from ethics committees of RIKEN Center for Integrative Medical 

Sciences, and the Institute of Medical Sciences, The University of Tokyo. We have complied 

with all relevant ethical regulations.

Genotyping

We genotyped samples with the Illumina HumanOmniExpressExome BeadChip or a 

combination of the Illumina HumanOmniExpress and HumanExome BeadChips. For quality 

control (QC) of samples, we excluded those with (i) sample call rate < 0.98 and (ii) outliers 

from East Asian clusters identified by principal component analysis using the genotyped 

samples and the three major reference populations (Africans, Europeans, and East Asians) in 

the International HapMap Project54. For QC of genotypes, we excluded variants meeting any 

of the following criteria: (i) call rate < 99%, (ii) P value for Hardy Weinberg equilibrium 

(HWE) < 1.0 × 10−6, and (iii) number of heterozygotes less than five. Using 939 samples 

whose genotypes were also analyzed by whole genome sequencing (WGS), we added 

additional QC based on the concordance rate between genotyping array and WGS. Variants 

with a concordance rate < 99.5% or a non-reference discordance rate ≥ 0.5% were excluded. 

We note that the allele frequency of rs671 (the East Asian-specific functional missense 

variant at ALDH2) substantially varies among the domestic regions within Japan due to 

strong selection pressure55 and that genotypes of rs671 did not follow HWE. We thus did not 

apply the HWE QC for rs671. We had confirmed the 100% concordance of rs671 genotypes 

between the SNP microarray data used in this study and our internal WGS data (n = 2,798; 

see details in the discussion in ref56).
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Imputation

We utilized all samples in the 1000 Genomes Project Phase 3 (version 5; 

www.1000genomes.org/)18 as a reference for imputation. We first pre-phased the genotypes 

with SHAPEIT2 (v2.778; https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/

shapeit.html) and then imputed dosages with minimac3 (v2.0.1; https://

genome.sph.umich.edu/wiki/Minimac). After imputation, we excluded variants with 

imputation quality of Rsq < 0.7. For the X chromosome, we performed prephasing and 

imputation separately for males and females, and we excluded variants with imputation 

quality of Rsq < 0.7 in either of them.

Genome-wide association analysis

We conducted GWAS by employing a generalized linear mixed model (GLMM) using 

SAIGE (v0.29.4.2; https://github.com/weizhouUMICH/SAIGE)17. This strategy enabled us 

to maintain related samples in our GWAS, and the sample sizes were increased by 6% on 

average compared to removing related samples. Briefly, there are two steps in SAIGE. In 

step 1, we fit a null logistic mixed model using genotype data, and we added covariates in 

this step (see below). In step 2, we performed the single-variant association tests using 

imputed variant dosages. We applied the leave-one-chromosome-out (LOCO) approach. For 

the X chromosome, we conducted GWAS separately for males and females, and merged 

their results by inverse-variance fixed-effect meta-analysis. We used only female control 

samples for GWAS of female-specific diseases; breast cancer, cervical cancer, endometrial 

cancer, ovarian cancer, endometriosis, and uterine fibroids. Similarly, we used only male 

control samples for GWAS of prostate cancer. We incorporated age and top 5 principal 

component (PC) as covariates. We also used sex as covariate for GWAS of diseases which 

include both of male and female samples. We also conducted male-specific and female-

specific GWAS using the same pipeline as described above, and estimated heterogeneity in 

the effect size estimates using Cochran’s Q test. In each GWAS, we excluded variants with 

minor allele count (MAC) < 10 based on the recommendation from thee developers of 

SAIGE. We created regional association plots by LocusZoom (v1.2; http://

locuszoom.sph.umich.edu/locuszoom/)57. We performed stepwise conditional analysis 

within ± 1 Mb from the lead variant; we repeated the association test by additionally 

incorporating the dosages of the identified variants as covariates in SAIGE step 1 until we 

do not detect any significant associations.

