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Abstract

Introduction: 20.8% of the United States population and 67% of the European population speak 

two or more languages. Intraoperative different languages, mapping, and localization are crucial. 

The aim of this investigation is to address three questions between BL and ML patients: 1) Are 
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there differences in complications (i.e. seizures) and DECS techniques during intra-operative brain 

mapping? 2) Is EOR different? and 3) Are there differences in the recovery pattern post-surgery?

Methods: Data from 56 patients that underwent left-sided awake craniotomy for tumors 

infiltrating possible dominant hemisphere language areas from September 2016 to June 2019 were 

identified and analyzed in this study; 14 BL and 42 ML control patients. Patient demographics, 

education level, and the age of language acquisition were documented and evaluated. fMRI was 

performed on all participants.

Results: 0 (0%) BL and 3 (7%) ML experienced intraoperative seizures (P = 0.73). BL patients 

received a higher direct DECS current in comparison to the ML patients (average = 4.7, 3.8, 

respectively, P=0.03). The extent of resection was higher in ML patients in comparison to the BL 

patients (80.9 vs 64.8, respectively, P =0.04). The post-operative KPS scores were higher in BL 

patients in comparison to ML patients (84.3, 77.4, respectively, P = 0.03). BL showed lower drop 

in post-operative KPS in comparison to ML patients (−4.3, −8.7, respectively, P = 0.03).

Conclusion: We show that BL patients have a lower incidence of intra-operative seizures, lower 

EOR, higher post-operative KPS and tolerate higher DECS current, in comparison to ML patients.
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Introduction

Approximately 20.8% of the population in the United States and 67% of the European 

population speak two or more languages.[1,2] This number continues to rise with the 

increase in global connectivity.[2,1] Related to second language proficiency, an important 

feature referred to as the age of acquisition (AoA) has been defined as the age at which 

monolinguals acquire their second language.[3–6] These linguistic features of bilingualism 

have been shown to impact structural organization, cortical representation of language, and 

neuroplasticity.[3,7–15] For example, several studies suggest that language proficiency is an 

important determinant of spatial language localization, where proficiency in the second 

language is hypothesized to be inferior to the first language and leads to specific localization 

patterns.[8,5,9,16] In contrast, recent fMRI studies demonstrate that AoA may also 

independently influence second-language cortical representation. [17,10,18–20] In early 

bilinguals (acquisition before the age of 6–9 years), the first language (L1) and the second 

language (L2) showed cortical regions overlap, while late bilinguals (acquisition after the 

age of 6–9 years) L1 and L2 have spatially separate cortical regions.[17,10,18–

20,16,21,14,22–26] Late bilinguals are hypothesized to have decreased neuroplasticity and 

require enhanced recruitment of neural circuits, thereby producing more diffuse cortical 

language representation.[17,10,18–20,16,21,14,22–26] The mechanistic underpinnings of 

bilingual language representation and contributory linguistic features remains poorly 

understood and controversial. In recent years, there has been increasing interest in 

understanding the functional and behavioral sciences in bilingual individuals in order to 

uncover fundamental concepts in language processing and cognition.[22,27,28,24,29]
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In both bilingual and monolingual individuals diagnosed with brain lesions (epileptogenic 

foci or tumors) located in the dominant hemisphere, careful direct cortical brain mapping 

must be conducted to identify the eloquent areas in order to maximize resection with 

preservation of function.[24,30,31] Prior studies demonstrated that speech and language 

areas in monolingual individuals are localized to certain cortical regions during direct 

cortical brain mapping.[32,33,24,34–37] However, in bilingual individuals, additional 

cortical regions may exist and must be identified (Figure 1).[30,23,24] Intra-operative 

speech mapping in conjunction with functional radiographic studies have observed that 

language co-localization is more common with early bilingualism.[24] The degree of spatial 

overlap between functional language areas for each language remains debated. This study 

presents an analysis of brain lesion resection for bilingual and monolingual speakers in order 

to discuss the clinical and management implications of brain surgery for bilingual patients.

Therefore, the aim of this study was to investigate whether there is a difference in clinical 

outcomes between bilingual and monolingual patients who underwent awake craniotomy for 

glioma resection.

