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Abstract

Science funders are increasingly requiring evidence of the broader impacts of even basic research. 

Initiatives such as NIH’s CTSA program are designed to shift the research focus toward more 

translational research. However, tracking the effectiveness of such programs depends on 

developing indicators that can track the degree to which basic research is influencing clinical 

research. We propose a new bibliometric indicator, the TS score, that is relatively simple to 

calculate, can be implemented at scale, is easy to replicate, and has good reliability and validity 

properties. This indicator is broadly applicable in settings where the goal is to estimate the degree 

to which basic research is used in more applied downstream research, relative to use in basic 

research. The TS score should be of use for a variety of policy analysis and research evaluation 

purposes.
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Introduction

Every year, the U.S. National Institutes of Health spends about $40B to promote the NIH 

mission of “turning discovery into health”. Much of this money supports upstream basic 

research, with the goal of building up the scientific basis for the development of new drugs 

and medical treatments as well as other means of promoting health. However, there have 

been longstanding concerns about the challenge of translating this basic research into 
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improved health outcomes (Zerhouni 2005; R. S. Williams et al. 2015). While there have 

been significant advances in basic biomedical knowledge, concerns have been raised that 

this knowledge – primarily generated in academic research labs – is not being integrated 

effectively into the clinical research system, potentially slowing the discovery and 

commercialization of new drugs and treatments.

Recognizing this challenge, countries across the globe have instituted programs that aim to 

facilitate the movement of promising basic research from the laboratory bench to the bedside 

(Butler 2008; Blümel 2017). In 2005, the US NIH announced the establishment of the 

Clinical & Translational Science Award (CTSA) program (Zerhouni 2005). As NIH director 

Zerhouni said when announcing the program, the goal is to “ensure that extraordinary 

scientific advances of the past decade will be rapidly captured, translated, and disseminated 

for the benefit of all Americans.” In 2010, the UK increased the budget of the Medical 

Research Council (MRC), with the aim of increasing support for translational research 

(Medical Research Councils UK 2017). This was a part of the MRC’s Translational 

Research Strategy that was announced in the same year (Lander and Atkinson-Grosjean 

2011; Blümel 2017). Similarly, the £27 million Scottish Universities Life Sciences Alliance 

Assay Development Fund (SULSA), established by the Scottish Funding Council, has the 

aim of unlocking the translational potential of biology to address industry needs (McElroy et 

al. 2017). In 2013, the EU created the European Infrastructure for Translational Medicine 

(EATRIS), a network of European biomedical translation hubs incorporating over eighty 

academic research centers (EATRIS ERIC n.d.; Blümel 2017). Similar movements exist in 

Asian countries as well. In 2002 Japan established the Translational Research Informatics 

Center, later renamed the Translational Research Center for Medical Innovation, to facilitate 

the translation of findings from basic medical research to clinical practice (Translational 

Research Informatics Center 2003; Fukushima and Kimura n.d.). In Korea, the concept of 

translational research was introduced in the 2000s and the Ministry of Health and Welfare 

started supporting translational research in 2005 (S. Kim 2013). China’s National Center for 

Translational Medicine and several other institutions provide facilities and funding 

opportunities specific to translational research (S. Williams 2016).

The NIH CTSA program, as one example, supports a network of medical research 

institutions – called CTSA Hubs – that provide a variety of services in support of 

translational research, with significant flexibility across centers in the mix of services 

provide. These services include providing: shared research infrastructure, collaboration tools 

(such as web-based systems for data sharing or finding experts), education and training in 

translational research (such as developing a master’s degree in translational research, or 

providing training programs for clinical researchers), administrative support (such as 

streamlining IRB approvals or contract negotiations), as well supporting pilot programs to 

help researchers collect preliminary data, with different CTSA hubs putting greater or lesser 

emphasis on one or another of these services. Notably, the CTSA program allows significant 

flexibility in the design and implementation of their centers. This design flexibility and the 

resulting variation among CTSA hubs provides a valuable opportunity to expand our 

understanding of how specific aspects of these centers contribute to the goal of advancing 

translational research. Similarly, the introduction of such programs across the globe provides 

opportunities for cross-national studies comparing programs and outcomes. However, such 
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evaluations are hampered by difficulties in developing useful measures for estimating 

impacts. While the ultimate goal is to have translational research programs (as a whole) 

improve overall health, policy researchers also need more proximate outcomes to see the 

impact of funding initiatives on the types of science being conducted (Myers forthcoming). 

Since the process of translating fundamental science into improved treatments and health 

outcomes often spans decades (R. S. Williams et al. 2015), it is important to also gather 

shorter-term indicators tracking the movement of basic research portfolios. For example, we 

may want to assess if basic research advances produced by a single lab or a larger group of 

researchers associated with a CTSA hub are used primarily by other basic researchers or by 

clinical researchers and observe how this balance between basic and clinical use changes 

over time or across programs with different components. Hence, although the goal of the 

CTSA and similar programs is converting fundamental biomedical research funding into 

improved health outcomes, scientific publications are often used as a more proximal 

indicator of the impact of the funding program (Smith et al. 2017; Luke et al. 2015; 

Hutchins et al. 2019).

The goal of this paper is to describe a newly developed measure of the degree to which a 

basic science publication is “translational”, defined as the extent to which it is used by 

downstream clinical research, relative to its use by basic research. The downstream clinical 

use of basic research is a critical first step in the translational process, providing a 

foundation for subsequent clinical research, with the ultimate goal being successful clinical 

research leading to new drugs and treatments that improve community health. The measure 

we propose has several advantages (cf. Trochim et al. 2011): it is designed to capture the 

short-term use of basic research in downstream clinical research, relative to its use in other 

basic research; its operationalization and interpretation are straightforward; it can be used 

stand alone or to complement other metrics of translational impact; and it can be generalized 

to other settings (e.g., to capture the use of basic research in physics or chemistry by 

engineering sciences) to estimate broader impacts of scientific findings in a variety of fields.

In the rest of the paper we discuss the concept of translational research and prior work on 

tracking translational research, describe the proposed measure and illustrate the estimation 

process by calculating the measure for a sample of papers funded by a CTSA hub and then 

provide several indicators for testing the reliability and validity of the measure.

The concept of translational research

Policymakers have argued that the remarkable advances in basic biomedical research have 

not led to significant increasese in new medicines and treatments, and many pointed to a 

“valley of death” as the core reason for this phenomenon. As a result, the concept of 

translational research attracted the interest of the biomedical research community, as a 

means to bridge the gap between basic science research and clinical science research 

(President’s Council of Advisors on Science and Technology 2012). Having started to gain 

popularity in the 1990s (Lander and Atkinson-Grosjean 2011), translational research has 

been promoted over the past couple of decades as a potential tool to speed up the process of 

moving basic science research innovations into clinical interventions and acceptance 

(Fishburn 2013; Stevenson et al. 2013).1
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Translational research also helps connect the scientific research entreprise with societal 

needs. Translational research responds, in part, to demands that the scientific community 

justify the substantial contribution of public funds to research and respond to changing 

public concerns (Blümel 2017). Translational research can be seen as a response to this 

desire for societal impact from basic science and it aims to produce knowledge that benefits 

patients and ultimately society as a whole (Blümel 2017). The goal of translational research 

is to create research outcomes that are closely related to patient needs and translate 

discoveries in the laboratory into new therapies and improved community health (Fishburn 

2013; Surkis et al. 2016). The concept and definition of translational research are provided 

by institutes such as NIH, National Academy of Medicine (formerly the Institute of 

Medicine (IOM)), and the Translational Research Working Group of the National Cancer 

Institute (NCI). They all share similar themes reflecting the goals of reducing the time for 

and increasing the efficiency of the transfer of fundamental scientific research into clinical 

research by bridging the gap between the bench and the bedside (Rubio et al. 2010; Han et 

al. 2018).

