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Abstract

Dance is a culturally salient form of physical activity (PA) for older Latinos. Resting-state 

functional connectivity (FC) is a putative biomarker for age-related cognitive decline. We aimed to 

investigate the impact of the BAILAMOS™ dance program on FC in three brain functional 

networks (Default Mode [DMN], Frontoparietal [FPN], and Salience [SAL] networks), and 

cognition. Ten cognitively healthy older Latinos participated in the four-month BAILAMOS™ 

dance program. We assessed PA levels (self-reported and device-assessed) and estimated 

cardiorespiratory fitness, cognition, and resting-state FC via functional magnetic resonance 

imaging at baseline and post-intervention. We performed paired t-tests and Pearson correlations. 

Given the pilot nature of the study, significance levels were set at p < 0.05 and effect sizes are 

reported. We observed a significant increase in self-reported moderate leisure-time PA from pre- to 

post-intervention (t(9) = 3.16, p = 0.011, d = 0.66). FC within-FPN regions of interest (ROIs) 

significantly increased pre- to post-intervention (t(9) = 2.35, p = 0.043, d = 0.70). DMN ROIs 

showed an increase, with a moderate effect size, in the integration with other networks’ ROIs (t(9) 

= 1.96, p = 0.081, d = 0.64) post-intervention. Increases in moderate leisure-time PA at post-

intervention were associated with increases in the FC within-FPN (R = 0.79, p = 0.006). Our 

results suggest that dance might be a promising approach for improving age-related disruption of 

FC within- and between-networks commonly associated with cognitive decline.
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Introduction

Increasing physical activity (PA) levels is paramount to decreasing the risk of age-related 

chronic diseases (Booth, Roberts, and Laye 2012). Older Latinos have a higher prevalence of 

obesity, type 2 diabetes, and metabolic syndrome compared to non-Latino whites (Benjamin 

et al. 2017), and these conditions increase the risk for age-related cognitive decline 

(González et al. 2018). Older Latinos also engage in less leisure-time PA than other racial/

ethnic groups (Keadle et al. 2016). Therefore, increasing engagement in PA might be an 

effective approach for reducing numerous risk factors for chronic conditions, including 

cognitive impairment, among higher-risk groups such as Latinos.

Age-related cognitive decline tends to manifest in the domains of attention, memory, and 

executive function earlier and more acutely than other cognitive domains (Hedden and 

Gabrieli 2004). These cognitive changes are preceded by a heterogeneous array of changes 

to brain morphology and function (Lin et al. 2018). Within brain function, functional 

connectivity (FC) is a valuable measure of brain health because it correlates both with 

normal age-related decline in brain function and decline due to pathologies (Lin, Xing, & 

Han 2018). Notably, dysfunctions due to cognitive decline are more accentuated in specific 

brain networks such as DMN (Ferreira & Busatto 2013; Jagust 2013; Voss et al. 2016), FPN 
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(Ferreira & Busatto 2013; Jagust 2013; Voss et al. 2016), and SAL (Onoda, Ishihara, & 

Yamaguchi 2012; Voss et al. 2016).

Researchers have used resting-state FC to identify brain regions that are both negatively 

affected by aging and modifiable through participation in PA. A review of neuroimaging 

studies on PA in healthy older adults and those with mild cognitive impairment suggested 

that the default-mode-network (DMN), fronto-executive network (FEN), and frontoparietal 

network (FPN) were resting networks potentially affected by PA interventions (Huang et al. 

2016). Moreover, another critical review summarized studies regarding the relationships 

between FC, exercise, fitness, and PA in older adults (Stillman, Donofry, and Erickson 

2019), and results suggested that PA and exercise might be effective for preserving or 

strengthening FC within and between large-scale brain networks (e.g., DMN, FPN, and 

salience [SAL]) disrupted with both normal and pathological aging.

Interventions utilizing dance as a form of PA offers a combination of physical, cognitive, 

and social activities potentially effective for maintaining or improving cognition because it 

includes components that influence adherence such as social activity, enjoyment, and a 

variety of movements (Esmail et al. 2020; Predovan, Julien, Esmail, & Bherer 2019). 

Although dance is considered a socially and cognitively enriching type of PA (Kattenstroth 

et al. 2013), the impact of dance on cognition and brain network FC in healthy older adults 

is poorly understood.

Studies that have examined the effect of a dance intervention on cognition have reported 

improved overall cognition (concentration, attention, and non-verbal learning) (Kattenstroth 

et al. 2013), as well as improvements within specific domains of cognitive flexibility (i.e., 

ability to adapt behaviors in response to changes in the environment) (Coubard et al. 2011), 

visuospatial learning (Merom et al. 2016), motor-cognitive dual-task performance while 

walking (Hamacher et al. 2015), and verbal short-term memory, long-term free recall and 

recognition (Rehfeld et al. 2018) compared to other forms of exercise or control conditions. 

Nonetheless, these studies proposed a range of different dance styles (e.g., Agilando™, 

contemporary dance, Rock and Roll, Foxtrot, Waltz, Rumba, Line Dance).

Studies investigating the impact of dance training on resting FC are scarce. Voss et al. (2019) 

found no changes in the DMN and SAL after a 24-week dance intervention compared to two 

groups who engaged in aerobic exercise and one control group. Conversely, participation in 

a 24–week traditional Greek dance program led to increased FC in the executive-control 

network, DMN, and FPN (Zilidou et al. 2018).