Materials and Methods

Patient Selection

After approval by our institutional review board, data from 56 patients who underwent an 

awake craniotomy from September 2016 to June 2019 (Dates were restricted to within the 

past 4 years to reflect the most recent advances and techniques in awake brain surgery with 

brain mapping) performed by two neurosurgeons (A.Q.H. and K.L.C.) for lesions located in 

potential eloquent brain regions (eloquent language areas) were collected; 14 bilingual (BL) 

and 42 monolingual (ML) patients were identified and analyzed. All patients underwent left-

sided procedures for intra-axial lesions located in one of the following regions: primary 

language cortex, Broca’s, Wernicke’s, or other language areas; posterior inferior frontal 

gyrus, posterior superior temporal gyrus; however, some lesions infiltrated adjacent motor or 

sensory areas. Pre-operative functional MRI (fMRI) was done for cortical language 

localization and was projected intraoperatively through merging with the navigation (Figure 

2). Pathology was grouped into high-grade or low-grade using World Health Organization 

2016 classification system with astrocytoma, oligodendroglioma, and oligoastrocytoma 

considered low-grade.[38] All the tumor pathology samples were reviewed by a senior 

neuropathologist (M.J.). All patients had received an education equivalent to or higher than a 

college degree. The proficiency of the second language in our study was determined by the 

patient report (speaker’s point of view), as well as the evaluation by our certified translators 

(listener’s point of view).[4,39–42] All patients in our study acquired the second language 

after six years of age and considered as late bilinguals.[17,10,18–20,16,21,14] An interpreter 

was used intraoperatively to aid with the language tasks. Object naming, non-word 

repetition, word comprehension neuropsychology paradigms were tested intraoperatively.

Pre-operative Evaluation

All patients underwent pre-operative and post-operative MRI and pre-operative fMRI. Pre-

operative and post-operative Karnofsky Performance Scale (KPS) scores were documented 
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and presence of seizures pre-operatively or intra-operatively was noted. Non-language 

related deficits were also documented as noted in EMR (Electronic Medical Records).

Tumor Volumetric Evaluation

The pre-operative low-grade gliomas tumor volume was obtained using the T2-weighted 

MRI with gadolinium contrast as well as the fluid-attenuated inversion recovery (FLAIR) 

axial cuts. For high grade gliomas, the volume of an enhancing tumor was measured using a 

T1-weighted MRI with contrast. The Horos software Version 3 (LGPL-3.0) was used to 

calculate the tumor volume. The post-operative residual tumor volume was calculated using 

the MRI images obtained within 48 hours of the surgery, as previously reported.[43–47] The 

extent of resection (EOR) was preoperative − postoperative tumor volume
preoperative tumor volume . [46,47,43,48,49,44]

Electrocorticography/Stimulation Parameters

Customized high-density circular grid (patent application no. PCT/US2018/039956) 

consisted of a 22-channel hollow silastic® grid array with 0.3 mm platinum sensors 

separated by 0.5 cm for ECoG recording and identification of after-discharges during 

functional brain mapping (Figure 3A).[45,50] ECoG was recorded with a 128-channel 

digital video-EEG system (XLTEK, Natus Biomedical, San Carlos, CA) for analysis post-

processing. The referential recording used band-pass filters from 0.1 to 100 Hz, a sampling 

rate of 512 Hz, and 16-bit analog-digital conversion. Monopolar recording and bipolar 

montage reformatting clarified epileptiform activity. Electrode impedance was checked, and 

a 60 Hz notch filter used in real-time to eliminate artifact during ECoG interpretation. 

Stimulation parameters for functional brain mapping including frequency of 50 hertz, pulse 

width of 500 microseconds, and flexible current setting titrated from 1 up to 6 milliamperes 

in trains up to 4 seconds until functional deficit or after-discharge was elicited. Stimulation 

intensity was less than that imposing after-discharges.