Scholars and practitioners sometimes characterize translational research as consisting of 

multiple stages. One approach divides translational research into two stages (Drolet and 

Lorenzi 2011; Han et al. 2018; Rubio et al. 2010; S. Kim 2013; National Library of 

Medicine 2017). The first stage (T1) involves transferring results from early-stage basic 

research into clinical research and the second stage (T2) captures the use of research 

outcomes from clinical studies into actual practice and diffusion into local communities 

(Rubio et al. 2010; Woolf 2008). In this paper, we will follow this approach, and to signify 

this two-part staging, we will designate the stages as 2ST1 (two stage time 1) and 2ST2 (two 

stage time 2). A second approach views translational research as a four-stage process: 

diagnosis or treatment (T1), evidence-based research (T2), clinical practice (T3) and 

verification for actual practice (T4) (Lander and Atkinson-Grosjean 2011; Weber 2013). A 

third approach, originally from reports from NCATS and Institute of Medicine and used by 

Surkis et al. (2016), breaks the process into five steps: basic biomedical research (T0), 

translation to humans (T1), translation to patients (T2), translation to practice (T3) and 

translation to communities (T4). Trochim et al. (2011) summarize these various stage 

models, highlighting that they share a common framework of tracing the process from basic 

science research to health practices, and also that these processes are not linear, but contain a 

variety of feedback loops. Here we are focusing on the stages related to research activities 

and the movement of information from basic to clinical research (e.g., 2ST1 in the two-stage 

approach). While the second stage (2ST2) is clearly critical for the ultimate improvement of 

community health, the bulk of the research funding in the area of translational research 

focuses on 2ST1 (Woolf 2008). And, consistent with Trochim et al.’s process marker model, 

we are developing an indicator that can provide a marker for the movement of knowledge 

1One specific example of translational research is a study by Bhat et al. (1997) that found binding of fusion genes (BCR-ABL) and 
certain type of protein (c-CBL) only occurs when phosphate (PO43−) is added to acid (amino tyrosine) on a protein. Their finding was 
applied in treating genetic abnormality in chromosome 22 of leukemia cancer cell and led to the invention of Tasiga® (Sampat and 
Pincus, 2015). Another example of translational research is a study by Garg and Hassid (1990). They found that proliferation of cell 
lines developed from disaggregated mouse embryos (BALB/c 3T3) are more active when muscle smoother is not present (CGMP-
independent mechanism). Their finding was applied in solving respiratory failure problem and this led to the invention of INOmax® 
(Sampat and Pincus, 2015).
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from basic research to clinical research (Trochim et al. 2011). One advantage of Trochim et 

al’s process marker model is that it is operationally tractable, emphasizing the development 

of clearly operationalized markers capturing movement along a particular part of the 

process, as well as focusing on not just movement but also volume of flows.

As it generally takes many years to go from scientific discoveries to products in the market 

(Morris et al. 2011; Contopoulos-Ioannidis et al. 2008), more proximate measures of the 

translation process are needed. Patents are one potential measure that can serve as an 

indicator of successful translation, but the lag time for patents to issue along with 

uncertainty about which patents will be used commercially complicate use of this measure. 

On the other hand, it takes much less time for publications describing novel research to 

appear, with more than 80% of publications being published within six years from the year 

of the funding directly related to that publication (Ihli 2016). This makes publication-related 

measures attractive for the near-term evaluation of grants that support translational research. 

Although publications have less commercial value than patents and drugs, they can be used 

to understand the dissemination of research and their forward citation data can be used to 

understand their usage across academic disciplines (Llewellyn et al. 2019) and by firms (F 

Narin et al. 1997; Chen and Hicks 2004). Because of these desirable characteristics, several 

attempts have been made to develop an index measuring translational features of 

publications using bibliometric information (e.g., Weber 2013; Han et al. 2018; Surkis et al. 

2016; Fontelo and Liu 2011). However, thus far, no measure has acquired broad consensus 

within the research community. Hence, we propose a novel index that measures translational 

features of publications, and which, we believe, has the potential to be used widely.

Tracking translational research

NIH has supported translational research through the CTSA award for over ten years 

(Weber, 2013). As these efforts are ongoing and represent a substantial investment, it is 

important to assess their effectiveness. Several studies have assessed various aspects of the 

CTSA program (e.g., Liu et al. 2013; Knapke et al. 2015; Schneider et al. 2017; Llewellyn et 

al. 2018; Y. H. Kim 2019). Some studies focus on research productivity and the scholarly 

impact of publications. Schneider et al. (2017), for example, used bibliometric tools to 

measure the impact of articles that CTSA hubs published. They found the six CTSA hubs 

they analyzed experienced an increase in publications and forward citations. Another 

example is Llewellyn et al. (2018), which looked at articles citing CTSA hub awards. They 

found publications supported by CTSA hubs are cited more than papers not from CTSA 

hubs that are matched on characteristics such as publication year, disciplines, etc. and this 

relationship strengthens when a publication is from a multi-institutional CTSA hub. Liu et 

al. (2013) find that the CTSA award had a positive impact on the number of patients enrolled 

in clinical trials. CTSA awards are also associated with the probability of receiving 

subsequent NIH grants (Knapke et al. 2015).

These and other studies examine important aspects of the CTSA program, but do not directly 

assess whether it pushed the research community to focus more on translational research. 

Fewer studies have addressed this question directly. One study is by Weber (2013), who used 

Medical Subject Headings (MeSH) to divide publications into three groups [publications on 
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animals (group A), publications on cells (group C), and publications on humans (group H)], 

and tracked the location of groups of publication in the space spanned by these three poles 

over time. If a group of publications (e.g. those related to the topic “Cloning, Organism”) 

moved toward the H pole over time, this set of publications was classified as becoming more 

translational. Weber (2013) also introduced the concept of “generations” of translation lag. 

An article on animals or cells is classified as a first-generation article if it was cited directly 

by a group-H paper, as a second-generation article if it was cited by another animal or cell 

paper that was itself cited by a group-H paper and so on. For the citation data, Weber used 

PubMed Central (PMC). However, as he notes, PMC only includes a subset of the papers in 

PubMed and hence undercounts citations. To correct for this, Weber calculates a ‘corrected 

citation count’ by weighting the citations in PMC by the representativeness of PMC (as a 

share of PubMed) for each class of papers (Human, Animal, Cellular). Weber notes that 

while other databases, which may have broader coverage, are available, such as Web of 

Science, Scopus or Google, PMC has the advantage that it is freely available, and also linked 

directly to PubMed and to the MeSH terms. He also shows that the distributions across 

MeSH categories is similar for Web of Science and the corrected PMC data, suggesting that 

WoS and PMC would generate similar results. Han et al. (2018) provide another example 

using MeSH keywords for the classification of translational work. They classified a 

publication as “primary translational research” if the publication type was in one of the 

clinical science fields (Han et al., 2018, p. 5).2 The authors also introduced a category 

named “secondary translational research” and classified a paper into this group if a paper 

was not associated with clinical research but got citations from papers that deal with clinical 

issues (Han et al. 2018). This category of secondary translational research is similar to our 

TS score, discussed below. Using this approach, they showed that 13.4% of CTSA supported 

articles published in the field of behavioral and social science could be classified as (primary 

or secondary) translational research.

