
Causal inference in the face of competing events

Jacqueline E. Rudolph, PhD1, Catherine R. Lesko, PhD2, Ashley I. Naimi, PhD1

1Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh.

2Department of Epidemiology, Johns Hopkins School of Public Health

Abstract

Purpose of review: Epidemiologists frequently must handle competing events, which prevent 

the event of interest from occurring. We review considerations for handling competing events 

when interpreting results causally.

Recent findings: When interpreting statistical associations as causal effects, we recommend 

following a causal inference “roadmap” as one would in an analysis without competing events. 

There are, however, special considerations to be made for competing events when choosing the 

causal estimand that best answers the question of interest, selecting the statistical estimand (e.g. 

the cause-specific or subdistribution) that will target that causal estimand, and assessing whether 

causal identification conditions (e.g., conditional exchangeability, positivity, and consistency) have 

been sufficiently met.

Summary: When doing causal inference in the competing events setting, it is critical to first 

ascertain the relevant question and the causal estimand that best answers it, with the choice often 

being between estimands that do and do not eliminate competing events.
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Introduction

Epidemiologists study the occurrence of health events and the relationship between 

exposures and those events. We frequently run into scenarios where some of the participants 

in our study experience an event that prevents them from experiencing the outcome under 

study. Such events are referred to as competing events. In fact, unless the outcome is all-
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cause mortality, there will always be a potential competing event for the outcome, namely 

death (or death from a different cause).

There exist well-established statistical methods for time-to-event analyses that allow us to 

estimate a range of measures of association between an exposure and an outcome, while 

carefully considering the occurrence of competing events [1-3]. However, interpreting those 

exposure-outcome associations causally requires a causal inference framework that 

formalizes conditions under which such a causal interpretation might hold. Counterfactuals 

(or potential outcomes) form the basis of the modern approach to causal inference [4]. We 

consider what our outcome might have been had we, say, exposed all individuals in our 

target population to a particular level of the exposure. When applying this framework to any 

analysis (regardless of whether competing events are present), several steps should be 

considered, for example [5, 6]:

1. Define the research question and target population of interest

2. Choose the counterfactual estimand that corresponds best to the question

3. Review identification conditions, to guide estimation choices

4. Choose a statistical estimand that reflects the above 3 steps

5. Estimate the chosen estimand, carefully selecting the data and estimator

6. Consider whether we can interpret the estimated association causally, based on 

whether relevant identification conditions were met

When an analysis includes competing events, there are additional considerations added to 

each of these steps. Here, we describe some of the relevant causal and statistical estimands 

when competing events are present and summarize one set of causal identification 

conditions extended for the competing events setting. We end with a discussion of causal 

interpretations to clarify the distinction between the statistical handling of competing events 

and inferring causal relations in the presence of competing events. Determining causality 

requires a more holistic causal framework that ought to be rooted in the research question 

being asked and in which the choice of target estimand and estimator is only one 

consideration.

This paper further highlights the recent advances in the area of causal inference with 

competing events. We define “recent” as papers published since 2010, which roughly 

coincides with the papers by Lau et al. and Andersen et al. that described for an 

epidemiologic audience the concept of competing events and the statistical methods to 

handle them [1, 7].

Defining the research question and the appropriate counterfactual contrast

Formulating an informative epidemiologic research question requires both methodological 

and substantive expertise, and counterfactuals can play a central role in helping to clarify 

these questions. Suppose in a given study we were interested in a treatment A = a (here 

using the standard notation that denotes lower case a to be a realization or actual value of the 

random variable A), which has been hypothesized to be related to a health outcome Y with 
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time-to-event T. For example, we might be interested in assessing how taking low dose 

aspirin (A = a) affects time to live birth (Y), as was assessed in the Effects of Aspirin on 

Gestation and Reproduction trial [8]. Assume, for a moment, that live birth has no 

competing events. We can then define the expected (average) outcome that would be seen if 

all individuals in our population were (contrary to fact) exposed to aspirin: P(Ta ≤ t) or 

E[Ya(t)]. We use superscript a to denote the counterfactual probability of the outcome Y 
through a given time t (equivalently, that time-to-event was less than or equal to t) had all 

individuals in the population received a. This expected outcome can still be defined in the 

presence of right censoring, which occurs when we do not observe an individual’s event 

time but we assume the event could still occur (as might happen if a pregnant woman 

withdrew from the study).

