Skip to main content
. 2021 Mar 4;9:40496–40510. doi: 10.1109/ACCESS.2021.3063716

TABLE 5. Baseline Methods for polyp Segmentation on the Kvasir-SEG Dataset. Two Best Scores are Highlighted in Bold. “−” Shows That There is no Backbone Used in the Network.

Method Backbone Jaccard C. DSC F2-score Precision Recall Overall Acc. FPS
UNet [58] 0.4713 0.5969 0.5980 0.6722 0.6171 0.8936 11.0161
ResUNet [61] 0.5721 0.6902 0.6986 0.7454 0.7248 0.9169 14.8204
ResUNet++ [3] 0.6126 0.7143 0.7198 0.7836 0.7419 0.9172 7.0193
FCN8 [57] VGG 16 0.7365 0.8310 0.8248 0.8817 0.8346 0.9524 24.9100
HRNet [64] 0.7592 0.8446 0.8467 0.8778 0.8588 0.9524 11.6970
DoubleUNet [42] VGG 19 0.7332 0.8129 0.8207 0.8611 0.8402 0.9489 7.4687
PSPNet [59] ResNet50 0.7444 0.8406 0.8314 0.8901 0.8357 0.9525 16.8000
DeepLabv3+ [60] ResNet50 0.7759 0.8572 0.8545 0.8907 0.8616 0.9614 27.9000
DeepLabv3+ [60] ResNet101 0.7862 0.8643 0.8570 0.9064 0.8592 0.9608 16.7500
UNet [58] ResNet34 0.8100 0.8757 0.8622 0.9435 0.8597 0.9681 35.0000
ColonSegNet (Proposed) 0.7239 0.8206 0.8206 0.8435 0.8496 0.9493 182.3812