No studies have explored the impact of Latin dance styles on FC and cognition in older 

Latinos. It is possible that benefits derived from dance are moderated by dance styles, 

participant’s racial/ethnic background, and the synergy between dance style and cultural 

background. This is an important gap in the literature because older Latinos are at higher 

risk of developing chronic diseases associated with cognitive impairment, engage in less 

leisure-time PA, and consider dance as a culturally relevant form of PA (Mier, Medina, and 

Ory 2007; Wilbur et al. 2003; Marquez et al. 2016; Melillo et al. 2001).
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The present pilot study examined the impact of Latin dance training on FC and cognition in 

an older, Spanish-speaking Latino sample. Given the small sample size and exploratory 

nature of the study, we focused on examining effect size in addition to statistically 

significant changes. We aimed to (a) investigate the impact of a four-month Latin dance 

program (BAILAMOS™) on FC in DMN, FPN, SAL, and cognitive performance; and (b) 

investigate whether changes in PA and estimated CRF as a result of the BAILAMOS™ 

dance program were associated with changes in FC in DMN, FPN, and SAL. We 

hypothesized that (a) FC within and between the DMN, FPN, and SAL regions would be 

significantly greater and/or present moderate effect sizes after participation in the 

BAILAMOS™ program; (b) changes in self-reported and device-assessed PA and estimated 

CRF would be associated with changes in cognition and FC within and between the DMN, 

FPN, SAL areas; and (c) any improvements in cognitive performance would be associated 

with changes in FC within and between the DMN, FPN, SAL areas.

Materials and Methods

Study design

This study was an exploratory single-group pre-post design. This is a secondary analysis of a 

pilot randomized-controlled open trial examining the impact of the BAILAMOS™ dance 

program on cognitive function, brain structure, and brain FC in older Latino adults. 

Participants were randomized to either BAILAMOS™ (n = 12) or a wait-list control group 

(n = 10). However, large attrition in the control group (60%), and high rates of differential 

attrition (44%) rendered the comparison group data unusable. Hence, we likely would not be 

powered to detect meaningful differences and infer causality. Therefore, for the purposes of 

this study, we only include data from participants from the BAILAMOS™ dance group. The 

study was approved by the University of Illinois at Chicago Institutional Review Board and 

conducted in accordance with the Declaration of Helsinki with written informed consent 

obtained from all participants.

Participants

Participants were recruited using established relationships of the University of Illinois at 

Chicago with the Latino community in Chicago (e.g., senior centers, churches). Research 

staff conducted presentations at the senior center in which the study took place, and at 

Roman Catholic churches in the vicinity of the senior center site. The majority of residents 

in the chosen neighborhood self-identify as Latinos. Additionally, recruitment included 

flyers in senior housing facilities, presentations at health centers and clinics, health fairs, and 

word of mouth. Participants in the current study were those in the BAILAMOS™ dance 

group with MRI scans at both pre- and post-intervention (n = 10) from the pilot randomized-

controlled open trial mentioned above.

Inclusion criteria were: (a) aged 60 years or more; (b) self-identification as Latino/Hispanic; 

(c) self-reported ability to understand Spanish; (d) self-reported participation in less than 

two days per week of aerobic exercise; (e) at risk for disability (see below for a definition); 

(f) cognitively healthy (i.e., scored >14) as assessed by a modified version of the Mini-

Mental State Examination (MMSE; Folstein, Folstein, & McHugh 1975) for telephone 
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administration (21-point; Wilbur et al. 2012). Wilbur and colleagues mentioned that past 

studies using the 30-point MMSE with low-educational attainment older adults identified 

one-third incorrect as a cut-point for impaired/poor cognition (Raji et al. 2010), therefore, 

above 14 was the cut-point for normal cognition in the modified version; (g) danced less 

than two times/month over the past 12 months; (h) willingness to be randomly assigned to 

treatment or wait-list control group; and (i) no current plans to leave the country for more 

than two consecutive weeks over the next year.

We defined being at risk for disability as one of the following: (a) self-reported diagnosis of 

diabetes (Al Snih et al. 2007); (b) self-reported underweight (body mass index [BMI] lower 

than 18.5), overweight or obesity (BMI greater than 25.0) (Al Snih et al. 2007); or (d) 

difficulty or change with any one of the following four tasks: (1) walking a long distance 

(four blocks or half-mile), (2) climbing ten steps, (3) transferring from a bed or chair, (4) 

walking a short distance on a flat surface. Participants answered two questions for each task: 

“Have you had difficulty completing (task)” and “Have you changed the way you complete 

(task) or how often you do this, due to a health or physical condition?”

Self-reported exclusion criteria included: (a) uncontrolled cardiovascular disease; (b) 

pacemaker or metallic implants (infusion pumps, metal prostheses, metallic-backed 

transdermal patches or metallic shrapnel); (c) claustrophobia that precludes MRI; (d) stroke 

within the past year; (e) healing or unhealed fracture(s); (f) hip or knee replacement within 

the past six months; (g) heart failure; (h) recurrent falls within the past year; (i) regular use 

of a walker or wheelchair; and (j) weigh more than 300 pounds (unable to fit into the MRI). 

We used the Exercise Assessment and Screening for You (EASY) questionnaire to detect 

conditions that could prevent exercise participation (Resnick et al. 2008) and to determine 

whether physician evaluation and clearance was necessary before engaging in PA (Chodzko-

Zajko, Resnick, and Ory 2012).