When the outcome can be precluded by ≥1 competing events, we can additionally define a 

variable J = {1, …, k} that indexes the k possible, mutually exclusive events. In our 

example, such a competing event might be pregnancy loss. Fundamentally, for a given 

pregnancy, if someone experiences a pregnancy loss, they cannot at a later time experience 

live birth (and vice versa). T is then the time to any event j ∈ J. Cole et al. provided a 

formulation for counterfactual risk when there are competing events, in which both a 

counterfactual time to event and a counterfactual event type are specified: Fa(t,j) = P(Ta ≤ 

t,Ja = j) [9, 10]. In words, this is the probability, under treatment a, that an event would occur 

by time t and that it would be of type j. This counterfactual risk could also be written using 

the expectation, E[Ya(t), Ja(t)], which is the equivalent to Pr(Ya(t) = 1, Ja(t) = j) when the 

outcome is binary [11]. We could then define a second counterfactual scenario, where our 

same population was now exposed to a′ (in our example, a′ might be placebo), and contrast 

that scenario to the one above, e.g. by taking a difference in the expected outcomes: 

E Y a t , Ja t − E Y a′ t , Ja′ t .

A framework formalizing causal effects in the presence of competing events has been 

proposed by Young et al [12]. In their work, competing events are defined as a random 

variable D(t), which is a causal mediator between baseline exposure A and the outcome of 

interest Z(t). This formulation would, of course, not hold if A did not affect D(t). Figure 1 

shows how this framework represents competing events on a directed acyclic graph [13, 14, 

11]. In this mediator-based competing events formulation, the authors describe two possible 

counterfactual contrasts that might be of interest: the total and controlled direct effect. The 

total effect for the primary event of interest is defined as a contrast of E[Za(t)] and E Za′ t , 

which is equivalent to the contrast above. The controlled direct effect for the event of interest 

is then defined as a contrast of E[Y a, d̄ = 0̄(t)] and E[Y a′, d̄ = 0̄(t)] where the superscript d̄ = 0̄
implies an intervention that eliminates competing events [15]. This contrast has also been 

referred to as a contrast in conditional risks. In our example, we would be contrasting the 

counterfactual risk of live birth had all EAGeR participants been assigned to aspirin and we 

eliminated pregnancy losses versus the risk had they been assigned to placebo and we 

eliminated pregnancy losses. Whether the total effect or direct effect will be of more interest 

primarily comes down to the question being asked.
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Statistical estimands and estimators

Two fundamental measures of the incidence of Y in standard time-to-event analyses (in the 

absence of competing events) are the hazard and survival (and by extension, risk). The 

hazard is the probability of Y occurring in a small timespan, conditional on not having 

already had the event. Survival is the probability of experiencing Y at some point beyond 

time t, S(t) = P(T > t), and is often estimated using the Kaplan-Meier survival estimator [16]. 

We further define the cumulative density function (equivalently, risk function) as the 

complement of survival, F(t) = 1 – S(t).

In the presence of competing events, these statistical estimands are expanded into two 

categories: cause-specific and subdistribution. These approaches target different 

counterfactual estimands: cause-specific measures are linked to the direct effect while 

subdistribution measures are linked to the total effect. As with choosing the counterfactual 

estimand, the approach one takes will be dependent on the research question.

Cause-specific survival Sj(t) and cause-specific risk Fj(t) target the counterfactual risks under 

a hypothetical intervention that eliminates competing events. Cause-specific risk is 

equivalent to so-called “conditional risk,” or risk under elimination of competing events. 

That is, even in single-sample estimation problems (i.e., ignoring any hypothetical 

interventions on an exposure), the interpretation of cause-specific survival or risk involves a 

counterfactual scenario (elimination of competing events). Consequently, estimation of the 

cause-specific risk or survival function requires the independent competing risks 

assumption. In our example, this assumption implies that whatever hypothetical intervention 

would eliminate pregnancy losses would have no impact on the hazard of live birth. 

Estimating Sj(t) usually involves plugging the hj(t) into an estimator for all-cause survival, 

such as the Kaplan-Meier estimator, which will treat all other outcomes as right censored 

(implying that individuals who experienced a pregnancy loss could have a live birth for the 

same pregnancy sometime beyond their “censoring” time). While this can be done, it leads 

to an overestimate of the observable risk of the event and leads to unintuitive properties like 

the sum of the risks for each event type summing to more than one [7]. The magnitude of 

this overestimation will depend on the risk of the competing event.