Intra-operative Identification of Bilingual areas

The operative techniques of our awake craniotomies were described in the previous 

literature.[51,52,43,53,34,24] Cortical and subcortical language areas in the surgical field 

were identified using a handheld bipolar stimulator with two ball-tip electrodes known as the 

Ojemann Stimulator (Integra Lifesciences) for speech coherence and fluency assessment 

(Figure 3B). Endpoints were considered as either maximal stimulation without the 

interference of function, appearance of after-discharges on intra-operative 

electrocorticography (ECoG) (Figure 3B), and/or speech symptoms such as speech arrest 

(Figure 3C). Additional direct electrical cortical stimulation (DECS) was applied to the 

surrounding anatomical structures to ensure thorough identification of the speech and 

language areas. Intra-operative language testing was conducted by neuropsychologist (D.S.) 

in both languages for bilingual patients (Figure 3D) (Video 1). Areas of negative mapping 

were excluded from the analysis. Mapping of the surgical field was done systematically, 

starting with the areas of high suspicion for eloquence based on the pre-operative fMRI. The 

surgeons (A.Q.H. and K.L.C.) in our study start DCES at 2 mA for all patients.
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Statistical Analysis

R Studio (Version 1.0.143, R. RStudio, Inc., Boston, MA) was utilized to analyze the patient 

data. Significance was considered at α ≤ 0.05. Patient outcome measures between 

monolingual and bilingual patients were analyzed using Wilcox, McNemar, and ANOVA 

testing. Additionally, a subgroup analysis of high-grade gliomas only was conducted 

(Supplementary Table 1). Continuous variables were reported as mean (SD) and categorical 

variables as counts (percentage).

Results

Patient Characteristics

From September 2016 to June 2019, a total of 56 patients (14 BL and 42 ML) underwent 

craniotomy for intra-axial lesions located near eloquent cortex. In our study, our statistical 

analysis with or without the inclusion of low-grade gliomas didn’t show any significant 

difference in pre-operative, intra-operative and post-operative patients characteristics. (Table 

1, and Supplementary Table 1) Therefore, we present the data from high-grade and low-

grade gliomas in Table 1, and the subset analysis of high-grade gliomas only in 

Supplementary Table 1. Baseline patient characteristics were similar between the groups and 

included patient demographics, pre-operative seizures, seizures medications, pre-operative 

tumor volumes, and Karnofsky Performance Score (KPS) are summarized in Table 1. In our 

cohort, 10 (71%) BL were male and 20 (47%) ML were male (P= 0.22). The average age 

was 45.2 years for BL and 50.5 years for ML patients (P= 0.18). A total of 3 (21.4%) BL 

and 14 (33%) ML presented with pre-operative seizures (P = 0.40). 2 (66%) BL and 8 

(57.1%) ML patients were treated with monotherapy anti-seizure medications regimen (P = 

0.76). However, 1 (33%) BL and 6 (42.8%) ML patients were treated with dual-therapy anti-

seizure medications regimen (P = 0.76). Levetiracetam (Keppra®) was the anti-seizure 

medication of choice for 14 (100%) BL and 12 (85.7%) ML patients, and Phenytoin 

(Dilantin®) was the drug of choice for 0 (0%) BL and 4 (28.6%) ML patients (P = 0.48, and 

P = 0.29, respectively). Overall, no statistically significant difference was found in anti-

seizure medication treatment between BL and ML. (Table 1) Pre-operative KPS scores for 

BL and ML patients were similar between groups (BL = 88.6 vs ML = 86.1, P = 0.50) 

(Table 1). Pre-operative tumor volume for BL and ML patients were comparable between 

the two groups (BL = 38.1 cm3 vs ML = 36.7 cm3, P = 0.83). The percentage of high-grade 

tumors in BL compared to ML and the tumor pathologies were not statistically significant 

different (Table 1). Tumor location was categorized based on lobe and functional cortex 

involvement. No differences were seen in tumor locations between BL and ML patients 

(frontal lobe, parietal lobe, temporal lobe, P = 0.09, P = 0.08, and P = 0.16, respectively) 

(Table 1).

Intra-operative Mapping

Intra-operatively, 0 (0%) BL and 3 (7%) ML experienced seizures (P = 0.73) (Table 1). 

Intra-operative stimulation-induced seizures were the most common events during awake 

procedures with brain mapping and were terminated by using our intraoperative treatment 

protocol: 1) Repeat electrical stimulus, 2) Cold saline irrigation and, 3) Administration of 

medication (either benzodiazepine or Propofol).[52,43,54–56] The frequency and the 
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applied current (mAMPS) of the intra-operative DECS was recorded. Our data showed that 

both groups (BL and ML) received the same average number of stimulations during intra-

operative mapping (BL = 98.8 vs ML = 94.2, P = 0.12) (Table 1). However, BL patients 

required a higher applied current in order to locate eloquent areas compared to ML patients 

(BL = 4.7 mAMPS vs ML = 3.8 mAMPS, P = 0.03) (Table 1).