Measures

At baseline and post-intervention, we collected demographic information, overall physical 

health, cognitive function, self-reported and device-assessed PA, estimated CRF, and 

functional resting-state MRI. Data collectors were blinded to study condition. Baseline data 

were collected on average, nine weeks prior to the intervention start date. The period 

between data collection and the intervention start date was longer than we planned because 

we had to replace the dance instructor who was going to lead the classes. Moreover, this 

change was followed by the holiday season, which also delayed the beginning of the 

intervention. Post-intervention data were collected during the last week of the intervention 

and up to one week after the end of the intervention. Functional resting-state MRI data were 

collected on average, three weeks prior to the intervention, and two days after the 

intervention. At each class, we collected data on participants’ attendance, rate of perceived 

exertion, and class enjoyment.

Demographics, overall health, rate of perceived exertion, and enjoyment—
Demographic information included age, sex, education, income, marital status, country of 

origin, race, ethnicity, preferred language, years lived in the U.S., and number of children. 

Physical health measures included measurements of weight (Tronix 5002 Stand-on Scale or 
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Seca 803 Flat Scale), height (Seca 216 Mechanical Stadiometer or Seca 213 Portable 

Stadiometer), and body mass index (BMI)(kg/m2). At each class, we asked participants to 

grade their perceived exertion from 6 (no exertion) to 20 (maximal exertion) with the Borg 

Rating of Perceived Exertion (RPE) (Borg 1982) and to respond to a question about their 

perceived enjoyment on a Likert scale from 1 to 7 (strongly disagree to strongly agree).

Cognitive function—We utilized a set of neuropsychological tests that have been shown 

to be valid across ethnic and socioeconomic backgrounds and have been validated in 

Spanish (Marquine et al. 2012; Wilson et al. 2016). We administered all neuropsychological 

tests at baseline and post-intervention. We measured cognitive performance in three 

cognitive domains (i.e., executive function, working memory, and episodic memory) and one 

global cognition domain. These domains and respective tests have been previously proposed 

(Wilson et al. 2002; Wilson et al. 2005; Acevedo et al. 2009)

Four neuropsychological tests were utilized as measures of executive function: (1) Trail 

Making Test (TMT) parts A and B (Adjutant General’s Office 1944); (2) Stroop C (color 

task of the short form; Wilson et al. 2005) of the Stroop Neuropsychological Screening Test 

(Trenerry et al. 1989), and the Stroop C-W (color-word task); (3) Word fluency test (Welsh 

et al. 1994), and (4) Symbol Digit Modalities Test (Smith 1982). Three tests were used as 

measures of working memory, the two parts (forward and backward) of the Digit Span test 

(Wechsler 1987), and the Digit Ordering test (Cooper, Sagar, Jordan, Harvey, & Sullivan 

1991; Wilson et al. 2005). Two tests were used to measure episodic memory, the Logical 

Memory I (Immediate) and II (Delayed) (Wechsler 1987).

We first converted the raw scores of the above mentioned neuropsychological tests to z-

scores utilizing baseline means and standard deviations (Wilson et al. 2002). Then we 

combined the z-scores into composite scores of executive function, episodic memory, 

working memory, and global cognition by averaging the z-scores from each test (Wilson et 

al. 2002).

Physical Activity and cardiorespiratory fitness—Participants responded to the 

Community Healthy Activities Model Program for Seniors (CHAMPS) Physical Activity 

Questionnaire for Older Adults (Stewart et al. 2001). It assesses weekly frequency and 

duration of PA in four different lifestyle domains (leisure-time, household, occupational, and 

transportation) typically undertaken by older adults. The Spanish version of CHAMPS has 

been validated and employed with older Latinos (Rosario et al. 2008).

Device-assessed PA was acquired with a triaxial GT3X+ accelerometer (Actigraph, 

Pensacola, Florida). Participants wore it for one week at baseline and post-intervention, 

respectively, on their non-dominant wrist for seven consecutive days, removing it for 

showering and swimming. The research staff members instructed participants about the use 

of the accelerometer and provided a handout with additional instructions and pictures in 

Spanish or English. Participants also received an accelerometer log to record the times they 

removed and put back on the accelerometer. Data were included in the analysis if the 

participant wore the accelerometer for at least four days for more than 10 hours/day (Hart et 

al. 2011). Data were processed with ActiLife version 6.13.3 software after being converted 
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to 60 seconds epochs. We defined non-wear time as at least 60 consecutive minutes of 0 

activity counts. Average counts per minute (CPM) and steps are reported as the main 

outcome for device-assessed PA.

We estimated CRF with Jurca’s et al. (2005) regression equation, which estimates CRF in 

metabolic equivalents (METs) without exercise testing. The equation takes into account 

participants’ sex, age, BMI, resting heart rate, and PA levels on a scale from 1 to 5 (see Jurca 

et al. 2005 for detailed scale). We used the following equation: sex × (2.77) – age × (0.10) – 

BMI × (0.17) − resting heart rate × (0.03) + PA score + 18.07.

Neuroimaging data acquisition and processing—Participants underwent 

neuroimaging at University of Illinois at Chicago Advanced Imaging Center. Whole-brain 

images were acquired on a GE MR 750 Discovery 3T scanner (General Electric Health 

Care, Waukesha, WI) using an 8-channel head coil. Participants were instructed to remain 

still in a supine position on the scanner table. We provided earplugs to improve their comfort 

and positioned foam pads to minimize head movement. Resting-state functional MR images 

were acquired with a fast echo-planar imaging (EPI) sequence with the following 

parameters: repetition time (TR) = 2000 ms; echo time (TE) = 30 ms; flip angle = 90°; FOV 

= 24 mm × 24 mm; acquisition matrix size 64 X 64 X 256; slice thickness = 4 mm; gap = 0 

mm; 256 axial slices.

Functional connectomes were generated using the resting-state fMRI toolbox, CONN (http://

www.nitrc.org/projects/conn) (Whitfield-Gabrieli and Nieto-Castanon 2012). In brief, raw 

EPI images were realigned, co-registered, normalized, and smoothed before analyses. 

