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Abstract
In the immune oncology era, the clinical efficacy of immune checkpoint inhibitors 
(ICIs) against most solid cancers is well known. In hepatocellular carcinoma, the 
recent success of combination therapy with targeting agents has accelerated the 
search for novel combination strategies. Radiotherapy (RT), an attractive 
modality, can be combined with ICIs, which act as strong modulators of the tumor 
immune microenvironment. Herein, we discuss immune modulation caused by 
radiation and the current trials of RT–ICI combination treatment as well as future 
perspectives.
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Core Tip: Immune modulatory effect of radiation is highlighted as a combination 
strategy with immune checkpoint inhibitors. This strategy has been actively adopted in 
most solid cancers. Although it is in relatively early stage for hepatocellular carcinoma, 
accumulated evidence drives clinical trials on testing its efficacy. Still, there remain 
several challenges to overcome for the best oncologic outcome.
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INTRODUCTION
As immune checkpoint inhibitors (ICIs) have demonstrated promising clinical 
outcomes, cancer immunotherapy has shifted the paradigm in cancer therapy. ICIs 
have shown efficacy against various types of cancers such as malignant melanoma and 
non-small cell lung cancer[1-3]. For hepatocellular carcinoma (HCC), ICI monotherapy 
has not been successful, with a response rate of no more than 20%, which suggests the 
need for a combination strategy. The recent IMbrave150 trial demonstrated superior 
progression-free survival (PFS) and better overall survival (OS) with combination 
treatment using atezolizumab [an anti-programmed death ligand-1 (PD-L1) agent] and 
bevacizumab (an anti-vascular endothelial growth factor-A agent) compared to those 
with sorafenib in HCC patients[4]. The IMbrave150 trial showed the potential of ICIs in 
combination with a tumor microenvironment (TME)-modulating agent for the 
treatment of HCC. Identification of the optimal combination treatment using ICIs as a 
novel therapy is gaining extensive attention.

Radiotherapy (RT), one of the major cancer treatments, promotes localized tumor 
cell killing and induces immune modulation in the TME[5,6]. Increasing evidence has 
demonstrated that radiation reinforces tumor-related immunity[7,8]. RT exerts 
synergistic effects with ICIs by increasing lymphocyte infiltration into tumors, 
inducing immunogenic cell death, and enhancing the performance of antigen-
presenting cells (APCs)[9]. Herein, we discuss immune modulation by radiation, the 
rationale for RT–ICI combination treatment in preclinical settings, and future 
approaches to overcome the hurdles in combination therapy for HCC.

CHALLENGES IN CURRENT ICIs 
Although ICIs show promising treatment outcomes, challenges remain in their 
application. One recent study reported that the tumor immune cell composition plays 
a key role in the response to immunotherapy[10-12]. Although the initial T-cell 
population mainly comprised effective “transitional” cells, a substantial number of 
infiltrating CD8 T-cells transformed gradually into dysfunctional T-cells. CD8 T-cells 
with cytotoxic functions were rare among intratumoral immune cells, while 
dysfunctional T-cells were the major immune cells in tumors. Furthermore, the 
proportion of dysfunctional T-cells was associated with tumor proliferation. These 
findings suggest that ICIs alone might be insufficient for achieving an adequate clinical 
response.

The infiltrating dysfunctional T cells by immunosuppressive mechanisms in TME is 
one of the reasons for failed ICI[13,14]. The exhausted T cells can explain the lack of 
response in ICI. To elevate the efficacy of ICI response, converting the dysfunctional T 
cell into functional T cell is important. The reinvigorating exhausted T cell is expected 
to improve the outcome of ICI. The successful reinvigoration of T cell function would 
recover the antitumor activity[15].

Currently, the reinvigoration of T-cells appears to be a key outcome in immune 
oncologic therapy. Huang et al[16] reported that the reinvigoration of T-cells is closely 
related to tumor burden, and this association was also correlated with the clinical 
response to ICIs[16-18]. The authors reported that the ratio of T-cell reinvigoration to the 
tumor burden was the key predictive factor of the clinical response to ICIs, which 
explains the heterogeneous and unsustainable clinical benefit in patients[16-18]. 
Therefore, reducing the tumor burden before administering ICIs seems important for 
improving clinical outcomes. In this regard, RT may be effective in reducing the tumor 
burden[19]. In addition, RT has been known for its modulation effect on the immune 
TME.