Patient Outcome

Post-operatively, 1(7%) BL and 0 (0%) ML suffered a seizure (P = 0.56) (Table 1). The post-

operative KPS scores were higher in BL in comparison to ML patients (BL = 84.3 vs ML = 

77.4, P = 0.03) (Table 1). Additionally, the average drop in KPS was smaller for BL patients 

compared to ML (BL = −4.3 vs ML = −8.7, P = 0.03) (Table 1). The average EOR was 

significantly lower for BL patients than ML patients (BL = 64.8% vs ML = 80.9%, P = 
0.04) (Table 1). Finally, length of hospital stay did not show any significant difference 

between BL and ML groups (BL = 4 days vs ML = 5.3 days, P = 0.64) (Table 1).

Discussion

In this study, we examined the role of bilingualism as a prognostic indicator for intra-

operative course and post-operative outcome in patients undergoing awake craniotomy for 

intra-axial brain tumors. To our knowledge, this is the first study of its kind to address these 

questions and the largest series comparing the electrical current and number of stimulations 

of DECS during intra-operative mapping between monolingual and bilingual patients with 

intra-axial brain tumors.

In our study, intra-operative DECS showed that bilingual patients received similar numbers 

of stimulation trials, with a higher electrical current per stimulation in order to produce a 

response in the eloquent cortex when compared to monolingual patients (P = 0.12 and P = 
0.03, respectively) (Table 1). This observation needs to be interpreted carefully due to the 

possibility of false positive mapping. We observed that despite the electrical current per 

stimulation difference, the bilingual patients had no intra-operative seizures, while 3 

monolingual patients had intra-operative seizures (P = 0.73) (Table 1). It is important to note 

that these findings should be interpreted with caution given the small sample size and the 

lack of statistical differences; however, monolingual patients may be at a greater risk of 

seizures if similar or lower electrical stimulation current is applied. We hypothesize that the 

ability of bilingual patients to tolerate higher electrical stimulation current is due to the 

anatomical distribution of language networks.[57,58] This observation in the present study 

will need to be further elucidated in larger cohorts of patients. It might seem contradictory 

that in bilingual patients, who might have two different speech areas, we do not see a greater 

number of stimulations. However, we attribute this to limited cortical exposure thus the 

second language might not be exposed during surgery and the only entire exposed surface 

was mapped in both bilingual and monolingual patients.

A significantly lower extent of resection was achieved in bilingual patients in comparison to 

monolingual patients (64.8% vs 80.9%, respectively) (P = 0.04), with a significantly higher 

post-operative residual tumor volume in bilingual patients in comparison to the monolingual 

patients (13.5 vs 8.1 cm3, respectively) (P = 0.03) (Table 1). Given into consideration that 
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all of the surgeries in our cohort were done by two neurosurgeons and the EOR did not show 

any significant differences between the surgeons (P = 0.52). The reason for lower EOR in 

BL is unclear. Therefore, we should be cautious in our interpretation of these observations. 

A potential explanation for these observations includes 1) the operative techniques and 

surgeons’ experience of performing surgery on bilingual patients, 2) the differences in the 

functional organization between BL and ML, and the age of secondary language acquisition. 

From an operative standpoint and as evidenced by the observed higher EOR in the ML 

group, a more aggressive resection was possible in this group despite using a similar 

mapping approach and methods and a high degree of expertise in mapping BL by one of the 

neurosurgeons. In addition, a higher post-operative KPS scores and lower post-operative 

KPS drops were observed for BL patients in comparison to the ML patients (Table 1). This 

would necessarily include resection of more normal, functional brain as well in ML patients 

which could then contribute to a lower KPS in these patients when compared to BL patients 

who underwent a lesser EOR. Similar findings have been reported by our group previously, 

showing that patients who underwent awake craniotomy tend to experience a higher drop in 

KPS immediately post-operatively in comparison to the patients who underwent surgery 

under general anesthesia (−5.9 vs −4.5, respectively).[43]

Alternatively, or more likely in tandem, it is possible that language organization also plays a 

contributory role. From a linguistics perspective, prior work has established that BL 

individuals harbor a more diffuse, robust language organization and connectivity in 

comparison to the ML individuals.[59–61,16,62,63,24,64–66,7,17] Furthermore, studies 

have noted that surgery itself can promote functional reorganization, and this is also an 

important consideration particularly in bilingual patients where the strategy for resection 

may be spatially distributed given a wider distribution of language function.[57,58,67–