Confound effects from motion artifact, white matter, and cerebrospinal fluid were regressed 

out of the signal. Using the “networks.nii” (with ROIs defined from CONN’s ICA analyses 

of HCP dataset / 497 subjects), functional brain networks (e.g., DMN, FPN, SAL, and 

Language) were derived using pairwise BOLD signal correlations, which were then 

converted to z-scores using Fisher’s r-to-z transformation. The ROIs selected for the present 

study are displayed in Table 1. The DMN, FPN, and SAL were selected as networks of 

interest due to evidence of the effects of aging and PA on these networks. The Language 

network was selected as a control network because most of language processes are relatively 

robust to brain aging (Shafto and Tyler 2014) and the lack of consistent evidence showing 

effects of PA on the Language network.

Procedures—Individuals interested in participating provided consent to be called by 

research staff to perform phone screening. Those individuals that learned about the study via 

word of mouth or flyers called to schedule a time for the screening. Bilingual and bicultural 

research staff members conducted the screening.

Eligible participants were scheduled for baseline testing, which was performed by bilingual 

research staff. Data collection occurred over two different sessions. In the first visit, a 

research staff member administered the informed consent, questionnaires (demographic 

information and PA), and neuropsychological tests in Spanish or English, as requested by 

the participant. Prior to the pilot, research staff members received training on how to conduct 

the select neuropsychological tests. The training was led by a research trainer from the Rush 
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Alzheimer’s Disease Center. Participants also received the accelerometer to wear for the 

next seven days. The research staff provided all information related to proper accelerometer 

use. Also, at this session, the staff member showed images of the MRI machine to make sure 

that participants understood the details about the MRI exam and agreed to participate in the 

study. This session took place at the Pilsen satellite senior center. Participants attended a 

second in-person session for MRI data acquisition at the University of Illinois at Chicago 

Advanced Imaging Center. Participants received a $50 gift card compensation after the data 

collection. The same procedures (except informed consent and demographic questionnaires) 

were repeated for post-testing.

Intervention—Participants took part in the BAILAMOS™ dance program. Details about 

the program have been previously reported (Marquez et al. 2014). Briefly, the program was a 

four-month, twice a week for 60-min dance program with four Latin dance styles 

(Merengue, Cha Cha Cha, Bachata, and Salsa) ordered by difficulty level and aiming to offer 

light to moderate intensity PA. Participants learned a new style of dance every four weeks. 

Within those four weeks, participants learned new steps when the instructor felt participants 

were ready to proceed according to the dance BAILAMOS™ dance program manual. All 

music used in the program was Latin, initially chosen by the instructor. Participants were 

also invited to give their input, and songs were included in the instructor’s selection.

Dance sessions included warm-up and stretching, instructions of the respective dance style 

with steps for singles and couples, and cool down. Couples learned steps of both leaders and 

followers, and continually rotated partners. All participants learned the steps without a 

partner; then, all participants paired up, learned with a partner, and changed partners after 

that (e.g., for each new song). Steps were first taught without music. Once participants were 

comfortable with the fundamental steps of a style of dance, music was incorporated moving 

forward.

Twice a month, participants attended fiestas de baile (dance parties) in which they had time 

to practice the learned steps. Attendance at each session and fiestas de baile were recorded. 

Adherence was calculated by the number of classes attended, divided by the number of 

classes conducted (32 total). Initially, the dance program was led by a white female 

instructor who was a proficient Spanish speaker with about five years of experience teaching 

Latin dance. Due to unforeseen reasons, the instructor could no longer teach the classes; and 

the co-creator of the BAILAMOS™ dance program, a Latino male with more than 20 years 

of teaching experience took over the dance instruction.

Statistical Analysis—All analyses were conducted in RStudio version 3.5.14 (RStudio 

Team 2019). We assessed distributions with the Shapiro-Wilk normality test. Due to the 

small sample size and the skewed distribution of the self-reported PA data, we first opted to 

conduct the Wilcoxon Signed Ranked test for paired samples to examine changes in the 

outcome variables pre- and post-intervention. For sensitivity analysis, we carried out paired 

t-tests. Since results were the same using either approach, we chose to present data from the 

paired t-tests, means and standard deviations. We conducted Spearman correlations to 

investigate whether changes in PA levels were correlated with changes in cognitive function 
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and FC within and between ROIs in the DMN, FPN, SAL, and a network utilized as control, 

the language network. Significance levels were set at p < 0.05.

We computed Cohen’s d effect size with effsize package (Torchiano 2019). Effect sizes were 

classified as small (d = 0.2), moderate (d = 0.5), and large (d ≥ 0.8) (Sullivan and Feinn 

2012). We utilized the BrainNet Viewer (https://www.nitrc.org/projects/bnv/) (Xia, Wang, 

and He 2013) to display figures of brain FC between ROIs.

We conducted four different analyses comparing the FC pre- and post- BAILAMOS™ dance 

program. First, we compared the FC between each networks’ ROIs and seeds across the 

whole brain. We displayed results for those ROIs with moderate effect sizes (0.5 ≥ d ≤ 0.8). 

Second, we compared the average FC within-ROIs for each network and display results for 

the FPN since FC within-FPN presented moderate effect size changes. Third, we compared 

the average FC within-ROIs between each network. Fourth, we created a ratio of integration/

segregation. This ratio was calculated with the average FC between-networks divided by the 

average FC from within-networks ROIs. We compared the ratio for each network of interest 

pre- and post-BAILAMOS™. The ratio was created based on previous research suggesting 

that understanding both network segregation and network integration is essential to grasp 

how they relate to different aspects of cognition (Cohen and D’Esposito 2016).

