TABLE 3. Result on the polyp Detection and Localisation Task on the Kvasir-SEG Dataset. Two Best Scores are Highlighted in Bold.
Method | Backbone | AP | IoU | AP25 | AP50 | AP75 | FPS |
---|---|---|---|---|---|---|---|
EfficientDet-D0 [52] | EfficientNet-b0, biFPN | 0.4756 | 0.4322 | 0.6846 | 0.5047 | 0.2280 | 35.00 |
Faster R-CNN [50] | ResNet50 | 0.7866 | 0.5621 | 0.8947 | 0.8418 | 0.5660 | 8.0 |
RetinaNet [49] | ResNet50 | 0.8697 | 0.7313 | 0.9395 | 0.9095 | 0.6967 | 16.2 |
RetinaNet [49] | ResNet101 | 0.8745 | 0.7579 | 0.9483 | 0.9095 | 0.7132 | 16.8 |
YOLOv3+spp [55] | Darknet53 | 0.8105 | 0.8248 | 0.8856 | 0.8532 | 0.7586 | 45.01 |
YOLOv4 [56] | Darknet53, CSP | 0.8513 | 0.8025 | 0.9123 | 0.8234 | 0.7594 | 48.00 |
ColonSegNet (Proposed) | – | 0.8000 | 0.8100 | 0.9000 | 0.8166 | 0.6706 | 180.00 |