For each disease, we defined a significantly associated locus as a genomic region within ± 1 

Mb from the lead variant. When a locus did not include any variants which were previously 

reported to be significantly associated with the same disease (P < 5.0 × 10−8), we defined it 

as a novel locus. Since we tested each variant for disease association three times (sex-

combined, female-specific, and male-specific analysis), we considered multiple-testing 

burden on the empirical significance threshold (P = 2.87 x 10−8, see next paragraph), and we 

set the genome-wide significance threshold for our study at P = 2.87 x 10−8 / 3 (= 9.58 x 

10−9).
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Estimation of empirical significance threshold by permutation test

Using the identical statistical method and imputed genotype data as used in the main 

analysis, we conducted GWAS using 1,000 simulated phenotypes. We utilized down-

sampled individuals (n=10,000) because permutation test using all samples (~200,000) was 

not computationally tractable. We simulated binary phenotypes with 1,920 cases and 8,080 

controls; the same case-control ratio as in T2D GWAS in our study. For each of the 1,000 

simulated phenotypes, the minimum P values (Pmin) were recorded, and the distributions of 

1,000 Pmin were analyzed. This analysis showed that the 95-th percentile of Pmin is 2.87 x 

10−8 (Extended Data Figure 4). We defined this value as an empirical genome-wide 

significance threshold at a significance level of α=0.05. 95% confidence interval was 

estimated by 1,000 bootstraps using the R package boot (v1.3-20).

To test the potential effect of down-sampling on the Pmin distributions, we compared the 

Pmin distributions using all samples (n=198,137) with those using 10,000 samples. To 

increase computational efficiency, we restricted this analysis to imputed genotype data in 

chromosome 22. For this analysis, we utilized Plink2 (https://www.cog-genomics.org/

plink/2.0/)58 because SAIGE requires whole genotype data to estimate relatedness even 

when we restrict the analysis to chromosome 22. This analysis confirmed that down-

sampling does not have substantial impact on the Pmin distributions (Extended Data Figure 

4).

Estimation of heritability

We estimated heritability and confounding bias in our GWAS results with LDSC (v1.0.0; 

https://github.com/bulik/ldsc/)19 using the baselineLD model (v2.1; https://

data.broadinstitute.org/alkesgroup/LDSCORE/)21 which includes 86 annotations, including 

10 MAF- and 6 LD-related annotations that correct for bias in heritability estimates20, and 

were calculated using 481 East Asian samples in 1KG Phase3. For the analysis using LDSC, 

we excluded variants in the HLA region (chr6:26 Mb-34 Mb). We also calculated heritability 

Z-score to assess the reliability of heritability estimation.

Absolute quantification of heritability estimation using GWAS results using GLMM can be 

biased because effective sample size could be different from the true sample size (relative 

quantification is not biased, and hence GWAS results using GLMM can be applied for 

genetic correlation analysis and S-LDSC safely). Therefore, to confirm the robustness of 

heritability estimation in our analysis, we also performed GWAS using generalized linear 

regression model (GLM). As simple GLM does not account for the bias caused by genetic 

relationships, we further excluded related samples (Pi-hat by > 0.187), and we analyzed 

genotype data with Plink2 using the same covariates as described above. Heritability 

estimates based on GWAS using two different methods (SAIGE vs PLINK) were 

comparable (Supplementary Table 2).

Replication of the previously reported variants by this GWAS

We included data in the GWAS Catalog (https://www.ebi.ac.uk/gwas/) that satisfy the 

following criteria; (i) P in previous GWAS < 5 x 10−8, (ii) risk allele information is reported, 

(iii) outside of MHC region (Chr6: 23Mb-37Mb), and (iv) variants were analyzed in this 
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study. When multiple variants were reported within 1Mb window, we included one variant 

for each disease. We considered a previous GWAS signal as replicated when the signal in the 

previous GWAS has the same effect direction in our GWAS.

Replication of the findings in this GWAS by independent cohorts in a Japanese population

We included an independent Japanese cohort of CAD and controls who enrolled in the 

Osaka Acute Coronary Insufficiency Study (OACIS)59 and the National Center for 

Geriatrics and Gerontology (NCGG) Biobank60. OACIS is a study that examined patients 

with myocardial infarction at 25 collaborating hospitals in Osaka, Japan, from April 1998 to 

April 2006. The NCGG Biobank is one of the facilities belonging to the National Center 

Biobank Network (NCBN; https://ncbiobank.org/en/home.php). It has been running since 

2012. The participants were recruited from NCGG hospital, which is located in Obu city, 

and the other nearby medical institutes. We also included 1,392 control DNAs from the 

Health Science Research Resources Bank (HSRRB), Osaka, Japan. Samples in NCGG were 

genotyped by Infinium Asian Screening Array-24 v1.0 (Illumina), and samples in OACIS 

were genotyped using the same platform as in BBJ samples. We extracted bi-allelic, shared 

variants genotyped in these studies. We excluded variants with 1) hardy Weinberg 

disequilibrium (P < 1 x 10−6), 2) low call rate (< 99%). We excluded samples using the 

following criteria: samples with low call rate (< 99%), PCA outliers, heterozygosity outliers, 

and sex discordant samples. After QC, 2,855 CAD cases, 15,211 controls, and 111,041 