The cause-specific hazard, hj(t), is defined as the probability of an event occurring and it 

being type J = j in a short time window, conditional on not having experienced event type j 
or any other event. The total hazard at time t is then a simple sum of the cause-specific 

hazards: h(t) = Σj hj(t) [12]. The cause-specific hazards can be compared using a hazard 

ratio, often estimated using a Cox or accelerated failure time model. We can use hj(t) to 

target the hazard analog of the counterfactual risk under elimination of competing events 

(compared in the direct effect above). As with the cause-specific risk, this approach censors 

competing events and requires the independent competing events assumption. A nuanced 

point raised in Young et al is that, if we instead target the counterfactual hazard of the event 

of interest conditional on no competing events having occurred, 

P(Y t
a = 1 ∣ Dt − 1

a = Y t − 1
a = 0), we do not censor competing events and do not have to make 

the independent competing events assumption because we are not intervening to eliminate 

competing events [12]. For our example, it might be easier to interpret the hazard of live 
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birth among those who had not experienced pregnancy loss than it is to interpret the hazard 

had we eliminated pregnancy losses. However, in general, one should be cautious about 

interpreting any hazard estimand causally [17, 12].

On the other hand, the subdistribution approach is centered around estimating the cumulative 

incidence (risk) function, Fj
∗(t) = P(T ≤ t, J = j), interpreted as the probability of having an 

event by time t and having it be of type j. The cumulative incidence function is commonly 

estimated using the Aalen-Johansen estimator, which is a generalization of the Kaplan-Meier 

estimator [18]. The cumulative incidence function has also been referred to as the “cause-

specific cumulative incidence;” [12, 19, 20] however, we believe use of this term could lead 

to confusion of Fj
∗(t) with Fj(t) Whereas cause-specific risk is linked to conditional risk, 

subdistribution risk is linked to unconditional risk, i.e. the observable risk without 

elimination of competing events. An essential property of survival under the subdistribution 

approach is that the probability of having the event by a given time point is a function of 

both the cause-specific hazard for event j and the hazards of events J ≠ j. In our example, 

women who experience a pregnancy loss are not censored but can conceptually be thought 

of as remaining in the risk set for live birth. This means that, unlike the cause-specific 

approach, the sum of the event-specific risks will not exceed one. When interested in a 

contrast, cumulative incidence functions under each treatment arm can be estimated and then 

contrasted using a difference or ratio.

The subdistribution hazard, ℎj
∗(t), is derived from the subdistribution survival function and is 

defined as the probability of the event of interest in a small timespan, given one had not 

experienced an event or one had in the past experienced a different event type. Contrasts of 

subdistribution hazards can be estimated using the Fine-Gray model [21]. Subdistribution 

hazards are challenging to interpret because they condition on having experienced a 

competing event. However, they are considered useful because they allow for a hazard ratio 

estimand that will always be consistent with a contrast of cumulative incidence functions. 

This is not the case for cause-specific hazard ratios, which in some cases will be on the 

opposite side of the null from a subdistribution risk or hazard ratio. The misalignment 

between a cause-specific hazard ratio and subdistribution risk or hazard ratio depends on 

how common the competing events are and how strongly the exposure affects the competing 

events (and the direction of that effect) [1].

Very little has changed in these approaches to competing events or the target estimands over 

the last two decades, since the cumulative incidence function was developed in 1978-1980 

and the Fine-Gray model in 1999 [18, 22, 21]. However, new models have been proposed to 

estimate the traditional statistical estimands [23-26]. Additionally, both approaches have 

been integrated with g-methods like inverse probability weighting and g-computation, which 

make it easier to explicitly link the statistical estimand to the targeted counterfactual 

estimand [27, 10, 28]. Work has also been done to better understand the results of competing 

event approaches in more complex data structures (e.g., a Cox or Fine-Gray model with 

competing events and time-varying covariates) [29, 30].
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Causal identification

Identification in the formal sense is the ability to write the observed outcome (or contrast of 

outcomes) under an observed exposure as the corresponding counterfactual outcome (or 

contrast), e.g. that E[Ya(t),Ja(t)] = E[Y(t),J(t) ∣ A = a]. Causal identification is not something 

that can be done using the data alone; we must make additional assumptions [31, 4]. One 

common set of identification conditions includes exchangeability, positivity, and 

counterfactual consistency, and there have been several recent papers that have discussed the 

special considerations that must be made when in the presence of competing events. 

Identification in the presence of competing events and how the assumptions differ depending 

on the target counterfactual contrast has also been explored in depth by Young et al [12].

When estimating the total effect on the unconditional risk of the outcome (i.e., a contrast of 

subdistribution risks), we need to meet an intuitive extension of the usual conditional 

exchangeability assumption (A∐Y a(t), Ja(t)), in that we must also say the exposure is 

independent of the counterfactual event type [12]. If one were instead interested in 

estimating the direct effect with elimination of competing events, one has to additionally 

assume that occurrence of the competing event is independent of the counterfactual 

outcome, which is essentially the independent competing events assumption. In this case, the 

exchangeability assumption is similar to exchangeability for other mediation effects.

