Skip to main content
. Author manuscript; available in PMC: 2021 Nov 1.
Published in final edited form as: Immunol Rev. 2020 Aug 26;298(1):165–180. doi: 10.1111/imr.12915

Table 1.

Surveillance behaviors and host-microbe responses of tissue-specific Vγ subsets

Tissue Subset Surveillance Behavior Response to Commensal Bacteria & Pathogens
Skin (epidermis) Vγ5 • Sessile1
• Dendrites “probe” for antigen or stress signal from neighboring keratinocytes
• Produce cytokines in response to Gram neg bacteria2
• DETC IL-17A induces AMP production by keratinocytes3
• Promote neutrophil recruitment and microbial clearance via IL-174
Skin (dermis) Vγ4 • Patrolling behavior5,6
• Form stable interactions with APCs
• Neutrophil recruitment and bacterial clearance by IL-17 response5,6
Gingiva Vγ6>Vγ4,1 Motile, but migratory behavior remains uncharacterized7 • Oral microbiome regulates Vγ subset composition and number7
• Vγ6+ cells most sensitive to changes in microbiota
• γδ17 cells shape the oral microbiome
Lung (parenchyma) Vγ4>Vγ1 unknown • APC interactions (MHCII+ macs, DCs)8
• IL-17 promotes neutrophil infiltration and microbial clearance9,10
Lung (non-parenchyma) Vγ6 unknown • IL-17 promotes neutrophil infiltration and microbial clearance11,12
• Commensal bacteria activate Vγ6+ cells to promote inflammation and tumor proliferation13
Intestine (intraepithelial) Vγ7>Vγ1 • Flossing1417
• Surveying
• Probing18
• Absence of commensals reduces flossing in favor of surveying behavior (Edelblum, unpublished)
• Increased flossing at “hotspots” near pathogen invasion14,16
• Epithelial MyD88 signaling promotes flossing response to Salmonella infection19
• γδ IELs can produce AMPs to limit bacterial invasion20,21
Intestine (lamina propria) Vγ1,4 unknown • Commensal bacteria influence γδ17 population22
• Memory Vγ4 response to secondary infection23,24
Uterus Vγ6 unknown • Protective against Candida albicans infection, thought to recruit neutrophils to FRT25
1.

Chodaczek G, Papanna V, Zal MA, Zal T. Body-barrier surveillance by epidermal gammadelta TCRs. Nat Immunol. 2012;13(3):272-282.

2.

Leclercq G, Plum J. Stimulation of TCR V gamma 3 cells by gram-negative bacteria. J Immunol. 1995;154(10):5313-5319.

3.

MacLeod AS, Hemmers S, Garijo O, et al. Dendritic epidermal T cells regulate skin antimicrobial barrier function. J Clin Invest. 2013;123(10):4364-4374.

4.

Cho JS, Pietras EM, Garcia NC, et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest. 2010;120(5):1762-1773.

5.

Gray EE, Suzuki K, Cyster JG. Cutting edge: Identification of a motile IL-17-producing gammadelta T cell population in the dermis. J Immunol. 2011;186(11):6091-6095.

6.

Sumaria N, Roediger B, Ng LG, et al. Cutaneous immunosurveillance by self-renewing dermal gammadelta T cells. J Exp Med. 2011;208(3):505-518.

7.

Wilharm A, Tabib Y, Nassar M, et al. Mutual interplay between IL-17-producing gammadeltaT cells and microbiota orchestrates oral mucosal homeostasis. Proc Natl Acad Sci US A. 2019;116(7):2652-2661.

8.

Wands JM, Roark CL, Aydintug MK, et al. Distribution and leukocyte contacts of gammadelta T cells in the lung. J Leukoc Biol. 2005;78(5):1086-1096.

9.

Nakasone C, Yamamoto N, Nakamatsu M, et al. Accumulation of gamma/delta T cells in the lungs and their roles in neutrophil-mediated host defense against pneumococcal infection. Microbes Infect. 2007;9(3):251-258.

10.

Cheng P, Liu T, Zhou WY, et al. Role of gamma-delta T cells in host response against Staphylococcus aureus-induced pneumonia. BMC Immunol. 2012;13:38.

11.

Murakami T, Hatano S, Yamada H, Iwakura Y, Yoshikai Y. Two Types of Interleukin 17A-Producing gammadelta T Cells in Protection Against Pulmonary Infection With Klebsiella pneumoniae. J Infect Dis. 2016;214(11): 1752-1761.

12.

Simonian PL, Roark CL, Born WK, O’Brien RL, Fontenot AP. Gammadelta T cells and Th17 cytokines in hypersensitivity pneumonitis and lung fibrosis. Transl Res. 2009;154(5):222-227.

13.

Jin C, Lagoudas GK, Zhao C, et al. Commensal Microbiota Promote Lung Cancer Development via gammadelta T Cells. Cell. 2019;176(5):998-1013 e1016.

14.

Hoytema van Konijnenburg DP, Reis BS, Pedicord VA, Farache J, Victora GD, Mucida D. Intestinal Epithelial and Intraepithelial T Cell Crosstalk Mediates a Dynamic Response to Infection. Cell. 2017;171(4):783-794.

15.

Edelblum KL, Shen L, Weber CR, et al. Dynamic migration of gammadelta intraepithelial lymphocytes requires occludin. Proc Natl Acad Sci USA. 2012;109(18):7097-7102.

16.

Edelblum KL, Singh G, Odenwald MA, et al. gammadelta Intraepithelial Lymphocyte Migration Limits Transepithelial Pathogen Invasion and Systemic Disease in Mice. Gastroenterology. 2015;148(7):1417-1426.

17.

Hu MD, Ethridge AD, Lipstein R, et al. Epithelial IL-15 Is a Critical Regulator of gammadelta Intraepithelial Lymphocyte Motility within the Intestinal Mucosa. J Immunol. 2018;201(2):747-756.

18.

Sumida H, Lu E, Chen H, Yang Q, Mackie K, Cyster JG. GPR55 regulates intraepithelial lymphocyte migration dynamics and susceptibility to intestinal damage. Sci Immunol. 2017;2(18).

19.

Ismail AS, Severson KM, Vaishnava S, et al. {gamma}{delta} intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci U S A. 2011;108(21):8743-8748.

20.

Ismail AS, Behrendt CL, Hooper LV. Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury. J Immunol. 2009;182(5):3047-3054.

21.

Walker CR, Hautefort I, Dalton JE, et al. Intestinal Intraepithelial Lymphocyte-Enterocyte Crosstalk Regulates Production of Bactericidal Angiogenin 4 by Paneth Cells upon Microbial Challenge. PLoS One. 2013;8(12):e84553.

22.

Duan J, Chung H, Troy E, Kasper DL. Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells. Cell Host Microbe. 2010;7(2):140-150.

23.

Sheridan BS, Romagnoli PA, Pham QM, et al. gammadelta T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity. 2013;39(1):184-195.

24.

Romagnoli PA, Brian S. Sheridan, Quynh-Mai Pham, Leo Lefrançois, and Kamal M. Khanna. IL-17A–producing resident memory γδ T cells orchestrate the innate immune response to secondary oral Listeria monocytogenes infection. PNAS. 2016.

25.

Monin L, D. S. Ushakov, H. Arnesen, et al. γδ T cells compose a developmentally regulated intrauterine population and protect against vaginal candidiasis. Mucosal Immunology. 2020.