In some studies, methods not related to MeSH keywords were used for the classification of 

translational publications. For example, Fontelo and Liu (2011) introduced a web 

application filter that can be used to retrieve articles that have potential clinical applications. 

They created this filter by manually reviewing words and phrases that frequently appear in 

articles published in clinical and translational science journals. A study by Grant et al. 

(2000) looked at the citation links between publications and clinical guidelines. They 

assumed that publications cited by guidelines for clinical practice have an impact on the 

field of health. Based on the type of journal in which an article was published, they 

classified cited publications as 1) clinical observation, 2) basic, 3) clinical mix, or 4) clinical 

investigation. Their result showed that publications in the “basic” category are not often 

cited (only 8% were cited) by clinical guidelines. Similarly, Williams et al. (2015) traced the 

backward citation networks associated with two recent important advances in drug 

development: ipilimumab in oncology and ivacaftor for cystic fibrosis (R. S. Williams et al. 

2015). They show that such networks are broad, spanning a large number of authors and 

institutions and many decades, suggesting that translation is a complicated process that 

2Examples include clinical study, clinical trial, phase 1 clinical trial, phase 2 clinical trial, phase 3 clinical trial, phase 4 clinical trial, 
controlled clinical trial, practice guideline, observational study and randomized controlled trial.
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requires aggregating multiple pathways of information flows. An alternative approach was 

developed by Surkis et al. (2016), who developed a checklist that can be used to manually 

categorize publications into a specific stage in the five-stage process of translational research 

(T0 to T4). Then, they used this manually labelled data as training data for a machine 

learning algorithm to categorize publications within these five stages. Due to the low 

frequency of T1, T2, T3 and T4 articles relative to T0 articles (in their schema), they 

combined T2 with T3 articles and T4 with T5 articles during the classification. The authors 

reported good performance and reliability in all groups of articles, with the machine learning 

models closely matching manual coding of articles from each of the three stages.

Recently, Hutchins et al. (2019) used machine learning to predict the future use of a research 

publications in clinical trials or guidelines. Their machine learning model incorporates 22 

features such as MeSH terms in the focal paper (building from Weber, 2013), categorized 

into Human, Animal and Molecular/Cellular using fractional counts, plus additional MeSH 

terms representing Chemical/Drug, Disease, and Therapeutic/Diagnostic Approaches, as 

well as forward citations per year from Web of Science and data on the MeSH terms of the 

citing papers (max, mean, and standard deviations for each MeSH category). They 

developed a labelled training dataset (using forward citations in the 5–20 year post 

publication window, as the measures tend to stabilize by this point) to predict “cited by 

clinical articles or not”. They tested a variety of machine learning algorithms (logistic 

regression, Support Vector Machines, Random Forest, Neural Networks, Maxent, LibLinear) 

and found that the Random Forest method has the best predicting capabilities. They showed 

that their model predicted use in clinical research at least as well as expert judgements of 

whether the paper “could ultimately have a substantial positive impact on human health 

outcomes”, which suggests that such bibliometric measures are promising as early indicators 

of the translationalness of the research. They also found that even limiting the training data 

to only 2 years of post-publication information produced reasonably accurate predictions of 

a binary clinical research citation outcome. Finally, they found that among those articles that 

are cited in clinical research, the clinical papers citing higher predicted Approximate 

Potential to Translate (APT) score publications were more likely to have positive clinical 

outcomes and were more likely to move to the next stage in clinical development, suggesting 

that such bibliometric predictors of citation by clinical research may be a valid indicator for 

research with high translation potential. Hutchins et al. also note the need for more research 

that estimates how early citation patterns predict future use of research papers by clinical 

research. Fortunately, Hutchins et al. scaled their measure to the whole of PubMed and made 

the APT and related indicators available on their iCite web page (https://icite.od.nih.gov/

analysis), which can become a valuable resource for scholars in this area. We will use this 

dataset to help validate our measure below.

Together these prior studies illustrate a growing interest in measuring and understanding the 

conduct of translational research. They show the research assessment community exploring 

a variety of different approach from labor-intensive small-scale studies to automated 

machine learning strategies and they highlight the challenges associated with developing 

measures that can be feasibly calculated and widely used among the research evaluation and 

science policy communities. Although a variety of approaches have been developed, there is 

no single consensus indicator to measure the translational feature of research articles 
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(Blümel 2017; Surkis et al. 2016). Thus, when a researcher wants to conduct research on the 

change of translational features of research, they can either select an existing measure or 

develop a novel measure that fits the context of the planned research well (Trochim et al. 

2011). To help offer a viable alternative, we propose a new measure called the TS score that 

we argue has a variety of strengths for capturing the translational nature of basic research.

A new measure: the TS score

To measure how translational a publication is, we propose a new index that is related to the 

share of forward citations from clinical science that a non-clinical article receives (cf. Han et 

al. 2018). Like Han et al.’s secondary translational research measure, we are using citations 

by clinical research papers as evidence of use of the basic research. However, rather than a 

binary (cited by a clinical journal or not), or a count variable (number of times cited in 

clinical journals), we use the share of citations by clinical journals. Using the share allows us 

to capture the relative emphasis of the knowledge in the paper in influencing clinical versus 

basic research. As we will show below, this method also has the advantage of generating a 

stable indicator that reflects the fundamental characteristics of the paper in terms of its 

relative value to clinical research, which has advantages for evaluation or prediction 

(Hutchins et al. 2019).

This measure aligns with the method of using disciplines of journals of the citing article to 

characterize features of the cited article (Qin et al. 1997; Grant et al. 2000). To construct the 

TS score, we categorized journals into four groups: clinical science (Clinical), non-clinical 

science (Non-Clinical), multidisciplinary (Multi), and non-science and engineering (Non-

S&E). This categorization is done using Web of Science Categories (WOSC) and the NSF 

classification of fields of study (National Science Foundation 2018). In the Web of Science, 

each journal is assigned up to five WOSCs based on the topics covered by the journal. Each 

WOSC can be matched with the NSF classification of fields of study using name similarity. 

After the name matching, we classified the Web of Science category of journals into clinical 

science and non-clinical science (see Appendix A for the concordance). Specifically, when a 

field was listed in the science and engineering section (e.g., biomedical engineering) we 

classified it as non-clinical science, and when the field was listed in the health section (e.g., 

pediatrics), we classified it as clinical science. This is similar to Weber’s classification of 

articles into Human versus Cellular or Animal (see Weber 2013; Hutchins et al. 2019), 

although we use a binary rather than triangular classification. As a journal can have up to 

five WOSCs, a journal could have a mix of non-clinical science WOSCs and clinical science 

WOSCs. For the purpose of the TS score, we classified a journal as a clinical journal if the 

journal had only clinical WOSCs. The fields that were not listed under science and 

engineering or health were classified into either Multidisciplinary science (e.g., Science, 

Nature) or Other Science (e.g., social science), and these are also included in the 

denominator (see Equation (1)).

Following, for example, Hutchins, et al. (2019), we use Web of Science to gather citation 

data, in part because of the broad coverage and because of the journal field codes. Other 

citation data could also be used, such as Scopus, Google Scholar, or PubMed Central. 