As the study was an exploratory pilot, we did not conduct a priori sample size calculations. 

However, a post-hoc power calculation showed that it would be necessary to achieve an N = 

34 to detect a moderate effect size change with 80% statistical power. The datasets generated 

during and/or analyzed during the current study are available from the corresponding author 

on reasonable request.

Results

Demographic information, attendance, perceived exertion, and enjoyment

Participants (N = 10) were 67.1±6.2 years old, a majority were females (n = 7), overweight 

(28.3±5.3 kg/m2), immigrated to the US from Mexico (n = 9) or Guatemala (n = 1) when 

they were 25.1±12.4 years old, and had been living in the U.S. for 39.5±12.8 years at the 

time of data collection. They spent from 4 to 15 years in school (8.7±4.2), reported low 

(n=6) or medium (n=4) income, and most had never participated in structured PA before 

(n=7). The average attendance was 77±26.9% of classes and dance parties. Self-reported 

RPE ranged from 8.5 to 11 (10.0±2.6) over the 32 classes of the BAILAMOS™ dance 

program, reflecting a primarily light intensity range. The average perception of enjoyment 

during classes ranged from 5.6 to 7.0 (6.6±0.7).

BAILAMOS™ effects on PA levels, estimated CRF, and cognition

Participants had high adherence to the accelerometer with an average of 6.8 ± 0.7 valid days 

for 1251.1 ± 238.8 min/day at baseline and 6.44 ± 0.88 for 1241.2 ± 255.6 min/day at post-

intervention. There were no significant increases in device-assessed PA or estimated CRF 

(Table 2) after the four-month BAILAMOS™ dance program. In contrast, there was a 

significant increase in self-reported moderate LTPA (t(9) = 3.16, p = 0.011, d = 0.66). 

Participants increased more than two hours of time spent in moderate leisure-time PA (Mdiff 
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= 126.52 min/week, [95% CI = 36.03; 217.02]). Although statistically non-significant, there 

were small and moderate effects sizes for changes in self-reported light LTPA (d = 0.23), 

moderate PA (d = 0.31), leisure-time MVPA (d = 0.32), and total LTPA (d = 0.31).

Participation in BAILAMOS™ did not lead to statistically significant, nor meaningful effect 

sizes changes, in cognitive performance in global cognition nor any cognitive domain.

BAILAMOS™ effects on functional connectivity

We first compared the FC between each networks’ ROIs and ROIs across the whole brain 

(Table 3). We chose to display results for those ROIs with moderate effect sizes (0.5 ≥ d ≤ 

0.8) (Fig. 1, 2, and 3). We also compared the average FC within-ROIs for each network 

(Table 4) and display results for the FPN (Fig. 4) since FC within-FPN presented moderate 

effect size changes. Third, we compared the average FC within-ROIs between each network 

(results not shown due to non-significant and negligible effect sizes). Fourth, we compared 

the ratio for each network of interest pre- and post-BAILAMOS™ (Table 5).

We did not observe statistically significant differences in the FC between the networks’ 

ROIs and the whole-brain (Table 3). However, there was a moderate sized effect of the 

BAILAMOS™ dance program in three ROIs associated with two of our resting state 

networks: the right anterior insula (SAL) (Mdiff = −0.0450, [95% CI = −0.1201; 0.0301], d 

= −0.54), left supramarginal gyrus (SAL) (Mdiff = −0.0435, [95% CI = −0.1035; 0.0165], d 

= −0.56), and left lateral prefrontal cortex (FPN) (Mdiff = 0.0459, [95% CI = −0.0324; 

0.1243], d = 0.52).

We display the three ROIs x Whole-brain FC with moderate effect sizes (Table 3) in Fig. 1, 

2, and 3.

Averaging the FC within the ROIs of each network of interest, we found that within-network 

FC of the FPN increased significantly after participation in the BAILAMOS™ dance 

program with a moderate effect size (t(9) = 2.35, p = 0.043, d = 0.70) (Table 4).

To explore which ROI was driving this significant increase, we explored the FC within the 

FPN ROIs. We noticed that although non-significant (t(9) = 1.82, p = 0.101, d = 0.77), a 

moderate effect size increase in FC between the left lateral prefrontal cortex and the left 

posterior parietal cortex was driving the average increase in the FPN (Fig. 4). The other 

ROI-ROI FCs did not show significant changes and presented negligible effect sizes.

Taking the average FC within the ROIs of each network (i.e., DMN, FPN, and SAL), we 

calculated the FC of each network as a whole. With the FC of each network, we compared 

the FC changes between each network. We observed negligible non-significant effects in FC 

between networks pre- and post-BAILAMOS™. Next, we calculated a ratio for integration/

segregation of the three networks of interest and the network we used as a control 

(Language). This ratio was calculated to demonstrate whether each network showed a trend 

to have stronger connectivity with other networks (i.e., integration) or to stronger 

connectivity within its own network (i.e., segregation) (Table 5). The results did not show 

statistically significant differences over the course of the intervention. However, the DMN 

ROIs showed moderate effect size changes towards greater integration with other networks’ 
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ROIs (t(9) = 1.96, p = 0.081, d = 0.64) after participation in the BAILAMOS™ dance 

program. Moreover, the negative small effect size in the FPN ratio integration/segregation (d 
= −0.28) aligns with increased FC within FPN ROIs previously observed in Table 4.