SNPs remained. After pre-phasing with Eagle (v2.3), we performed imputation by minimac4 

(v1.0.0) using 1KG phase3 reference panel. Association test was conducted using SAIGE 

(v0.36.3) including age, sex, top 5 PCs as covariates. We tested the influence of bias using 

LDSC; intercept was 1.008 (S.E. = 0.014), and lambda GC was 1.053, suggesting there is no 

substantial bias in the association results.

We also included a Japanese cohort with 2,440 female lung cancer cases and 467 female 

controls enrolled in the study of the National Cancer Center Hospital (NCCH). All cases are 

adenocarcinoma. Genotyping of rs75932146 was conducted by invader assay. Association 

test was conducted by logistic regression. Meta-analysis was conducted using fixed effect 

model via inverse-variance weighting; heterogeneity of effect size estimates was tested by 

using Cochran’s Q test.

Replication of the findings in this GWAS by the previous European GWAS

We searched for European GWAS whose summary statistics are publicly available and 

whose disease affection status were based on physician diagnosis (excluding GWAS based 

on self-reported phenotypes). The latter criterion was added because all cases in BBJ were 

diagnosed by a physician, and we wanted to prepare European GWAS of comparable 

phenotypes. We were able to prepare European GWAS summary statistics for 10 diseases. 

Summary statistics for eight diseases were downloaded from GWAS Catalog (https://

www.ebi.ac.uk/gwas/) and their names and their PMIDs were as follows; atrial fibrillation 

(30061737), breast cancer (29059683), coronary artery disease (29212778), glaucoma 

(29891935), ischemic stroke (29531354), prostate cancer (29892016), rheumatoid arthritis 

(24390342), and type 2 diabetes (30054458). Summary statistics of two diseases were 

downloaded from UK Biobank GWAS summary statistics at Neale Lab (http://
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www.nealelab.is/uk-biobank) and their names and their phenotype code were as follows; 

asthma (22127), and congestive heart failure (I50). Meta-analysis was conducted using fixed 

effect model via inverse-variance weighting, and tested heterogeneity in effect size estimates 

using Cochran’s Q test.

Pleiotropy

We utilized the following variants detected in GWAS for each disease; (i) lead variants in the 

significantly associated loci, (ii) independent signals detected by conditional analysis, and 

(iii) lead variants detected in sex-specific GWAS. We defined pleiotropic association when 

these variants were in LD (r2 > 0.6). We calculated r2 using East Asian samples in the 1KG 

Phase318 by PLINK58.

Functional annotation of associated variants

We calculated r2 using East Asian samples (r2
EAS) and European samples (r2

EUR) in the 

1KG Phase318 by PLINK58. We also identified 95% credible sets using R package 

corrcoverage (v1.2.1). We linked the GWAS association and the missense variant when the 

lead variant and the missense variant are in LD (r2
EAS > 0.6) and the missense variant is 

included in 95% credible set. For the annotation of nonsynonymous variants, we used 

ANNOVAR (http://annovar.openbioinformatics.org/en/latest/)61. GRCh37 (hg19) 

coordinates were used in this study.

We also annotated GWAS variants with eQTL detected in the European population (release 

v7 of the GTEx project)33 in the following conditions; (i) the lead variants of the eQTL 

study are in LD (r2
EAS > 0.6 and r2

EUR > 0.6) with GWAS variants, (ii) the missense variant 

is included in 95% credible set, and (iii) Q values of the lead variants in the eQTL study are 

less than 0.05.

Genetic correlations between sex-specific GWAS

We estimated genetic correlations between our GWAS results by LDSC (v1.0.0)19 using 

East Asian LD scores which we presented in our previous study23. We excluded variants in 

the HLA region (chr6:26 Mb-34 Mb). We analyzed 20 diseases based on two criteria; (i) 

heritability was reliably estimated (heritability Z-score > 2; Supplementary Table 2); and (ii) 

both of male and female patients were included.

Transcription factor binding sites

We obtained 3,158 raw human ChIP-seq data files in SRA format from the GEO database. 