When estimating cumulative incidence functions or subdistribution hazard ratios, Lesko et 

al. demonstrated in simulation that one needs to control for all of confounders of the 

exposure and competing event relationship(s) in addition to the standard confounders for the 

main outcome [11]. In contrast, the cause-specific hazard ratios were unbiased if only the 

confounders for the main outcome were included. These findings are consistent with the 

conclusions one would make regarding the adjustment set from the causal diagrams included 

in Young et al [12].

Exchangeability might be broken when records with missing data are removed from the 

analysis, i.e. when a complete case analysis incurs selection bias. While complete case 

analyses can be unbiased (when data are missing completely at random), often there are 

fundamental reasons why the data are missing and, if those factors are related to the 

outcome, there could be bias. In a recent paper, Lau et al. summarized the available analytic 

methods that can be used when the variable with missing data was event type [32]. Like 

most approaches for missing data, these methods assume that event type is missing at 

random, i.e. conditional on the observed variables [33-37, 24].

Positivity changes little from the case when there are no competing events but there is right 

censoring (in that we assume for any level exposure, there remain uncensored individuals 

through t). Counterfactual consistency must be extended to account for the counterfactual 

event type Ja(t), e.g. as such: E[Ya(t),Ja(t)∣A = a] = E[Y(t),J(t)∣A = a][38]. If using a 

framework treating the competing event as a mediator, we would need to be able to make a 

similar statement regarding Da(t) and Za(t). While most of the attention on the estimation of 

effects under elimination of competing events has focused on the implications of the 

independent competing risks assumption for exchangeability, there could be interesting 
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implications for counterfactual consistency as well. It is quite possible that an intervention to 

remove competing events would result in one being unable to assume that the observed time 

to event can be interpreted as the counterfactual time to event.

To interpret results causally, we typically make several other assumptions. We assume no 

measurement error. Methods have been developed to handle misclassification of event type 

[39, 40]. We also assume that both our causal and statistical models are correctly specified 

[41]. If we use any parametric (or semiparametric) models to estimate the target estimand, 

we must assume that the specified form of our statistical model is correct. For example, if 

we choose to estimate subdistribution hazard ratios using a Fine-Gray model, we assume 

that the subdistribution hazards for the two exposures were proportional.

Interpretations

When seeking to make causal inferences, it is important to consider not just what estimands 

we can quantify but what those estimands mean. We ought to ask ourselves: will the 

estimand inform public health action or lead to greater understanding of biological 

mechanisms? This is easiest when one starts with the research question and then chooses the 

appropriate estimation approach (whether it be cause-specific or subdistribution, 

alternatively the direct or total effect) – rather than the other way around. In terms of 

choosing the appropriate question in the presence of competing events, there are many 

factors to consider.

Recall that the cause-specific approach treats competing events as right censored. 

Sometimes censoring competing events is referred to as “ignoring” competing events, 

although it is more accurate to say that one is assuming that cause-specific measures occur 

in a counterfactual world in which the competing event did not occur. One has to make the 

judgement call of whether this is realistic. In our example of aspirin and pregnancy 

outcomes, it is unrealistic to imagine a scenario where we could entirely remove pregnancy 

loss. However, this will not be the case for all research questions.

Censoring competing events generally divorces estimates of risk or survival for the event of 

interest from what is or might be observed in reality. This is because the usual estimator 

(e.g., Kaplan-Meier) redistributes that mass of persons who are censored onto future events, 

upweighting those events in the calculation of survival or risk to account for the unobserved 

events that censoring implies occurred [16]. That is, someone who has a competing event is 

assumed to remain biologically at risk for the event of interest but to merely be unobserved 

(not methodologically at risk) following their competing event. As discussed previously this 

requires the independent competing risks assumption, in addition to the other causal 

assumptions.

Whether the cause-specific hazard as commonly used in the statistical literature treats 

competing events as censored events is less clear than for cause-specific risk. It has been 

well established that estimating cause-specific hazards does not require the independent 

competing event assumption, but uncertainty remains on how we are to interpret this 

estimand. The uncertainty would likely be cleared if the literature had been clearer on the 
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question that was being asked, via the specification of the target counterfactual contrast. 