Correlation between changes in PA, cognition, and FC

We aimed to investigate whether changes in PA levels were correlated with changes in 

cognition and FC, and tested whether changes in cognition were correlated with changes in 

FC. Nonetheless, as we did not observe changes in cognitive performance, this analysis was 

performed only for the self-reported PA (moderate leisure PA) and FCs that demonstrated a 

statistically significant change or a moderate effect size in the previously reported results. 

We observed that increases in moderate leisure-time PA post-intervention were associated 

with increases in the FC within-FPN (R = 0.79, p = 0.006).

Discussion

The present study aimed to investigate the impact of the BAILAMOS™ dance program on 

resting FC in DMN, FPN, SAL networks, and performance across multiple cognitive 

domains; and investigate whether changes in PA as a result of the BAILAMOS™ dance 

program were associated with changes in resting FC in DMN, FPN, and SAL networks, and 

cognitive performance. Although our study was not adequately powered, results partially 

supported the first hypothesis. We observed a significant increase, with moderate effect size, 

in the FC within the FPN ROIs, but not within the DMN and SAL ROIs. We also detected 

moderate effect size FC reductions in the right anterior insula (SAL) and supramarginal 

gyrus (SAL), and a moderate effect size FC increase in the lateral prefrontal cortex (FPN) 

using a whole-brain approach. Moreover, the DMN showed a moderate-sized increase in FC 

between its ROIs and other networks’ ROIs, suggesting a trend of increased integration with 

other networks. Partially supporting the second hypothesis, we observed significant 

associations between increases in moderate leisure-time PA and increases in the FC within-

FPN. Nonetheless, inconsistent with the third hypothesis, we observed neither significant 

nor moderate effect size improvements in cognitive performance and its associations with 

changes in PA and FC. Given our small sample size, testing these hypotheses do not provide 

definitive answers, instead, inform us and other researchers for future research regarding the 

impact of dance on FC and cognition in older Latinos.

Poorer cognition among older Latinos is linked to the higher prevalence of obesity, type 2 

diabetes, and metabolic syndrome compared to non-Latino whites (Benjamin et al. 2017). 

These risk factors can be attenuated with increased levels of PA (Booth, Roberts, and Laye 

2012). We did find a moderate effect size increase on self-reported moderate leisure PA. 

Nonetheless, changes in estimated CRF and device-assessed PA were not found, nor were 

any associations with changes in cognitive performance. Although increased estimated CRF 

resulting from exercise programs has been found to be related to reducing aging-related 

impairment in the FC of associative networks (e.g., DMN, SAL) in resting-state fMRI (Porto 

et al. 2018; Voss et al. 2019, 2016), our study did not replicate these results. A possible 

explanation is that we utilized an estimated measure of CRF instead of a direct assessment 
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of CRF. Also, the light-to-moderate PA intensity nature of the BAILAMOS™ program 

might not have been sufficiently intense to result in device-assessed PA and CRF changes.

After participation in BAILAMOS™, older Latinos showed increased FC within-FPN, 

which was associated with increases in self-reported moderate leisure PA. This result 

concurred with previous reviews showing the association of increased PA levels and 

improved FC in the FPN (Huang et al. 2016; Stillman, Donofry, and Erickson 2019). 

Nonetheless, this result should be interpreted with caution since our small sample size might 

have generated spurious associations.

The FPN seems to have some functional overlap with dance features. Dosenbach et al. 

(2007) suggested the FPN activation profile supports control initiation and provides 

flexibility by adjusting control in response to feedback in a top-down fashion. This profile 

aligns with tasks that are essential to individuals learning how to dance. While dancing, the 

participant initiates control of the dance steps based on the beats of the music and 

instructions from the instructor, which is followed by constant adjustments in response to 

feedback from the music, dance partner, and instructor. Similar to our findings, Zilidou et al. 

(2018) found that a four-month traditional Greek dance program increased FC within-FPN 

ROIs. Taken together, it seems that dance is a potential PA type to alter the FC in a major 

brain network

Consistent with previously reported patterns of brain activation studies (Dosenbach et al. 

2006; Fincham et al. 2002), we observed that the FC between the left lateral prefrontal 

cortex and the left precuneus was driving the increase in the FC within-FPN ROIs. We also 

observed that two ROIs from the SAL network demonstrated FC reduction after 

participation in the BAILAMOS™ dance program. Interestingly, the FPN and SAL, which 

are cognitive-control networks, demonstrated opposite responses to the BAILAMOS™ 

dance program. This result suggests some alignment with the dual-network hypothesis 

between the FPN and SAL (Dosenbach et al. 2007). Based on differences in FC and 

activation profiles, Dosenbach et al. (2007) argue that the FPN and SAL support distinct 

functions. They propose that the SAL network exerts more stable cognitive-control and 

“contributes to the flexible control of human goal-directed behavior through the stable, 

across-trial implementation of task sets” (Dosenbach et al. 2007, p.11076). Meanwhile, the 

FPN is more adaptative, supports control initiation, and provides flexibility by adjusting 

control in response to feedback. They found that the FPN and SAL were separated from 

each other as for their FCs, suggesting that they carry out dissociable control functions.

The role of PA in increasing the FC within-DMN is more prominent in the literature 

(Boraxbekk et al. 2016; Li et al. 2014; Voss et al. 2010a; Voss et al., 2010b; Voss et al. 2016, 

Stillman et al. 2019). Similarly, our results we did show moderate effect size changes in the 

DMN ratio integration/segregation, signaling to increased integration with ROIs of other 

networks. Importantly, evidence suggests that FC between-networks is, in general, reduced 

with aging (Onoda, Ishihara, and Yamaguchi 2012; Tomasi and Volkow 2012). Previous 

exercise interventions demonstrated enhanced FC between the DMN and other networks 

(McGregor et al. 2018; Chirles et al. 2019; Prehn et al. 2019), but none of these 

interventions utilized dance.
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Our results present dance as a potential form of avoiding loss of FC between-networks that 

are associated with cognitive decline, specifically the integration of the DMN and other 

resting-state networks. However, it remains to be determined whether increased integration 

is a beneficial compensatory mechanism response to the usual age-related lowering of 

within-network FC or represents an interference to within-network FC (Goldstone et al. 