We converted them to FASTQ format using the fastq-dump function of SRA Toolkit (https://

www.ncbi.nlm.nih.gov/sra/). We performed QC of sequence reads using FastQC (https://

www.bioinformatics.babraham.ac.uk/projects/fastqc/). We mapped these reads to the 

genome assembly GRCh37 using Bowtie2 (v2.2.5; http://bowtie-bio.sourceforge.net/

bowtie2/manual.shtml) with default parameters. We called peaks using MACS (v2.1; https://

github.com/taoliu/MACS) with default parameters (q < 0.01) and defined them as TF 

binding sites. We excluded TF binding site tracks which do not have at least one binding 

region on every chromosome, and 2,868 genome-wide TF binding site tracks remained 

(Supplementary Table 14).
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Stratified LD score regression

We conducted stratified LD score regression (S-LDSC)38 to partition heritability. For S-

LDSC analysis of sex-specific GWAS of asthma, we used 220 cell-type specific annotations 

used in previous articles23,38. For other S-LDSC analysis, we used TF binding site tracks 

which were described in the previous paragraph. For all sites of TF binding, we empirically 

extended sites by 500 bp at the both ends for this analysis. We computed annotation-specific 

LD scores using the 1000 Genomes Project Phase 3 (version 5) East Asian reference 

haplotypes18. We estimated heritability enrichment of binding sites of each TF, while 

controlling for the merged binding sites of all TFs and the 53 categories of the full baseline 

model available at the authors’ website (https://data.broadinstitute.org/alkesgroup/

LDSCORE/). We did not use the baselineLD model (v2.1)21 in this analysis to increase the 

power of detecting significant enrichment. We excluded variants in the HLA region (chr6:26 

Mb-34 Mb). We analyzed 24 diseases whose heritability was reliably estimated (heritability 

Z-score > 2; Supplementary Table 2). We calculated the P value of the regression coefficient. 

For each trait, we calculate FDR using the Benjamini-Hochberg method. We set a 

significance threshold at FDR < 0.05 for this analysis.

Visualization of TF binding sites

There is a complex correlation structure among 2,868 TF binding site tracks used for S-

LDSC analysis. In S-LDSC, we regress GWAS chi-squared statistics on LD-scores of each 

TF binding site (TF LD-score), and hence we focused on correlations between TF LD-

scores, not correlations between TF binding sites. We first performed PCA using all TF LD-

scores. To classify them into mutually correlated TF groups, we performed k-means 

clustering (k=15) using the top 15 PCs. We named each cluster by the most dominant TF in 

each cluster (Figure 4). The list of each TF binding site and its assigned cluster name was 

provided in Supplementary Table 14. We then performed uniform manifold approximation 

and projection (UMAP)41 using the top 15 PCs to project all TF binding sites into a two-

dimensional space. UMAP was conducted using the R package umap (v.0.2.0.0). Our 

workflow was illustrated in Supplementary Figure 7.
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Extended Data

Extended Data Fig. 1. Study design of this GWAS.
a, Study designs in this GWAS. Study design 1 (top) was used in the main analysis. An 

example of study design 1 is provided; in GWAS of disease 3, we included all other patients 

(except those have related diseases) into control group. The definition of related diseases is 

provided in Supplementary Table 1. Study design 2 (bottom) was used to discuss the 

appropriateness of study design selection. b, Effect size estimates and S.E. at the 309 

autosomal disease-associated variants detected in sex-combined analysis (P < 5 x 10−8). We 

compared the effect size estimates in study design 1 with those in study design 2. 

Heterogeneity between two studies was tested using Cochran’s Q test. The identity line is 

shown in blue. The red dot (rs373205748 associated with arrhythmia) indicates a variant 

with significant heterogeneity in effect size estimates between two study designs (P = 

0.00012 < 0.05/309).
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Extended Data Fig. 2. Replication analysis of previous GWAS findings using this GWAS results.
We compared effect sizes reported in the previous GWAS with those in this GWAS. Effect 

size and S.E. are shown. The identity line is shown in blue. The sample size of GWAS is 

provided in Table 1. We utilized a generalized linear mixed model in our GWAS.
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Extended Data Fig. 3. Low allele frequency might contribute to replication failure.
We first compared effect sizes reported in the previous GWAS with those in our GWAS 

(Supplementary Table 3 and Extended Data Figure 2); 1,219 out of 1,396 previously 

reported risk alleles were replicated with the same effect direction (177 alleles were not 

replicated). We compared MAF of replicated variants (n=1,219) and MAF of not replicated 

variants (n=177). Mann-Whitney U test P value is provided (two-sided test).