Among Web of Science, Scopus and Google Scholar, prior work suggests that the 
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correlations in citations are extremely high. Martín-Martín et al. (2018) collected the article 

level citation counts for a sample of over 2000 highly cited papers spanning 252 Google 

Scholar subject categories. Their data shows that the correlations among ln(1+x) citation 

counts across WoS, Scopus and Google Scholar range from .88 to .98 (based on a data table 

in the supplemental materials, calculations by authors). Field by field analyses reported in 

Martin-Martin, et al. (2018) show that these correlations are especially high (.98 or above) in 

fields such as Basic Life Sciences, Biomedical Sciences and Immunology/Microbiology, in 

other words, in the basic biomedical research fields used in our sample. PubMed Central 

could also be used as a source for citations, although it would require an adjustment to 

account for the lower coverage (Weber 2013). Weber notes that PMC has much more limited 

coverage, although it has the advantage of being freely downloadable. It is also linked to the 

NLM journal coding, which could be used to categorize citations for calculating the TS 

score. Hence, given the very high correlations in citation counts across different databases, 

we suspect that the TS score would be robust to the use of other sources of citation data (cf. 

Weber 2013). The main requirement is some field-coding of the journals (which WoS, 

Scopus, GS and PMC all provide).

To calculate the TS score, we begin with a corpus of publications (for example, all the 

publications from a given CTSA hub). Once we have the journal classification system, two 

steps are required to calculate the new measure. Figure 1 illustrates these steps.

Step one requires collecting from this corpus all the non-clinical publications, categorized as 

such by following these journal groupings. This process allows us to select from our corpus 

the set of papers published in non-clinical (basic) science journals (for example, Publication 

A in Figure 1). As the second step, we then collect and categorize all the forward citations to 

these non-clinical science journal publication. Each of those forward citations can be 

classified into coming from clinical (e.g., Publication B) or non-clinical journals (e.g., 

Publication C). Using this set of categorized citations, the Translational Science score (TS 

score) is calculated using the simple equation shown below.

TS score = Number of forward citations received from clinical science
Total forward citations received (1)

Hence, for each publication, we calculate an individual TS score that captures the 

translationalness of the science in the focal paper.

Using the portion of cross-stage citations builds on the approach that Luke et al. (2015) 

used. In their study on the cross-disciplinary collaboration of an individual CTSA receiving 

institution, Luke et al. (2015) introduced the cross-disciplinary density ratio, a measure 

calculated by dividing the density of cross-disciplinary collaboration by the density of 

within-disciplinary ties. However, their focus was not on articles but on the composition of 

research teams. Our method is also related to Hutchins et al. (2019), who used the field 

coding of citing articles to help categorize focal papers as higher or lower on 

translationalness.

KIM et al. Page 9

Scientometrics. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The intuition behind the TS score is that if an article published in a basic science journal is 

reporting on translational science, it is likely that it receives a larger portion of forward 

citations from clinical science journals. In other words, this research spans the 2ST1 stage 

(from basic to clinical research). One could use this measure at the paper, individual, 

research organization, or whole field level, to see how, for example, changes in funding 

might affect the degree of translational research in some population (cf. Myers forthcoming; 

Kim 2019). For example, Y. H. Kim (2019) uses this measure to estimate the impact of 

CTSA awards on the degree of translation among Carnegie R1 (doctoral--very high research 

activity) universities in the US.

Verification tests on the measure

When a new measure is developed, we need to assess how credible the measure is. In 

particular, we want to test its reliability and validity. We begin with a discussion of 

reliability, and then discuss several validity tests for the TS score.

Reliability tests

One way of estimating the reliability of a measure is to test its stability over time 

(Golafshani 2003). As the estimate is calculated at the paper level, it should not be 

vulnerable to various exogenous shocks that might change the direction of the researcher’s 

or university’s publication focus over time. In other words, while a particular researcher or 

institution might become more or less translational over time (for example, due to her 

institution receiving a CTSA award), an individual paper contains an inherent amount of 

translationalness, and that is what is being captured by the TS score. Hence, we checked 

whether the TS score remains stable once a minimal number of forward citations have been 

included in the estimate (to reduce the volatility due to sampling error) (Hutchins et al. 

2019). We observe the accumulation of citations over time (each year) and examine the 

stability of the TS score. An alternative would be to track on a citation by citation basis as 

opposed to a yearly basis. However, this puts an additional burden on the data collection, 

and so we adopted the simpler approach described here. To estimate the stability (and the 

speed of convergence), we took the following steps to determine when the TS score 

stabilizes.

1. Check the TS score of each publication by year and observe how many years are 

needed for the TS score to stabilize, which we call the stabilizing year.

2. Calculate the change in the TS scores of each publication-group by year (i.e., N 
years) for the years after the stabilizing year (calculated in step 1), which we 

name TS scores after N-year.

3. Extract groups of papers with a certain number of forward citations in a 

reference starting year (i.e., the year in which it had acquired, for example, 1 

through 10 citations) and calculate the TS scores of each publications-group. 

This group of TS scores will be named as TS scores at starting year.

4. Check the correlation of TS scores at starting year (acquired in step 3) and TS 
scores after N year (acquired in step 2). Using a correlation cutoff of 0.7 for 

KIM et al. Page 10

Scientometrics. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inter-temporal stability, if the correlation is larger than 0.7 for all TS scores at 
starting year to TS scores after N-year pairs, we can consider the TS score stable 

from the starting year. While the cutoff of 0.7 is arbitrary, it is analogous to a 

commonly used threshold for reliability using Cronbach’s alpha (Lance et al. 

2006). We also discuss the reliability using cutoffs of 0.8 and 0.9.

We illustrate the stability of the TS scores using a sample of 286 non-clinical publications 

that were published in 2003 and acknowledged NIH grants with a PI from Emory University. 

The cumulative counts of total forward citations and forward citations from the clinical 

science journals that occurred between 2004 and 2015 were used to calculate the TS scores. 

Figure 2 shows the variations in TS scores by year for 24 selected publications, to illustrate 

some of the observed patterns. These 24 publications are examples of those that received 

forward citations for almost all years (11 or more years) during the period of interest.3 

Several patterns of change in the TS score over time are visible in Figure 2. Some 

publications have stable TS scores from the beginning until the end (e.g., ID 272, ID 415), 

some papers fluctuate in the early years (e.g., ID 24, ID 269), some publications start with 

very low TS scores but exhibit increasing TS scores as time passes (e.g., ID 36, ID 195) and 

some publications start with high TS scores in the early years and show decreases over time 

(e.g., ID 13, ID 267). In fact, one strength (but also possible weakness) of the TS score is 

that it can increase or decrease over time, which gives the possibility of using the indicator 

to estimate either the short-term or long-term impact of a paper on future clinical research 

(similar to Weber 2013). In contrast, binary measures (e.g., Han et al. 2018) cannot go back 

down once the paper has been cited by a clinical paper. However, despite this variation, we 

observe that, in almost all cases, the TS scores for these 2003 cohort publications are fairly 

stable after 2007, which is marked as the vertical line in each graph. These results suggest 

that, at least for this sample, the TS score of a publication tends to stabilize within four years 

after a paper is published. This means that we should wait at least four years to classify a 

basic science publication into one with high or low translational features. This can provide a 

guideline for researchers who want to use this indicator in their research. Further research is 

needed to assess how robust this 4-year threshold is across different populations of basic 

research papers. Furthermore, it might be interesting to estimate if this threshold varies 

systematically by the characteristics of the publications or researchers. For example, is it the 

case that stability is reached sooner (or later) for interdisciplinary papers, or those that span 

organizations, or those by larger teams, or papers published in high impact factor journals? 

Hence, there are many opportunities to develop this TS score in order to further calibrate the 

measure.