IMMUNE MODULATION EFFECT OF RADIATION
Besides cell killing, RT induces an immune-mediated antitumor response. Its effect in 
terms of immune modulation is summarized in Table 1. First, RT induces antigen 
release and immunogenic cell death. Radiation upregulates the expression of major 
histocompatibility complex (MHC) class I, thus enhancing the immune response and 
efficacy of ICIs[20,21]. Naturally, MHC expression is downregulated in tumors to allow 
immune evasion. Expression of MHC class I enables CD8 T-cells to recognize tumor 
cells and trigger a major cell-mediated cytotoxic response. Enhanced antigen 
presentation with upregulated MHC class I expression is one mechanism by which 
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Table 1 Four key steps of a radiation-induced immune response

Major steps Ref.

Induction of antigen release and immunogenic cell death [20-22]

Induction of antigen-presenting cell maturation and antigen presentation [23,24]

Induction of T-cell recruitment and infiltration [21,29-32]

Induction of tumor cell sensitization to immune-mediated cell death [27,28,33]

radiation induces immune-mediated cell death[20]. Radiation promotes the expression 
of not only MHC class I in tumor cells but also damage-associated molecular patterns, 
such as HMGB1, and the release of prophagocytic signals, such as calreticulin[20,22].

Second, RT mediates the release of tumor antigens, which leads to the activation 
and transfer of dendritic cells to draining lymph nodes, resulting in tumor-specific T-
cell activation and proliferation. After RT, antigens are released from dying tumor 
cells, and antigens are taken up by APCs such as macrophages, dendritic cells, and B-
cells. Antigen uptake by APCs is an important step in priming adaptive immunity. 
Dendritic cells are activated after antigen uptake, and the activated dendritic cells 
migrate to lymph nodes. In tumor-draining lymph nodes, dendritic cells present 
antigens to either T-cells or B-cells[23]. HMGB1, a radiation-induced damage-associated 
molecular pattern, enhances dendritic cell maturation[24].

Several studies have demonstrated that RT increases the number of tumor-
infiltrating lymphocytes (TILs), indicating that RT aids in overcoming the physical 
barriers of the tumor, which facilitates a substantial response by the adaptive immune 
system[25-28]. Two mechanisms have been proposed to explain the increased number of 
TILs after RT[21,29-31]. One mechanism involves the modification of the vascular 
endothelium, enabling the extravasation of immune cells. The expression of E-selectin 
and intercellular adhesion molecule (ICAM)-1, one of the cell adhesion molecules on 
the vascular endothelium, has been shown to increase after RT[32]. These molecules 
help the leukocytes migrate from vessels, which is a key step in enhancing the immune 
response against the tumor. Another mechanism involves the promotion of the 
expression of chemokines, increasing immune cell migration and invasion. Radiation 
increases the expression of CXCL16, the ligand for CXCR6[31]. CD8 T-cells expressing 
CXCR6 are recruited toward tumor cells as radiation exposure increases the expression 
of CXCL16. In summary, radiation promotes the migration of TILs into the TME, 
ultimately generating an immunogenic environment.

Lastly, RT induces the sensitization of tumor cells to immune-mediated cell death. 
As previously described, radiation increases MHC class I expression, together with the 
immunogenic release of damage-associated molecular patterns and prophagocytic 
signals. This mechanism induces immune-mediated cell death[28]. Along with the 
enhanced expression of MHC class I and HMGB1, radiation exposure induces FAS 
expression. FAS is a cell surface molecule that induces programmed cell death. FAS 
expression is upregulated in human tumor cell lines after radiation[33]. Upregulated 
FAS expression on tumor cells enhanced binding to nearby immune cells expressing 
the FAS ligand[27,33]. Radiation-induced upregulation of FAS expression is one of the 
important mechanisms by which the immune system can trigger tumor cell death. 
Taken together, RT can change the immunogenicity of tumors from low to high 
through these key mechanisms. The mechanisms that occurred when combining the 
ICI and radiation are summarized in Figure 1.

These immune-modifying mechanisms were also observed in a murine HCC 
model[34]. MHC class I expression was upregulated after RT in the HCC model. The 
expression level of MHC class I was significantly higher in the RT group than in the 
control group. Concordant with the expression of MHC class I, upregulated expression 
of HMGB1 and ICAM-1 was observed after RT. The upregulated expression of 
HMGB1 is expected to lead to dendritic cell maturation, and increased ICAM-1 
expression is thought to induce leukocyte outflow. These molecules, induced by 
radiation, alter the TME to an immunogenic environment in HCC.