Extended Data Fig. 4. Permutation test to estimate appropriate P value threshold to control type 
I errors.
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Using 1,000 simulated binary phenotypes with down-sampled samples (n=10,000), we 

conducted GWAS utilizing the same strategy as used in the main analysis. a, The 

distribution of minimum P values in each phenotype (Pmin). The 95-th percentile of Pmin was 

2.87 x 10-8. The 95% confidence interval was estimated by 1,000 bootstraps. b, The 

distributions of Pmin using all samples (n=198,137) and those using 10,000 samples. To 

increase computational efficiency, we restricted this analysis to imputed genotype data in 

chromosome 22. For this analysis in b, we utilized Plink2.

Extended Data Fig. 5. Allele frequency comparison between novel and known disease-associated 
variants.
MAF comparison at disease-associated variants at novel (n=41) and known loci (n=153) 

with suggestive significance (P < 5 x 10−8) (a, East Asian populations; b, European 

populations in 1KG phase3). For known loci, we restricted this analysis to loci where the 

closest reported variants were discovered by GWAS in European populations. Mann-

Whitney U test P value is provided (two-sided test).
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Extended Data Fig. 6. A novel association which can be explained by an East Asian-specific 
missense variant.
A regional association plot for keloid (812 cases vs 211,641 controls) at the PHLDA3 region 

is provided. We utilized a generalized linear mixed model in our GWAS.

Extended Data Fig. 7. The association of p.V326A of POT1 for all diseases in this GWAS.
Effect size and S.E. are provided for neoplastic diseases (a) and non-neoplastic diseases (b). 

The sample size of GWAS is provided in Table 1. We utilized a generalized linear mixed 

model in our GWAS.
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Extended Data Fig. 8. Comparison of allelic directions between this GWAS and previous 
European GWAS at known loci.
a, Schematic explanations how we compared statistics between BBJ-GWAS and GWAS 

conducted in European populations (EUR-GWAS). We utilized two inclusion criteria of 

known loci: (i) EUR-GWAS has significant associations (P < 5 x 10−8) within 1Mb from the 

BBJ-lead variants and (ii) the BBJ-lead variant is in LD with the lead variant in the 

European-GWAS (r2 > 0.4 in European samples in 1KG phase3). The first criterion was 

added to exclude loci where EUR-GWAS has insufficient power (112 known loci remained 

after applying the first criterion). The second criterion was added because EUR-GWAS 

statistics at the BBJ-lead variant is not representing those at the EUR-lead variant when they 

are not in LD. b, effect sizes of BBJ- and EUR-GWAS at the BBJ-lead variants. All variants 

which passed the first criterion were used (n=112). Variants which passed the second 

criterion are shown in red (n=65). Since two variants have extremely large effect size, we 

provided two plots in different scales. The three variants with the opposite effect directions 

are marked by large dots, and their details are also provided. c, Regional association of T2D 

around rs12031188. Variants in LD (r2 > 0.4) with BBJ-lead variant (rs12031188) but not 

with EUR-lead variant are shown in red; Variants in LD (r2 > 0.4) with both lead variants are 

shown in blue. East Asians and Europeans in 1KG phase3 were used for LD calculation of 

the BBJ- and the EUR-lead variant, respectively.
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Extended Data Fig. 9. Genetic correlations between male- and female-specific GWAS.
a. Genetic correlations between male- and female-specific GWAS. Estimates of genetic 

correlation and standard errors are provided. *: genetic correlation was significantly different 

from one (two-sided t test P = 2.2 x 10−3 < 0.05/20). b. The results of S-LDSC analysis 

based on sex-specific GWAS of asthma using 220 cell-type specific annotations. Significant 

annotations in either male or female asthma were shown (P < 0.05/220). Heterogeneity was 

tested by Cochran’s Q test, and its P values (Phet) were also provided. Black dashed line 

indicates P value = 0.05/220; grey dashed line indicates P value = 0.05.