Table 1 shows the results of step 2 through step 4 of the reliability test, broken out by the 

number of citations the paper received in the reference starting year. By starting year, we 

mean the year by which the paper had accumulated N citations (with N varying from 1 to 

10).4 If we look at the case of publications with only one forward citation in its starting year, 

63 cases in our sample, the correlations of the TS scores at the starting point and four years 

3More examples are available on request.
4In other words, if the paper was published in 2003, and had 3 cites in the first year (2004), it would appear in the 3 cite row, and the 
correlations are for the scores for the years 4+ in the future from 2004. If in the following year, it had reached 8 citations, then it would 
reappear in the 8 cite row, with a starting year of 2005, and the columns representing 4+ years from 2005. This means that the same 
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and five years after the starting point are 0.730 and 0.721, respectively. However, the 

correlation between the starting point’s TS scores and six years after the starting point is 

0.634, which is below the 0.7 threshold. Furthermore, the correlation value stays below 0.7 if 

we increase the post year to 7 or 8. Hence, having only one forward citation in the initial 

period does not provide a stable TS score, which is not surprising. This is also the case for 

the publications with two citations. The correlations are smaller than the 0.7 threshold for all 

starting point and post starting point pairs. For citations with three citations, the correlation 

values are all larger than 0.7, but for four citations, the correlation values are smaller than 

0.7 in most pairs. By the time we get to papers with 5 initial citations, the reliability is 

consistently above the 0.7 threshold. This suggests that one could also use the reference 

starting year citations, with a floor of at least 5 citations, to get a fairly reliable initial 

indicator of future translationalness. In other words, although it, in general, takes four years 

for the indicator to stabilize (see Figure 2), once the paper has accumulated at least 5 

citations (possibly in the first year), the TS score is fairly stable, which may allow use of the 

TS score even before four years of data have accumulated. For the TS score, even 3 or 4 

initial citations seems to be sufficient for a moderately strong estimate of the future 

translationalness. Similarly, Hutchins et al. (2019) tested their model using data in a +5 to 

+20 year window, and found that collecting data from a +7 year window from the 

publication date allowed for the most reliable estimator of their Approximate Potential to 

Translate (APT) score. But, importantly, they also found that using only a +2 year window 

of citation data fed into the model (trained on the 5–20 year citation window) gave quite 

good predictive performance.

Hence, similar to other citation-based indicators of translationalness (e.g., Hutchins et al. 

2019), the TS score seems quite reliable, even with only very modest initial information (5 

initial citations). If a higher threshold of reliability is desired, 7 initial cites produces an 

estimate with correlations of 0.8 or above from +4 to +8 years, and 10 initial cites produces 

correlations above 0.9 (Lance et al. 2006). And, with a longer time series (4 years or more), 

the results seem quite stable. This suggests that this relatively simple score can be a reliable 

estimate of the relative use of basic research findings by clinical research publications.

Validity tests

In addition to establishing the reliability of a measure, it is also important to assess its 

validity (i.e. whether an indicator is measuring what it is intended to measure (Golafshani 

2003)). In the case of the TS score, we used multiple approaches to evaluate the extent to 

which it captures the degree to which a basic research publication is being translated into 

later stage clinical research and/or practice. These include calculating an alternative 

department affiliation based translational score, and calculating the TS scores of publications 

associated with other indicators of translation (e.g. articles that resulted in a patent; were 

cited by patents; or led to the development of a new drug). We also compare the TS score to 

Hutchins et al.’s (2019) APT and to the percent of human MeSH terms in the focal 

publication (building from Weber 2013).

paper can appear in multiple rows (but not generally every row), and also that a paper can drop out of the table if it acquires a total of 
11+ cites. Hence, the Ns can fluctuate up and down across the rows.
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Publication classified based on the affiliation of the first author—The proposed 

TS score is based on the classification of the disciplines of journals (into clinical and non-

clinical science journals). If an alternative forward-citation-based translation score has 

similar values (a high correlation with the original TS score), our confidence in the validity 

of the measure will increase. A variety of prior research has examined citations outside the 

category an article was published in, mainly for assessing the multidisciplinarity of articles 

(e.g., Morillo et al. 2001; Ortega and Antell 2006; Porter and Chubin 1985). One of the 

approaches adopted in these studies is using the first author’s affiliation to categorize papers 

into different disciplines (Ortega and Antell 2006). This approach relies on the long-standing 

norm in the life sciences that first authors of publications are likely to have the largest 

contribution to the paper (Carpenter et al. 2014, p. 1162).5 Drawing on the same set of 

articles, we calculated a new translational science score, which we label “dTS” [department-

based Translational Science] score using the discipline classification of the first author’s 

affiliation (clinical versus non-clinical basic science). We then use this dTS to help assess 

the validity of our original TS score measure. For creating the dTS measure, we re-classified 

forward citing publications using the first author’s affiliation (rather than the journal’s 

subject code), such that those with lead authors in clinical science departments are classified 

as clinical science publications and classify forward citing articles as non-clinical 

publications otherwise. Figure 3 depicts the process of classifying publications based on the 

first author’s affiliation.

This validity test involves the following steps:

1. Select a sample of publications for the analysis. We use all journal articles that 

were published in a non-clinical science journal in 2003 that acknowledge any 

NIH grant that has a PI from Emory University. This yields a sample of 114 

articles (with between 10 and 42 citations).

2. Gather the bibliometric information of the articles that cited the publications in 

this sample. This yields a total of 2,089 forward citing articles.

3. Classify disciplines of forward citing publications based on the affiliation of the 

first author.6 There were approximately 2,000 unique affiliations, each of which 

was classified manually.

4. For each article, calculate the share of forward citing publications that have the 

first author’s affiliation classified as a clinical department (based on equation 1 

above).

Several difficulties complicate the process of manually classifying author affiliations and, in 

general, we used classification rules that erred on the conservative side (i.e., not classifying 

as clinical unless there was clear information suggesting such a classification).7 This 

approach would tend toward lower values for the dTS scores. One could use other methods 

5To the extent that this is not true, then our measure will include greater measurement error, biasing the correlations toward zero and 
hence giving us a more conservative test of the validity of our TS score.
6For simplicity, we ignore additional “co-first authors”. We do not expect there are a large share of such cases, and, furthermore, if the 
co-first authors are in the same department, or even in the same class of departments (clinical v. non-clinical), the results would be 
unchanged if we included them.
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that were more liberal in classifying papers as translational on this dTS score. However, 

given that the address formatting details of different authors/institutions/journals citing the 

paper are likely unrelated to the degree of translationalness of the focal paper, any errors are 

unlikely to systematically affect the analysis. This difference between the efforts involved in 

the coding process in the dTS score versus the TS score highlights one advantage of the 

original TS score. For the TS score, the journal classifications already exist in the 

bibliometric databases, and these can be readily converted to clinical versus non-clinical 

fields, while department descriptions are not standardized and require time-consuming hand 

coding, or sophisticated computerized text processing methods to scale up the measure.

Table 2 compares summary statistics for two different approaches, one using the journal 

classification of forward citing articles (TS score) and the other using the affiliations of first 

authors in forward citing articles (dTS score). We can see that, even with the conservative 

classification rule, the value of the dTS score based on first author’s affiliation (first row) is 

larger than the TS score calculated based on journal classification (second row). A total of 

81 out of 144 articles (71.1%) in the sample had larger translational science scores when the 

first author’s affiliation-based approach was used. Figure 4 shows the distribution of 

translational science scores calculated using the two different approaches. We can see that 

the dTS scores, calculated using the citing paper’s first author’s affiliation, have a larger 

mean value and are more dispersed. However, and most importantly for our purpose, the 

correlation between the two scores is 0.75, suggesting that these two indicators are closely 

related. The similarity between the scores calculated using these two different approaches 

provides some evidence of the validity of our TS score based on journal classification.