COMBINATION OF RADIATION WITH ICIS
The notion of combination treatment is now generally accepted with respect to the 
clinical application of ICIs. It is known that multiple co-stimulatory and inhibitory 
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Figure 1 Combination of immune checkpoint inhibitor and radiation enhances immune-mediated cell death. PD-L1: Programmed cell death 
ligand 1; MHC: Major histocompatibility complex; TCR: T cell receptor.

signals regulate T-cell activation[35,36]. These co-stimulatory and inhibitory signals play 
an important role in immune resistance. ICIs, which block these inhibitory signals, 
eliminate immune resistance mechanisms. Interestingly, these co-stimulatory and 
inhibitory signals are modulated by radiation[29,37]. Based on these findings, the 
combination of RT and ICIs is thought to have a synergistic effect, and some 
preclinical data support its use against HCC.

Our group demonstrated that RT induced PD-L1 expression in tumor cells and 
showed the potential antitumor effect of anti-PD-L1 agents against HCC[38]. The 
expression of PD-L1 is induced maximally between 24 and 48 h after RT. RT with up to 
10 Gy was administered, and PD-L1 expression was upregulated in a dose-dependent 
manner. The antitumor effect was also examined for the anti-PD-L1 agent–RT 
combination in vivo. Tumor growth suppression and survival improvement were 
significantly superior in the combination group than in the anti-PD-L1 agent alone or 
RT alone group. Furthermore, the combination of an anti-PD-L1 agent and RT 
significantly increased cytotoxicity and the proliferation of CD8 T-cells compared to 
RT alone or the anti-PD-L1 agent alone.

T-cell immunoglobulin and mucin-domain-containing molecule-3 (TIM3) is an 
inhibitory molecule present on T-cells. TIM-3-expressing T-cells showed dysfunction 
or “exhaustion”[39]. It has been reported that TIM-3 expression is higher in HCC 
patients than in those with other liver diseases, such as chronic hepatitis and liver 
cirrhosis[40]. TIM-3-positive T-cells showed high expression in HCC cells, in contrast to 
that in normal cells present in adjacent tissues[41]. Although TIM-3 blockade can 
modulate the immune response via several cell types[42-44], there are limited studies 
regarding the effect of anti-TIM3 agents in HCC patients. RT upregulated TIM-3 
expression in HCC cell lines, and the combination of an anti-TIM-3 agent and radiation 
promoted cytotoxicity and the proliferation of CD8 T-cells[45]. Furthermore, the 
combination of an anti-TIM-3 agent and radiation significantly suppressed tumor 
growth compared to radiation or anti-TIM-3 agent alone. Concordant with the results 
of tumor growth, the combination group demonstrated a significant improvement in 
survival.

Despite these promising preclinical data regarding the combination of RT and ICIs 
against HCC, clinical studies are severely limited. One study investigated the clinical 
implications of PD-L1 levels in patients with HCC undergoing RT[46]. The level of 
soluble PD-L1 (sPD-L1) was quantified in patients who underwent RT for HCC. The 
initial sPD-L1 level was significantly associated with tumor aggressiveness (tumor size 
and stage). A high initial sPD-L1 level was related to poorer OS than a low initial sPD-
L1 level. The sPD-L1 levels increased significantly after both conventional RT and 
stereotactic body RT (SBRT), but the pattern of sPD-L1 change was different 
depending on the dose scheme. The sPD-L1 level increased immediately after RT but 
decreased at 1 mo after conventional RT, while a continuous increase was observed in 
those undergoing SBRT. In the SBRT group, the median sPD-L1 level at 1 mo increased 



Lee BM et al. Combination of RT and ICI in HCC

WJG https://www.wjgnet.com 923 March 14, 2021 Volume 27 Issue 10

to approximately 3-times the initial sPD-L1 level. Therefore, the combination of ICIs 
and RT may be a promising treatment in patients with HCC, and efficacy might be 
better with SBRT. This notion needs clinical validation to evaluate the efficacy of 
combined treatment with RT and ICIs for HCC. Several prospective trials registered at 
www.ClinicalTrials.gov are ongoing to investigate the combination of ICIs and RT 
(Table 2).

CHALLENGES WITH THE COMBINATION OF RADIATION AND ICIS
Radiation fractionation
There is no established dose or fractionation regimen that optimizes the therapeutic 
effect of RT plus ICIs. It is clear that the immunologic response differs depending on 
the RT dose as per fractionation. With conventional fractionation, RT promotes the 
recovery of tumor vessels via the migration of immune cells through the 
endothelium[47] and induction of M1-type macrophages[47,48]. These actions have a 
positive effect on immunity. With hypofractionation, treatment-related lymphopenia 
occurs less frequently[49], and Tregs are activated, shifting the balance of T-cells toward 
the immunosuppressive state[50,51]. Additionally, preclinical data have shown that 
hypofractionation regimens favor an antitumor response and induce a strong 
lymphoid response[52,53].