Extended Data Fig. 10. S-LDSC results of four diseases in our GWAS.
The results of S-LDSC were plotted on the UMAP space. The significant results 

(FDR<0.05) were highlighted by cluster-specific colors (the same colors as used in Figure 

4). The names of the top five most significant TFs were also shown on the plot. The results 

of diseases with less than five significant TF binding site tracks were shown.
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Figure 1. Disease-associated loci detected in this GWAS.
a, Phenogram52 of 331 suggestive loci detected in this GWAS (P < 5.0 x 10−8). Pleiotropic 

associations were plotted at the same position (Methods). b, Allele frequencies and the odds 

ratios (OR) of the lead variants at 331 suggestive loci detected in this GWAS (P < 5.0 x 

10−8). The odds ratio of the risk allele was used. a and b, Novel loci (◆) are annotated by 

the closest gene names (only genes with OR > 2 are highlighted in b). Genes with significant 

associations are highlighted by red (P < 9.58 x 10−9). The sample size of GWAS is provided 

in Table 1. We utilized a generalized linear mixed model in our GWAS. *, loci detected in 

sex-specific GWAS. ¶, the lead variants were linked to missense variants (see text for the 

criteria). c, d, and e, Trans-ethnic minor allele frequency (MAF) comparison of disease-

associated variants at novel (n=41) and known loci (n=153) with suggestive significance (P 
< 5 x 10−8). For known loci, we restricted this analysis to loci where the closest reported 

variants were discovered by GWAS in European populations. Mann–Whitney U test P value 

is provided (two-sided test). When MAF < 0.001, MAF was adjusted to 0.001 to fit in log 

scale. MAFEAS, MAF in East Asian population (1KG Phase3). MAFEUR, MAF in European 

population (1KG Phase3). e, The center line in each box indicates the median, and the box 

limits indicate the upper and lower quartiles. COPD, chronic obstructive pulmonary disease.
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Figure 2. Novel associations which can be explained by East Asian-specific missense variants.
Regional association plots are provided. a, coronary artery disease (29,319 cases vs 183,134 

controls). b, lung cancer (2,710 male cases vs 106,637 male controls; 1,340 female cases vs 

101,766 female controls). For coronary artery disease (a), P values from conditional analysis 

and those in European GWAS25 were plotted separately.

For lung cancer (b), P values from female- and male-specific GWAS were plotted separately. 

We utilized a generalized linear mixed model in our GWAS.
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Figure 3. A novel suggestive association of cerebral aneurysm can be explained by artery-specific 
expression quantitative trait loci (eQTL) signals for ATP2B1.
a. Regional association plots of cerebral aneurysm GWAS (2,820 cases vs 192,383) at 

ATP2B1 locus (top) and those of eQTL signals for ATP2B1 in the tibial artery (bottom) are 

provided. The lead variant of GWAS (rs11105352; ◆ dot) and the lead variant of eQTL 

(rs2681492; ■ dot) are indicated by different shapes. Variants in LD with rs11105352 are 

highlighted by red (r2 > 0.6 both in East Asian and European populations of 1KG Phase3). 

We utilized a generalized linear mixed model in our GWAS. b, Tissue-specificity of eQTL 

signals for ATP2B1 at rs2681492 (the lead variant of eQTL in the tibial artery (■ dot in a)). 

P values in eQTL analysis and M values (the posterior probability that an eQTL effect exist 

in each tissue tested in the cross-tissue meta-analysis) in all tissues in GTEx project33 are 

provided. Each dot indicates each tissue. All statistics of eQTL analysis were derived from 

release v7 of GTEx project33.
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Figure 4. Transcription factors (TF) whose binding sites were enriched for heritability of 
diseases.
a, All of the 2,868 sets of TF binding sites grouped into 15 clusters were plotted in the 

UMAP space. b and c, The results of S-LDSC were plotted on the UMAP space. The 

significant results (FDR < 0.05) are highlighted by cluster-specific colors. The names of the 

top five most significant TFs are also shown on the plot. b, The results of red blood cell-

related traits. c, The results of diseases in this GWAS which had more than five significant 

TF binding site tracks (the results of the other diseases are provided in Extended Data Figure 

10).
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Table 1.

Overview of the findings in this GWAS.