Young et al showed that the cause-specific hazard can be used to target a causal estimand 

that does not treat competing events as censored (but simply conditions on them having not 

occurred), but there seems to be a long-standing interest in using cause-specific hazards to 

say something about how an exposure affects the hazard of an outcome, when any 

competing events have been removed [3, 42]. As was mentioned previously, this latter 

interpretation requires strong assumptions related to the elimination of the competing events. 

Further note, though, that even if we are not attempting to say the cause-specific hazard 

applies to the world that has eliminated competing events, we can still say that the hazard 

and its contrasts only apply to those who have not experienced any event at a given moment 

in time.

There is an oft-repeated statement that the cause-specific hazards are more fundamentally 

“causal,” while the subdistribution approach to handling competing events is more 

“predictive” [1, 7, 43]. This sentiment appears to be linked to an interest in studying 

underlying biological mechanisms [44], where a “signal” that the exposure influences the 

outcome in whomever happens to remain under study could be regarded as evidence of a 

causal mechanism at work. With such a goal in mind, one might prefer an effect that seems 

to remove any influence of the effect of the exposure on competing events, even if that effect 

is not one that reflects the impact one would see in any real population subject to multiple 

competing outcomes. However, despite this statement being repeated across the literature 

[43, 45, 1, 7, 44], we have yet to find a clear explanation as to why cause-specific hazard 

ratios reflect etiology better or what causal framework is underlying such an opinion. 

Furthermore, it may be misleading to ignore the impact of the exposure on the population 

that remains under study, in whom cause-specific hazards are being estimated. The built-in 

potential for selection bias when estimating hazards and the associated perils have been 

well-described [17, 12].

Moreover, the viewpoint that cause-specific hazard ratios are more fundamentally causal 

than contrasts of subdistribution measures seems to be at odds with the more population 

intervention oriented causal inference framework (not to mention the expressed opinions that 

hazards and hazard ratios are inappropriate estimands for causal analyses) [46, 9,17, 12]. In 

causal inference, we imagine counterfactual scenarios produced by potential interventions 

and consider how well we can approximate such counterfactuals using the observed data. 

However, relying on cause-specific measures raises the question: could we ever find an 

intervention that would somehow remove a competing event like pregnancy loss or, even 

more extreme, death? There could be rare cases in which we remove a competing event that 

is death due to a particular cause (e.g., death due to an infectious disease with a highly 

effective and well implemented vaccine). However, even in such cases, it is unlikely that we 

could estimate the cause-specific hazards that would be observed if the competing events 

were removed [47, 11].

In contrast, the term “predictive” to describe the subdistribution risk was used in the 

literature to say that these estimands are useful for informing policy or predicting resource 

requirements for interventions [1, 48]. While predictive was meant in a traditional sense, 

subdistribution risk is useful for causal prediction, i.e. prediction of counterfactual outcomes 
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under a particular policy relative to a second policy. In other words, it is useful for causal 

effect estimation. Some have suggested that one of the essential goals of causal inference 

and indeed of epidemiology ought to be examining the population impacts of interventions 

or policies [46]. For such causal analyses, subdistribution risk seems to be the natural 

estimand. Returning to our example, if we were to implement an intervention aiming to 

reduce early term pregnancy loss, we might also wish to know whether that intervention 

would affect time to live birth. Subdistribution risk mirrors what we actually observe in the 

real world, allowing us to make decisions based on all available evidence about the true risk 

of the outcome and the related resource needs and costs.

Conclusions

Over the past decade, applied analyses that explicitly account for competing events, whether 

they adopt the cause-specific or subdistribution approaches, have become more 

commonplace. Much work has also been done to extend the theory of counterfactual 

outcomes and identification conditions to the competing event scenario. However, there 

remains debate over which approach is more “causal.”

Fundamentally, before researchers attempt to make causal inferences in the presence of 

competing events, they will need to specify concretely their causal question and then choose 

the target estimand and estimation approach which will best answer that question. If unsure 

of the most important question to ask, researchers can always present results from both 

approaches, especially the cause-specific hazards and cumulative incidence functions, as 

they may convey different information [49, 7, 11].
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Figure 1. 
Potential directed acyclic graphs for competing events analyses that treat the competing 

event as a mediator. In panel A, we provide the time-fixed case, where A is a point exposure, 

L(0) is a baseline confounder, D(t) is occurrence of the competing event by time t, and Z(t) 
is occurrence of the event of interest by time t. In panel B, we expand to the time-varying 

case. Now, we must consider L(t) a time-varying confounder which affects the occurrence of 

the competing event and the event of interest by time t + 1. This case could be expanded 

even further if our interest was not in a baseline exposure A but rather a time-varying 

exposure A(t).
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