TABLE 5. Baseline Methods for polyp Segmentation on the Kvasir-SEG Dataset. Two Best Scores are Highlighted in Bold. “−” Shows That There is no Backbone Used in the Network.
Method | Backbone | Jaccard C. | DSC | F2-score | Precision | Recall | Overall Acc. | FPS |
---|---|---|---|---|---|---|---|---|
UNet [58] | – | 0.4713 | 0.5969 | 0.5980 | 0.6722 | 0.6171 | 0.8936 | 11.0161 |
ResUNet [61] | – | 0.5721 | 0.6902 | 0.6986 | 0.7454 | 0.7248 | 0.9169 | 14.8204 |
ResUNet++ [3] | – | 0.6126 | 0.7143 | 0.7198 | 0.7836 | 0.7419 | 0.9172 | 7.0193 |
FCN8 [57] | VGG 16 | 0.7365 | 0.8310 | 0.8248 | 0.8817 | 0.8346 | 0.9524 | 24.9100 |
HRNet [64] | – | 0.7592 | 0.8446 | 0.8467 | 0.8778 | 0.8588 | 0.9524 | 11.6970 |
DoubleUNet [42] | VGG 19 | 0.7332 | 0.8129 | 0.8207 | 0.8611 | 0.8402 | 0.9489 | 7.4687 |
PSPNet [59] | ResNet50 | 0.7444 | 0.8406 | 0.8314 | 0.8901 | 0.8357 | 0.9525 | 16.8000 |
DeepLabv3+ [60] | ResNet50 | 0.7759 | 0.8572 | 0.8545 | 0.8907 | 0.8616 | 0.9614 | 27.9000 |
DeepLabv3+ [60] | ResNet101 | 0.7862 | 0.8643 | 0.8570 | 0.9064 | 0.8592 | 0.9608 | 16.7500 |
UNet [58] | ResNet34 | 0.8100 | 0.8757 | 0.8622 | 0.9435 | 0.8597 | 0.9681 | 35.0000 |
ColonSegNet (Proposed) | – | 0.7239 | 0.8206 | 0.8206 | 0.8435 | 0.8496 | 0.9493 | 182.3812 |