Number of loci

Sample size Previous GWAS BBJ-GWAS

Disease
category Disease Cases Controls All Replicated All Novel Additional

signal

Allergic Asthma 8216 201592 66 57 7 2 2

Allergic Atopic dermatitis 2385 209651 21 17 7 0 0

Allergic Drug eruption 430 209651 0 0 0 0 0

Allergic Pollinosis 5746 206707 28 24 0 0 0

Autoimmune Graves' disease 2176 210277 8 8 9 3 0

Autoimmune Rheumatoid arthritis 4199 208254 72 63 5 0 0

Cardiovascular Cerebral aneurysm 2820 192383 8 7 4 2 0

Cardiovascular Congestive heart failure 9413 203040 0 0 0 0 0

Cardiovascular Coronary artery disease 29319 183134 184 167 53 1 7

Cardiovascular Ischemic stroke 17671 192383 12 9 3 0 0

Cardiovascular Peripheral artery disease 3593 208860 13 10 1 0 0

Infectious Chronic hepatitis B 1394 211059 1 1 0 0 0

Infectious Chronic hepatitis C 5794 206659 2 2 1 0 0

Infectious Pulmonary tuberculosis 549 211904 4 4 0 0 0

Metabolic Type 2 diabetes 40250 170615 234 220 89 7 20

Neoplastic Biliary tract cancer 339 195745 0 0 0 0 0

Neoplastic Breast cancer 5552 89731 121 102 7 0 0

Neoplastic Cervical cancer 605 89731 4 4 0 0 0

Neoplastic Colorectal cancer 7062 195745 73 68 11 0 1

Neoplastic Endometrial cancer 999 89731 12 7 0 0 0

Neoplastic Esophageal cancer 1300 195745 14 10 2 0 0

Neoplastic Gastric cancer 6563 195745 10 9 4 1 1

Neoplastic Hematological malignancy 1236 211217 45 32 0 0 0

Neoplastic Hepatocellular carcinoma 1866 195745 2 0 1 1 0

Neoplastic Lung cancer 4050 208403 18 15 6 1 1

Neoplastic Ovarian cancer 720 89731 4 3 0 0 0

Neoplastic Pancreatic cancer 442 195745 20 17 0 0 0

Neoplastic Prostate cancer 5408 103939 107 97 20 0 9

Other Arrhythmia 17861 194592 114 105 16 1 0

Other Cataract 24622 187831 0 0 1 1 0

Other COPD 3315 201592 70 54 5 1 2

Other Cirrhosis 2184 210269 3 2 2 0 0

Other Endometriosis 734 102372 11 11 0 0 0

Other Epilepsy 2143 210310 4 1 0 0 0
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Number of loci

Sample size Previous GWAS BBJ-GWAS

Disease
category Disease Cases Controls All Replicated All Novel Additional

signal

Other Glaucoma 5761 206692 55 43 5 0 0

Other Interstitial lung disease 806 211647 10 7 1 1 0

Other Keloid 812 211641 3 3 4 1 1

Other Nephrotic syndrome 957 211496 0 0 0 0 0

Other Osteoporosis 7788 204665 2 1 1 1 0

Other Periodontal disease 3219 209234 2 0 0 0 0

Other Urolithiasis 6638 205815 23 23 7 1 0

Other Uterine fibroids 5954 95010 16 16 4 0 0

The sample size in this GWAS, the number of loci detected in previous GWAS, and that detected in this GWAS are provided. We considered a 
previous GWAS signal is replicated when the signal in the previous studies has the same effect direction in this study. We utilized a generalized 

linear mixed model in our GWAS, and set a genome-wide significance threshold at P < 9.58 x 10−9 for our study. We also included the variants 
which passed this significance threshold after meta-analyzing with the replication study. Detailed information is also provided in Supplementary 
Table 3-7. Additional signal, the number of independent significant signals identified by conditioning analyses. COPD, chronic obstructive 
pulmonary disease.
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Table 2.

25 novel loci detected in this GWAS.

Allele frequency

Disease Variant REF ALT Gene OR L95 U95 P EAS EUR AFR Distance
[Mbp]

Loci detected in sex-combined analysis

Arrhythmia rs73205368 T C PTCHD1 1.08 1.06 1.10 4.25E-15 0.281 0.055 0.047 NA

Coronary 
artery disease

rs11235571
(rs11235604)

G
(C)

A
(T)

ARAP1
(ATG16L2)

0.90
(0.91)

0.87
(0.88)

0.93
(0.94)

2.64E-09
(1.73E-08)

0.083
(0.100)

0.000
(0.000)

0.000
(0.000) 2.9

Cataract rs75812946 G A FLRT2 1.35 1.22 1.50 3.41E-09 0.015 0.000 0.000 NA

Cerebral 
aneurysm rs12226402 G A SIRT3 1.34 1.23 1.45 1.57E-12 0.155 0.033 0.099 68.9

Cerebral 
aneurysm rs78535549 C T AEBP2, 

PDE3A 0.85 0.81 0.90 7.97E-09 0.528 0.036 0.055 12.2

COPD rs11066008 A G ACAD10 1.29 1.21 1.37 4.34E-17 0.275 0.000 0.001 3.8

Gastric cancer rs1205528 T C GUCY2F, 
IRS4 0.92 0.89 0.94 2.80E-10 0.354 0.884 0.654 NA