2016). Taken together, results suggest that future research should further investigate the role 

of dance in promoting greater integration between resting-state networks.

Noticeably, we detected moderate effect size increases in FC of two major brain networks 

associated with cognitive decline (i.e., DMN and FPN). These results contribute to past 

research showing that dance has previously shown improvements on FC and brain plasticity 

in brain networks (Kattenstroth et al. 2013; Rehfeld et al. 2018; 2017; Müller et al. 2017). 

Specifically, older Latinos present poorer cognitive performance and brain health than non-

Latino whites (Sloan and Wang 2005; Brewster et al. 2014; Díaz-Venegas et al. 2019; Díaz-

Venegas et al. 2016; Brickman et al. 2008), which makes the results of the present study a 

valuable contribution for the field, also considering the lack of studies focusing on the 

effects of dance interventions on FC and cognition in older Latinos. Our exploratory results 

signal the need for a better understanding of how a culturally relevant PA (i.e., dance) can 

increase PA levels, FC in major brain networks, and how it can be translated to improved 

cognitive performance.

The null results on cognitive performance are not consistent with changes in cognitive 

performance found in previous studies utilizing dance interventions (Coubard et al. 2011; 

Hamacher et al. 2015; Kattenstroth et al. 2013; Rehfeld et al. 2017). This may have been 

partly due to an interaction of several factors such as the small sample size, the light-to-

moderate PA intensity of our dance program, the duration of the intervention, and the 

relatively young age and cognitively healthy sample.

Our results and interpretations must be considered in the context of several limitations, many 

of which have been highlighted throughout the text. In addition to those previously 

mentioned, we adopted single-group pre-post analysis without a control group. Although 

this type of design is acceptable for pilot stages, results must be interpreted with caution as 

without a comparison group, we cannot disentangle the extent to which benefits derive from 

the program rather than secular trends. Second, only participants with complete observations 

at pre- and post-intervention data collection were included in the study; with that, potential 

non-random effects might be playing a role in our results. Third, we did not assess 

participant’s perceived cognitive load during dance classes. Therefore, we do not have 

information on whether participants perceived the dance classes as cognitively challenging. 

Fourth, we did not evaluate participants’ prior formal or informal experience with dance, 

which led participants with different levels of experience to learn the same steps. Thus, 

participants’ perception of classes’ cognitive challenge potentially varied as a function of 

their prior experience with dance.

Despite these limitations, this is the first study investigating the effects of dance on cognition 

and FC in brain networks associated with aging in older Latino adults. Our results provide 

initial insights on the effects of a culturally relevant and enjoyable PA type, Latin dance, on 
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the brain health of an ethnic minority group at risk for dementia. Future studies should 

consider larger sample sizes, increasing the PA frequency and intensity throughout the dance 

program, better monitor PA intensity, introduce an assessment of perceived cognitive load of 

the classes and propose a longer intervention period.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Functional connectivity mean difference between the right anterior insula (SAL) and whole-

brain pre- and post-BAILAMOS™
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Fig. 2. 
Functional connectivity mean difference between the left supramarginal gyrus (SAL) and 

whole-brain pre- and post-BAILAMOS™
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Fig. 3. 
Functional connectivity mean difference between the left lateral prefrontal cortex (FPN) and 

whole-brain pre- and post-BAILAMOS™
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Fig. 4. 
Mean difference between FPN regions of interest pairs pre- and post-BAILAMOS™
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Table 1

Networks regions of interest derived from functional connectomes generated from the resting-state fMRI 

toolbox (CONN)

Network Region of interest label (ROI) Description of the anatomical region MNI coordinates (x, y, z)

DMN MPFC Medial prefrontal cortex 1, 55, −3

DMN LP_L Left lateral parietal lobule −39, −77, 33

DMN LP_R Right lateral parietal lobule 47, −67, 39

DMN PCC Precuneus 1, −61, 38

SAL ACC Anterior cingulate cortex 0, 22, 35

SAL AInsula_L Left anterior insula −44, 13, 1

SAL AInsula_R Right anterior insula 47, 14, 0

SAL RPFC_L Left rostral prefrontal cortex −32, 45, 27

SAL RPFC_R Right rostral prefrontal cortex 32, 46, 27

SAL SMG_L Left supramarginal gyrus −60, −39, 31

SAL SMG_R Right supramarginal gyrus 62, −35, 32

FPN LPFC_L Left lateral prefrontal cortex −43, 33, 28

FPN LPFC_R Right lateral prefrontal cortex 41, 38, 30

FPN PPC_L Left posterior parietal cortex −46, −58, 49

FPN PPC_R Right posterior parietal cortex 41, 38, 30

LAN IFG_L Left inferior frontal gyrus −51,26,2

LAN IFG_R Right inferior frontal gyrus 54,28,1

LAN pSTG_L Left posterior superior temporal gyrus −57,−47,15

LAN pSTG_R Right posterior superior temporal gyrus 59,−42,13
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Table 2

Self-reported and device-assessed physical activity pre- and post-BAILAMOS™

Physical activity Pre M (SD) Post M (SD) Mean difference (95%CI) p d

Device-assessed

Steps 11304.92 (4228.32) 12614.85 (7053.13) 1309.93 (−1331.47; 3951.33) 0.291 0.11