TS scores of publications that result in patents—In addition to testing if the TS 

score is correlated with other ways of measuring the translationalness of specific 

publications, we can also calculate TS scores for papers that other evidence suggests are 

translational in nature. To the extent that these papers have high TS scores (or higher TS 

scores than other papers without this external evidence of translation), this would support the 

validity of the TS score. We focus initially on publications cited by one or more patents, 

because the citation of a journal article by a patent suggests that the publication is relevant to 

potentially commercializable inventions (F Narin et al. 1997; Roach and Cohen 2012; Meyer 

2000). Indeed, unlike journal to journal citations, which serve a wide variety of purposes, 

patent to journal citations play a specific legal role, highlighting the importance of existing 

knowledge to a new invention. For this reason, a patent’s citation of a basic science 

publication may well represent direct knowledge-transfer from basic research to 

7There were some issues to consider when classifying publications into clinical papers and non-clinical papers, which led to doing the 
classification manually. First, the department information did not exist in some listings (e.g., Univ St Andrews, St Andrews KY 16 
9ST, Fife, Scotland; RAND Corp, Santa Monica, CA 90401 USA). In these cases, these were coded as missing. Second, the order that 
university name, department or school name and city are listed were different between articles. Though the department information 
was listed second in most cases, it was listed first in some cases, later in other cases. Third, the details of the affiliation were different 
across publications. For instance, some publications provided very detailed information (e.g., Sch Med & Dent, Dept Biostat & 
Computat Bio) whereas some publications only provided information at the school level (e.g., Sch Life Sci & Technol). To be 
conservative on classifying a publication into clinical papers, we classified the publications into a clinical article only if there was clear 
and sufficient information on the discipline. For instance, we did not classify a publication as clinical if the most detailed information 
of the first author’s affiliation is “School of Medicine”. This is because, in many universities, the School of Medicine is composed of 
departments conducting basic science work (e.g., Department of Microbiology) as well as clinical work. Therefore, we classified a 
publication as a clinical paper only if the sub-division of the school is listed and it is closely related to fields of clinical research (e.g., 
Department of Pediatrics).
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technological outcome (Meyer 2000; Huang et al. 2015; Sung et al. 2015). While patent 

examiners do add citations to patents, Cotropia et al. (2013) found that 94% of the non-

patent literature (NPL) citations are added by the applicant. Hence, this analysis can serve as 

an additional measure of the validity of the TS score as an indicator of the eventual 

contribution to 2ST2 translation.

US patents list citations to NPL on their front pages and the citation link between 

publications and patents can be identified using the NPL list (Meyer 2000). Drawing on this 

evidence of patenting and translation of research, we can test the validity of the proposed TS 

score using publication-patent citation links, using both a prospective approach and a 

retrospective approach.

Prospective approach of publication – patent citation analysis: As a first step to test the 

validity of the TS score using a prospective approach to publication-patent citation analysis, 

we selected a group of basic science publications. As in the reliability test above, we used a 

set of 286 non-clinical articles published in 2003 that received support from NIH and had a 

PI affiliated with Emory University. We then searched the DOI of these 286 articles in 

LENS.ORG (http://www.lens.org).8 The Lens database returned information on 217 of the 

articles, a retrieval rate of 76%. Not all publication information is retrieved, as the Lens 

database does not cover all scholarly databases, but only covers three datasets (PubMed, 

Crossref and Microsoft Academics).9 These papers were then checked to see if any of these 

were cited by a patent or published patent application (for this discussion, we will say cited 

by a “patent” for simplicity).

Among the total sample of 217 publications, 144 publications (66%) did not receive any 

patent citation, while 73 publications (34%) had at least one citation from a patent. 

Following the reliability results above, for this analysis, we calculated the 2007 TS score, in 

other words 4 years after publication. The findings are nearly identical if we use a TS score 

calculated on 2019 data (16 years after publication). The average (2007) TS score of the 

publications with at least one patent citation (0.157) is higher than those without any patent 

citations (0.110). A two-tailed t-test also shows that the difference in mean TS scores is 

statistically significant (t=2.12, p=0.035). This result provides additional support for the 

validity of the TS score as a measure of the translational features of publications.

To further calibrate the TS score, we compare these results with the results from using 

Hutchins et al.’s (2019) APT, which is a prediction of the likelihood of being cited by 

clinical articles (taking binned values between 5% and 95%). We also tested a measure 

based on the share of human MeSH terms in the focal paper (building from Weber’s triangle 

of biomedicine).10 In the same way as for the TS score, we calculated the difference in APT 

8LENS.ORG is an open public website managed by Cambia, an independent non-profit organization, that provides linkages between 
scholarly works, patents and biological sequences (LENS.ORG, n.d.). Its patent database covers patent datasets from the USPTO, 
European Patent Office, WIPO and IP Australia and its scholarly dataset includes PubMed, Crossref and Microsoft Academics 
(LENS.ORG, n.d.). With the collaboration with NIH Pubmed and Crossref teams, the Lens links publications’ Digital Object Identifier 
(DOI) with NPL in their patent database. Hence, using the DOI of publications, we could check if the publications were cited by 
patents or not.
9Using Pubmed ID instead of DOI for the search may give a higher retrieval rate. However, it would then be more difficult to track the 
forward citation links of publications with only Pubmed ID but without the DOI.
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and percent human MeSH terms for papers that were cited and not cited by patents for this 

same sample of 2003 publication year papers. The results show that the APT is also higher 

for papers that are eventually cited by patents (.256) than for those not cited by patents 

(.166), (t=2.88, p=.004). The correlation between the 2007 TS (4 year window) score and 

the APT is .40 (p<.001), suggesting that these indicators are related, but also that they 

capture somewhat distinct aspects of the paper’s translational characteristics. For the percent 

human MeSH terms, there is no difference between the patent cited and not patent cited 

publications (.098 versus .109, respectively, t=0.36, p=.72), suggesting that this measure 

does not capture this aspect of translation (being used by a patented invention). Table 3 

shows probit regression models predicting citation by a patent for the three measures.11 The 

table shows that TS and APT each independently predicts patent citation, while percent 

human MeSH does not predict citation by a patent. We also tested (not shown) percent 

Animal and percent Molecular/Cellular and these also did not predict patent citation (either 

individually or in combination with Human). If both TS and APT are included, only the 

APT measure is statistically significant, likely due to the high collinearity between the two 

measures. However, we cannot reject the null hypothesis that the effects are equal between 

these two measures (chi-square=.09, p=.77). All of these results are very similar if we use a 

binary version of the TS score (Han et al. 2018), based on the 2007 (+4 years after 

publication) TS score (TS>0 v. TS=0) (results available from contact author).

Hence, we find that the TS score is a significant predictor of the publication being cited in a 

patent document. We also find that it is significantly correlated with the recently developed 

Hutchins APT (based on a machine learning algorithm using a combination of forward 

citations, MeSH keywords in the focal paper and MeSH keywords in the citing papers). We 

also find that while each predicts being cited in a patent document, when we use both in the 

same model, only the APT is still statistically significant, although a Chi-square test shows 

that we cannot reject the null hypothesis that the effects for each measure are equal. These 

results show that the TS score can predict one dimension of translation, the research being 

used in a patent (F Narin et al. 1997). In addition, these analyses provide an additional 

validation for the Hutchins APT, showing that it not only predicts being cited in clinical 

literature, but that it also predicts being cited by a patent document. The percent human 

MeSH terms, however, does not predict being cited by a patent (and is also uncorrelated with 

TS score, r=.03). These results suggest that forward citation based measures (TS, APT) are 

reasonable indicators of future use of the publication by patented inventions. The percent 

human MeSH terms in the focal publication, however, is not a good predictor of this 

indicator of translationalness, although as Weber (2013) shows, it is useful for tracking 

trends in translationalness over generations of citations.