Graves’ 
disease rs10673095 T TTC FAM84B, 

POU5F1B 0.81 0.76 0.87 2.11E-09 0.476 0.362 0.772 5.9

Graves' 
disease rs11065783 A G CUX2, 

MYL2 1.34 1.24 1.44 7.23E-14 0.264 0.010 0.000 NA

Graves' 
disease rs1569723 C A CD40, 

NCOA5 1.20 1.13 1.28 4.06E-09 0.565 0.743 0.976 NA

Hepatocellular 
carcinoma rs8107030 A G IFNL2, 

IFNL3 1.44 1.28 1.62 7.96E-10 0.078 0.170 0.027 NA

Interstitial 
lung disease rs6477542 C T TMEM38B, 

ZNF462 1.34 1.21 1.48 6.90E-09 0.451 0.207 0.123 NA

Keloid rs192314256 T C PHLDA3 9.56 5.91 15.45 3.28E-20 0.010 0.000 0.000 20.8

Osteoporosis rs578031265 C T STK39 10.16 4.74 21.74 2.38E-09 0.002 0.001 0.000 31.8

Type 2 
diabetes rs7721099 T C MEF2C, 

TMEM161B 1.05 1.04 1.07 1.41E-09 0.512 0.143 0.255 1.4

Type 2 
diabetes rs200525873 GT G CEP120, 

PRDM6 0.91 0.88 0.94 4.90E-09 0.086 0.040 0.037 11.2

Type 2 
diabetes rs39218 T C STEAP1, 

ZNF804B 1.06 1.04 1.08 1.28E-09 0.191 0.503 0.311 12.6

Type 2 
diabetes rs5762925 A C ZNRF3 1.05 1.03 1.07 3.93E-09 0.462 0.353 0.262 1.0

Type 2 
diabetes* rs2277339 T G PRIM1 1.05 1.04 1.07 2.67E-10 0.206 0.111 0.199 9.0

Type 2 
diabetes* rs17105012 C A IRF2BPL, 

LRRC74A 1.04 1.03 1.06 8.84E-09 0.297 0.143 0.034 2.6

Urolithiasis rs12290747 T C STIM1 0.89 0.85 0.92 3.24E-09 0.317 0.313 0.017 107.3

Loci detected in sex-specific analysis

Asthma rs13227841 T C WBSCR28 0.86 0.81 0.90 2.04E-09 0.650 0.677 0.334 32.4

Asthma rs9836823 A G LRRC3B, 
NEK10 0.86 0.82 0.91 5.19E-09 0.337 0.362 0.116 6.2

Lung cancer* rs75932146 A G POT1 2.42 1.87 3.13 1.69E-11 0.003 0.000 0.000 NA
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Allele frequency

Disease Variant REF ALT Gene OR L95 U95 P EAS EUR AFR Distance
[Mbp]

Loci detected in sex-combined analysis

Type 2 
diabetes rs202209118 T TCC SETBP1 1.16 1.10 1.22 7.78E-09 0.023 0.019 0.002 6.1

Summary data of the lead variants in the novel loci in this GWAS. Detailed information of these variants is provided in Supplementary Table 4, 5, 
and 7. For variants detected in sex-specific GWAS, statistics of sex with significant associations are provided. For a lead variant of coronary artery 

disease (rs11235571), we also provided data of a missense variant (rs11235604) in LD with the lead variant in parenthesis (r2 = 0.68 in East Asian 
populations of 1KG Phase3; Table 3). The sample size is provided in Table 1. We utilized a generalized linear mixed model in our GWAS, and set a 

genome-wide significance threshold at P < 9.58 x 10−9. Disease names are marked by asterisk (*) when the variants passed the significance 
threshold after meta-analyzing with replication studies (Supplementary Table 10 and 13), and statistics of meta-analysis are provided for such 
variants. The distance between the lead variant in this study and the closest reported variant in the previous GWAS is also provided. When there are 
no reported associations on the same chromosome, distance information is set to NA. Allele frequencies of 1KG Phase3 are provided. REF, 
reference allele; ALT, alternative allele; OR, odds ratio relative to the alternative allele; L95, lower 95% confidence interval; U95, upper 95% 
confidence interval; EAS, East Asian populations; EUR, European populations; and AFR, African populations. COPD, chronic obstructive 
pulmonary disease.
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