In contrast, a high fractional dose led to a different immune response. As per 
preclinical data, fractional doses higher than 12 Gy induce the production of 3′ repair 
exonuclease 1 (TREX1), which degrades cytosolic DNA after RT[54]. Consequently, 
TREX1 inactivates the cyclic guanosine monophosphate-adenosine monophosphate 
synthase (cGAS)–stimulator of interferon genes (STING) pathway. With conventional 
fractionation, the cytosolic DNA after radiation binds to cGAS and activates 
STING[55,56]. Consequently, cGAS and STING induce the production of type I interferon 
and activate an antitumor immune response[57,58]. As a fractional dose of more than 12 
Gy induces TREX1, the fractional dose of more than 12 Gy results in the inhibition of 
antitumor immune responses. Furthermore, doses greater than 10 Gy per fraction 
enhance vascular damage, leading to less effective T-cell recruitment because of 
reduced vascularity[59]. The different types of radiation-induced immune modulation 
by different fractionation scheme of radiation are summarized in Figure 2. For an 
optimal combination of RT and ICIs, it is important to gain an understanding of the 
immune response depending on different fractionations to improve therapy efficacy 
and administer personalized medicine[19].

Treatment sequence
The optimal timing of administering ICIs in combination with RT has not yet been 
defined. To determine the optimal timing of RT and ICI treatment, several preclinical 
studies have been performed. One report showed that administering ICIs 7 d after RT 
was less effective in enhancing OS than administering ICIs concurrently with RT[37]. In 
the PACIFIC trial, durvalumab started within 14 d of completing RT resulted in better 
PFS than durvalumab started after 14 d[2]. A recent study showed that OS was longer 
in patients who received ICIs concurrently with RT[60]. Among the patients who 
received concurrent treatment, induction immunotherapy administered more than 30 
d before RT led to longer OS than that of administered within 30 d before RT. 
Scheduling of RT and immunotherapy must be considered with caution in the context 
of clinical trials.

CONCLUSION
ICIs have emerged as a promising therapy for various malignancies including HCC. T-
cell reinvigoration by activating dysfunctional T-cells into cytotoxic T-cells is a key 
factor in the novel therapeutic effect of ICIs. However, ICI monotherapy has some 
limitations in circumstances such as T-cell dysfunction and high tumor burden. 
Meanwhile, RT has been shown to cause high immunogenicity in tumors through 
various mechanisms of immune modulation. The combination of ICIs and RT is being 
studied as a promising treatment for HCC to take advantage of the synergistic effect. 
Further studies are necessary to determine the appropriate treatment regimen for 
achieving optimal clinical benefit.

http://www.ClinicalTrials.gov
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Table 2 Ongoing clinical trials investigating the combination of radiotherapy and immune checkpoint inhibitors against hepatocellular 
carcinoma

NCT number Institution Disease Estimated 
enrollment Phase Primary endpoint Intervention

NCT04167293 China (Sun Yat-
sen University 
Cancer Center)

HCC with portal vein invasion 116 II/III 6-mo PFS SBRT + sintilimab vs 
SBRT

NCT03817736 Hong Kong 
(Queen Mary 
Hospital)

HCC 33 II Number of patients 
eligible for curative 
surgical interventions

TACE/SBRT + ICI

NCT03203304 United States 
(University of 
Chicago)

Unresectable HCC 50 I Number of 
participants with 
adverse events

Nivolumab + SBRT vs 
nivolumab and 
ipilimumab + SBRT

NCT04611165 South Korea 
(NCC)

HCC with major vascular 
invasion

50 II PFS Nivolumab + EBRT 

NCT03482102 United States 
(MGH)

Locally advanced/unresectable 
or metastatic HCC or biliary tract 
cancer

70 II ORR Tremelimumab + 
durvalumab + RT

NCT03316872 Canada (UHN) HCC progression after sorafenib 30 II ORR Pembrolizumab + SBRT

NCT04547452 China (West China 
Hospital)

Metastatic HCC 84 II PFS SBRT + sintilimab vs 
sintilimab

NCT04193696 China (Guangxi 
Medical 
University)

Advanced HCC 39 II ORR RT+ anti-PD-1 agent

HCC: Hepatocellular carcinoma; PFS: Progression-free survival; SBRT: Stereotactic body radiation therapy; TACE: Transcatheter arterial 
chemoembolization; ICI: Immune checkpoint inhibitor; NCC: National Cancer Center; EBRT: External beam radiotherapy; MGH: Massachusetts General 
Hospital; ORR: Overall response rate; RT: Radiotherapy; UHN: University Health Network; PD-L1: Programmed cell death ligand 1.

Figure 2 Types of radiation-induced immune modulation by different fractionation scheme of radiation.
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