Retrospective approach of publication – patent citation analysis: For an additional 

validity test of the TS scores, we used a retrospective approach to examine publication-

patent linkages. Here, we started with a group of patents and gathered the publications cited 

10Both of these measures are available from the iCite website (https://icite.od.nih.gov/analysis). It is not clear what data window is 
used for calculating the APT scores published on the website. The data were downloaded June 18, 2020.
11The inferences from a linear probability model are the same (results available from contact author).

KIM et al. Page 16

Scientometrics. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://icite.od.nih.gov/analysis


in those patents, and then checked to see if they had above average TS scores. To do this 

analysis, we gathered the following information:

1. Using the patent ID - NIH project ID link CSV file downloaded from NIH 

RePORTER, we collect the patents issued during 2001–2015 that acknowledge 

any NIH project with an Emory University affiliated PI (List 1).

2. Using PatentsView (2018)’s “otherreferences” file, we extracted bibliometric 

information (e.g., author, title, journal names) for “Non-patent citations” from 

List 1 patents (List 2).

3. Using this bibliometric information, we manually search Google Scholar and 

Web of Science to get their DOIs (List 3).

4. Find the List 3 publications that are from basic science journals, our population 

of interest (List 4).

5. Using Web of Science, collect the DOIs of publications citing the basic science 

papers in List 4 (List 5).

6. Calculate TS scores of focal publications in List 4 using the Web of Science 

Category classifications of List 5 citing publications.

The result from Step 1 produced a sample of 177 patents (List 1). This group of patents had 

a total of 186 non-patent citations (List 2), of which 88 were scholarly publications (List 3). 

Among 88 scholarly publications, 68 of them were published in basic science journals based 

on our classification rule using the Web of Science category and NSF Classification of fields 

of study (List 4) (see above). These 68 basic science publications received 29,503 forward 

citations (List 5), which were divided into clinical publications and non-clinical publications 

based on the Web of Science category and NIH classification of fields of study. Table 4 

shows the summary of all basic science publications (sample size 68) and a subset of 

publications that received more than five forward citations, where we have more confidence 

in the reliability of the estimated TS score (sample size of 66). One problem with this test is 

that while we know the average TS score for this sample of papers cited by patents, we need 

some way of calibrating whether this is higher than a typical basic science paper. As a 

comparison, we calculate the average TS score for all basic science articles published during 

2001 – 2015 with support from NIH grants that have PIs affiliated with one of the 115 

Carnegie R1 universities. We can think of this as an estimate of the baseline 

translationalness of the overall population of NIH funded basic research. The mean values 

on the TS score for the patent-cited basic research publications (0.135 for all and 0.140 for 

publications with more than 5 cites) were larger than the average value for the whole group 

of publications, which was 0.117. However, we cannot reject the null hypothesis in a one-

tailed test (p=.18 for all publications and p=.12 for those with more than 5 citations). Hence, 

we find additional evidence consistent with the claim that TS scores capture the translational 

character of publications, using a retrospective test, although we cannot rule out that the 

difference is due to chance.

This test also gives information on the broader population of biomedical research. We see 

that among all Carnegie R1 universities, NIH funded basic research has a mean TS score of 
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0.117. In other words, at the base rate, about 10% of forward cites to NIH funded basic 

research conducted at major research universities are due to the research being cited in 

clinical research journals. This analysis also demonstrates that the TS score can be scaled up 

(covering not just one university in one year, but can be readily calculated for all research 

universities over a 15 year period). This also highlights the ready interpretability of the TS 

score, since it is simply the share of total citations that are from clinical research journals.

Several examples of the TS scores of publications that led to a drug: One strong 

indicator of whether a publication is translational is checking if the publication contributed 

to the development of a drug. Several scholars have focused on this characteristic of 

publications and tried to find articles that result in drugs (R. S. Williams et al. 2015; Sampat 

and Pincus 2015; Li et al. 2017). For instance, Sampat and Pincus (2015) used a machine 

learning technique to match publication, patents and drugs. They found about half of new 

molecular entities (NME) approved by the FDA between 2000 and 2009 are associated with 

publications from NIH-funded Academic Medical Center projects. Another study by Li et al. 

(2017) linked publications with patents associated with approved drugs. They found that 

approximately 5% of NIH grants result in publications that are cited by patents related to 

drugs in the market.

If the TS scores of basic science publications from the above-mentioned studies turn out to 

be high, it can be an additional sign that the measure is valid. Full lists of the publication – 

drug pairings were not included in the previous studies. However, the supplementary 

material of Sampat and Pincus (2015) included some examples of publications that led to 

newly developed drugs. In particular, they provided a list of 15 publication-patent-drug link 

examples. With this information, we calculated the TS scores of the four publications on the 

list that were published in non-clinical science journals based on our classification criteria. 

Table 5 shows the TS scores for these publications. We can see that, in general, the TS 

scores of these publications are high, with the largest value of 0.552. The average TS score 

of these four publications, which were translated into drugs, is 0.394. This value is much 

higher than the mean value of the total population of NIH funded basic research papers, 

which is 0.117. In fact, even with n=4, the difference is statistically significant in a one-

tailed test (p=.03). Though the number of publications analyzed is very small, this finding 

provides additional support for the validity of our proposed TS score.

Conclusion

In recent years, encouraging the efficient movement of biomedical research “from bench to 

bedside” has been a priority of science funding agencies and policymakers. As a result, a 

variety of policy initiatives have been launched and a substantial investment has been made 

to increase the translational character of basic science. These efforts have occurred in an 

environment where there has also been increased interest in developing indicators that can 

track the broader impacts of basic research. While moving basic science to clinical practice 

is often a long and complex process (R. S. Williams et al. 2015), there is also a strong 

interest in focusing on the early steps in the process, when basic research is integrated into 

ongoing clinical research (2ST1 in the Weber (2013) classification). We focus on this 

meaning of translational science, recognizing that this is only an early stage in the process of 
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improving overall clinical practice and community outcomes. To get a clearer lens on this 

process, we need a proximate measure that is simple to calculate; captures the idea of 

translational at the 2ST1 stage; and that is reliable and valid.

We propose a novel measure, the TS score, to assess the translationalness of a non-clinical 

publication and provide evidence that this measure meets these desired criteria. The measure 

is calculated using the share of clinical forward citations among all forward citations a non-

clinical article receives. This measure is based on the assumption that if a non-clinical article 

is cited by an article in a clinical science journal, a knowledge flow from basic science to 

clinical science is taking place. The measure borrows concepts from and builds upon 

previous studies using journal discipline of forward citing articles (Qin et al. 1997), 

distinguishing basic science research and clinical science (Grant et al. 2000; F. Narin et al. 

1976), and using cross-disciplinary density ratios (Luke et al. 2015; Porter and Chubin 

1985).

The TS score has a variety of attractive features. First, the measure (percent of citations that 

are from clinical journals) is relatively simple and easy to understand, which may make it 

especially useful for policy discussions involving those who are not specialists in 

bibliometrics. Potential users only need to know the concept of forward citation and the 

classification of journals (clinical v. non-clinical basic science) based on fields of study. 