CPM 13564.14 (3274.16) 13765.39 (3078.331) 203.65 (−1867.69; 2274.99) 0.829 0.06

Self-reported (min/week)

Light PA 433.50 (238.26) 403.33 (147.52) −16.80 (−198.48; 164.88) 0.692 −0.14

Light leisure PA 184.50 (207.61) 228.00 (163.83) 43.50 (−112.69; 199.69) 0.544 0.23

Moderate PA 192.00 (258.82) 270.00 (196.85) 78.00 (−27.71; 183.71) 0.129 0.31

Moderate leisure PA 143.47 (186.01) 270.00 (196.85) 126.52 (36.03; 217.02) 0.011* 0.66

MVPA 238.50 (320.73) 292.50 (223.86) 54.00 (−70.23; 178.23) 0.351 0.17

Leisure MVPA 205.50 (208.98) 292.50 (223.85) 87.00 (−21.70; 135.70) 0.103 0.32

Total PA 672.00 (501.29) 701.32 (313.18) 29.32 (−224.24; 282.89) 0.799 0.06

Total leisure PA 390.00 (398.18) 507.00 (398.18) 117.00 (−63.67; 297.67) 0.177 0.31

CRF 5.33 (2.79) 5.51 (2.72) 0.18 (−0.35; 0.71) 0.465 0.06

*
Statistically significant for p<0.05.
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Table 3

Functional connectivity of networks’ regions of interest x whole-brain pre- and post-BAILAMOS™

ROIs (Network) FC x Whole-brain Pre M (SD) Post M (SD) Mean Diff (95% CI) p d

MPFC (DMN) 0.0015 (0.0931) 0.0198 (0.0610) 0.0183 (−0.0428; 0.0794) 0.515 0.22

LP_L (DMN) 0.0758 (0.0486) 0.0852 (0.0959) 0.0093 (−0.0542; 0.0729) 0.746 0.11

LP_R (DMN) 0.0906 (0.0662) 0.1153 (0.0778) 0.0247 (−0.0125; 0.0619) 0.167 0.33

PCC (DMN) 0.0621 (0.1054) 0.1061 (0.0931) 0.0439 (−0.0220; 0.1100) 0.166 0.44

ACC (SAL) 0.1646 (0.1486) 0.0585 (0.0767) −0.0159 (−0.0723; 0.0404) 0.538 −0.23

AInsula_L (SAL) 0.2242 (0.0478) 0.1943 (0.0981) −0.0299 (−0.0919; 0.0320) 0.302 −0.36

AInsula_R (SAL) 0.2103 (0.0570) 0.1653 (0.1001) −0.0450 (−0.1201; 0.0301) 0.208 −0.54

RPFC_L (SAL) 0.2165 (0.0651) 0.1869 (0.0679) −0.0296 (−0.0760; 0.0168) 0.183 −0.44

RPFC_R (SAL) 0.2101 (0.0775) 0.1817 (0.0950) −0.0283 (−0.0856; 0.0289) 0.291 −0.32

SMG_L (SAL) 0.2206 (0.0666) 0.1771 (0.0854) −0.0435 (−0.1035; 0.0165) 0.135 −0.56

SMG_R (SAL) 0.2159 (0.0546) 0.1774 (0.0969) −0.0384 (−0.0985; 0.0216) 0.185 −0.45

LPFC_L (FPN) 0.1272 (0.1030) 0.1732 (0.0660) 0.0459 (−0.0324; 0.1243) 0.217 0.52

LPFC_R (FPN) 0.1616 (0.0700) 0.1500 (0.0674) −0.0116 (−0.0529; 0.0297) 0.542 −0.16

PPC_L (FPN) 0.1189 (0.0962) 0.1395 (0.0553) 0.0206 (−0.0386; 0.0798) 0.452 0.24

PPC_R (FPN) 0.1711 (0.0642) 0.1682 (0.0761) −0.0029 (−0.0642; 0.0584) 0.917 −0.04
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Table 4

Average functional connectivity of regions of interest within-networks pre- and post-BAILAMOS™

FC of ROIs within-networks Pre M (SD) Post M (SD) Mean Diff (95% CI) p d

DMN 0.5719 (0.2069) 0.5100 (0.1924) −0.0618 (−0.1953; 0.0716) 0.321 −0.31

FPN 0.4923 (0.1530) 0.5955 (0.1341) 0.1013 (0.0037; 0.1988) 0.043* 0.70

SAL 0.5582 (0.1426) 0.5160 (0.1469) −0.0422 (−0.1515; 0.0671) 0.405 −0.29

LAN 0.4886 (0.1139) 0.5280 (0.1437) 0.0394 (−0.0448; 0.1237) 0.318 0.29

*
Statistically significant for p<0.05.
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Table 5

Ratio integration/segregation pre- and post-BAILAMOS™

Ratio integration/s egregation Pre M (SD) Post M (SD) Mean Diff (95% CI) p d

DMN 0.1435 (0.1625) 0.2398 (0.1337) 0.0962 (−0.0145; 0.2070) 0.081 0.64

FPN 0.4150 (0.2682) 0.3477 (0.1645) −0.0672 (−0.2360; 0.1016) 0.391 −0.28

SAL 0.1040 (0.1447) 0.1090 (0.2205) 0.0049 (−0.1073; 0.1172) 0.923 0.02

LAN 0.4276 (0.1260) 0.4163 (0.1950) −0.0113 (−0.1511; 0.1285) 0.860 −0.06
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