Second, the measure is relatively easy to implement (as it does not require any hand coding 

of documents nor calibrating and evaluating among machine learning algorithms). In this 

way it is similar to Weber’s triangle of biomedicine indicator (which is based on 

categorization of MeSH keywords associated with the focal document). Also, the calculation 

process for the TS score could be automated easily given the classification of journals into 

clinical and non-clinical groups. And, the classification rules can be easily described (e.g., 

appendix A in this article) allowing others to exactly replicate the scores, or to modify the 

measure for their own purposes. The TS score may also have low susceptibility to gaming, 

as it is a function of future citations (not any characteristic of the focal paper/author). As 

Hutchins et al. argue regarding their APT, another indicator that depends heavily on the 

information found in forward citations, since such indicators depend on the aggregated 

behavior of the scientific community, it is very difficult for the focal authors to significantly 

manipulate the final score (Hutchins et al. 2019). If gaming was a significant concern (for 

example if the TS score became an evaluation metric for individual researchers or research 

centers), the TS score could be further refined by excluding self-citations.

One limitation of the measure is that it depends on forward citations, a limitation shared by 

other forward citation-based measures such as Hutchins’ APT or Han’s secondary 

translational research measure. This results in some time lag in order to estimate the measure 

reliably (we estimate about 4 years from publication for the TS score). Furthermore, 

calculating the measure requires a citation database that allows the coding of journals by 

field. We used Web of Science, as this is commonly used in bibliometric analyses. However, 

Google Scholar or Scopus would likely give similar results, as the correlations among 

citation counts for each of these databases is extremely high (Martín-Martín et al. 2018). 

PubMed Central could also be used although the coverage is significantly less than these 

other citation databases (Weber 2013).
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Trochim et al. (2011) argue for a process marker model for evaluating the rate and volume of 

translational research. They argue that such markers have the following advantages: they are 

pragmatic, conceptually clear, replicable, independent of debates of the scope of 

‘translational’ research, and applicable both prospectively and retrospectively. Such markers 

also provide the basis for generating hypotheses on what characteristics change the values on 

the marker, as well as allowing for studying translational research while focusing on some 

rather than other particular markers. The TS score benefits from all of these strengths. 

Hence, the TS score we propose here follows the call for developing markers that can be 

used to examine the drivers of the rates and volumes of translation outcomes (Trochim et al. 

2011).

Preliminary assessments presented suggest the measure is both reliable and valid. The 

reliability tests showed that if a publication receives only five or more forward citations, the 

TS score of the publication tends to reaches a stable value. This suggests that the score is 

capturing an inherent feature of the publication, the relative degree to which it is useful for 

clinical research (relative to basic research). Results from the validity tests that compared the 

TS score with a dTS score calculated using the citing publication’s first author’s 

departmental affiliation showed a correlation of approximately .75 between these two 

measures, with the TS score being much easier to calculate. Comparing the TS score to 

Hutchins’ APT shows a correlation of .40, with each of these predicting the probability of 

the publication being cited in a patent document, and, again, the TS score is substantially 

simpler. Similarly, the TS scores of publications cited in patents or leading to new drugs are 

higher than the general population of NIH-funded basic research publications (although the 

differences are not always statistically significant). The sample sizes in these validity tests 

are modest and in some of the tests are linked to a specific university. However, even with 

modest sample sizes, we can still see significant effects, which gives us some confidence in 

the measure. Still, further tests are needed to see how well the TS score performs under a 

variety of tests with other samples.

All in all, the proposed TS score has many advantages and this measure has the potential to 

be used widely for the evaluation of the translation of biomedical research. There are a 

variety of available measures for estimating the translationalness of basic research (e.g., 

Weber’s triangle of biomedicine, Hutchins’ APT, and Surkis’ checklist approach) and each 

has different strengths. The choice may depend partially on available data and on the 

purpose of the indicator. In addition, multiple indicators can be used to test the robustness of 

research findings.

One promising implication of the TS score is that an analogous indicator can be calculated 

for other fields (since it does not use field-specific classifiers such as MeSH terms), after 

categorizing the relevant journals into basic and more applied. Hence, the TS score can be 

used to estimate the broader impacts for a wide variety of areas of science. For example, this 

may be used for evaluating broader impacts for NSF-funded projects.

We find that, overall, the TS score for NIH-funded basic research papers produced at 

Carnegie R1 universities is about 0.10, suggesting a base rate of about 10% of forward 

citations from clinical research. Also, as the TS score is calculated at the article level, it can 
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be readily aggregated to calculate individual, organizational or even field-level indicators of 

translationalness. This opens the opportunity for using the variations in this indicator to 

show, for example, if translationalness is changing over time or, another example, if junior 

people or senior people are more likely to engage in translational science. Using this 

approach, Y. H. Kim (2019) shows that publications from CTSA hubs have higher 

translational characteristics. We hope that others find a variety of uses for the indicator in 

order to develop our understandings of the process of translational research in biomedical 

sciences, as well as in other fields of science.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Classifying publications into the ones with and without translational feature based on journal 

discipline of forward citing publications.
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Figure 2. 
Change in TS score by year for 24 non-clinical publications.
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Figure 3. 
The dTS score, classifying publications into those with and without translational feature 

based on citing papers’ first author’s affiliations.
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Figure 4. 
Distribution of translational science scores calculated using different methods.
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Table 1.

Correlations between the TS score of the starting point and the TS scores after four or more years, by number 

of citations in the starting year.

Forward citation counts at starting year
Correlation between TS scores at the start and corresponding years

Sample size
After 4 years After 5 years After 6 years After 7 years After 8 years

2 0.661 0.504 0.533 0.512 0.462 62

3 0.794 0.799 0.770 0.732 0.727 71

4 0.690 0.707 0.637 0.645 0.622 81

5 0.786 0.745 0.789 0.793 0.808 69

6 0.836 0.792 0.785 0.770 0.743 59

7 0.827 0.807 0.800 0.810 0.812 74

8 0.904 0.891 0.879 0.874 0.849 50

9 0.878 0.865 0.853 0.833 0.831 64

10 0.915 0.923 0.918 0.931 0.937 55
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Table 2.

Descriptive statistics for and correlation between translationalness scores calculated with different methods.

Approach of classifying discipline of forward citing article Mean Std Dev Min Max Correlation with TS score based on 
journal classification

TS score: based on journal classification 0.092 0.119 0 0.553 ----

dTS score: based on first author affiliation 0.172 0.164 0 0.684 0.748

Note: The number of observations is 114 for both groups
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Table 3:

Probit regression results for being cited by a patent, by TS, APT and Percent Human MeSH scores

(1) (2) (3) (4)

PatentCite PatentCite PatentCite PatentCite

TS 1.156** (0.555) 0.645 (0.612)

APT 1.082*** (0.391) 0.903** (0.426)

Pct Human MeSH −0.174 (0.465)

_cons −0.574*** (0.115) −0.643*** (0.120) −0.404*** (0.100) −0.691*** (0.129)

Obs. 217 217 217 217

Pseudo R2 0.016 0.028 0.001 0.032

Standard errors are in parenthesis

***
p<0.01

**
p<0.05

*
p<0.1
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Table 4.

Summary of TS scores of publications cited by Emory University NIH funded patents, 2001–2015.

Group Obs Mean Std Dev Min Max

All publications 68 0.135 0.163 0 0.624

Publications with more than 5 forward citations 66 0.140 0.163 0 0.624
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Table 5.

TS score of non-clinical science publications that resulted in drugs

Brand Drug Cited Article TS score

Tasigna Nilotinib Hydrochloride Monohydrate (Bhat et al. 1997) 0.552

Entereg Alvimopan (Bagnol et al. 1997) 0.528

Inomax Nitric Oxide (Garg and Hassid 1990) 0.345

Velcade Bortezomib (Rock et al. 1994) 0.149

Note: Table recreated from a table in supplementary appendix of Sampat and Pincus (2015)
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