69,35,23,70,71] The findings of the present study (lower EOR in BL, and higher post-

operative KPS scores and lower post-operative KPS drops) are in line with these potential 

explanations; however, future studies will be required that account for possible confounders 

such as location of functional organization, extent of resection, and location of second 

language representation. Additionally, presence and extent of functional reorganization pre-

operatively and post-operatively would be required to elucidate the mechanisms behind the 

findings of the present study.[72,73,12,74,57] The age of secondary language acquisition 

plays an important role in cortical language distribution, as individuals who acquired the 

secondary language after the age of seven years old tends to show more diffuse cortical 

language representations.[59–61,16,62,63,24,64–66,7,17] On the contrary, bilingual 

individuals who acquired the second language before the age of seven years old, tend to have 

more localized cortical language representations. Since all of our bilingual patient 

population acquired the second language after the age of seven years old, we hypothesize 

that the lower EOR and the lower drop in post-operative KPS in the bilingual patients is a 

result of the diffuse cortical distribution of secondary language. Taken together, these 

findings suggest that bilingual patients may experience better surgical outcomes following 

resection of intra-axial brain tumors. In the present study, there may be evidence that is 

suggestive of the presence of a differential functional organization in monolingual and 

bilingual patients that contributes to improved recovery. Prior studies have noted that the 

surgery itself can promote functional reorganization, and this is an important consideration 
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particularly in bilingual patients where the strategy for resection may be spatially distributed 

given a wider distribution of language function.[75,76,15,66,77–79]

Interestingly, 1 (7%) bilingual patient experienced a post-operative seizure, while none of 

the monolingual patients experienced seizures (P = 0.56) (Table 1). Despite the statistical 

insignificance for this finding, we believe this warrant deeper investigation in subsequent 

studies. Important considerations and potential explanations include the magnitude of 

electrical stimulation applied and the underlying differences in brain network organization in 

bilingual patients. Bilingual patients received a higher applied current during intra-operative 

stimulation, which could potentially promote increased cortical excitability since one known 

unwanted effect of cortical stimulation is seizures. Secondly, due to the robustness of 

cortical and subcortical networks in bilingual patients, their brains may be more excitable at 

baseline and have a lower threshold for seizures as a consequence of increased network 

interconnectivity.[57,58]

Limitations

Several limitations are noteworthy. One is the selection bias inherent to the retrospective 

nature of the study and additionally, the selection associated with only including patients 

undergoing awake craniotomy. Although the language of the patients was limited to only 

Arabic, English, Spanish, German, Estonian, Lithuanian, and French, we believe that the 

findings reported here have implications for bilingual patients in general since they are 

consistent with previous studies of different languages.[24,75] Additionally, all the patients 

in this study are late bilinguals (language acquisition after the age of 6–9 years), and 

therefore these results may not extend to early bilinguals.[17] It is also important to note that 

intra-operative electrical stimulation-based studies, showed heterogeneous results, varying 

from a total cortical overlap between L1 and L2, to partially separated cortical regions 

between L1 & L2, to spatially separate cortical regions between the two languages.[19–

26,15,70,80,81,75,59,64]. Given the prevailing limitations in understanding both fMRI and 

intraoperative electrical stimulation in language, even in monolingual patients, this 

retrospective study design does not allow inferences to be made about language localization 

in bilingual patients, but rather is intended to shed light on the potential outcomes 

differences and serve as a basis for further exploration. Although, functional MRI was 

performed on the patients preoperatively, however, the discrepancies between the functional 

MRI and the intraoperative language mapping were not included in our cohort. In addition, it 

is possible that recruitment of additional cognitive brain regions, such as attention networks, 

produce more unpredictable activation on fMRI during mapping of a non-native language, 

which could potentially confound interpretation. To date, it is unknown how these variations 

in activation, as seen in Figure 1C, Patient#3, relate to the incidence of stimulation-induced 

language effects and the tolerance for resection. Given the small sample size of BL patients, 

instances of low EOR in BL patients might skew these results. Although it is known that the 

type of brain tumor can also have an impact on EOR, the impact of tumor type on language 

networks in bilinguals has not been investigated and would likely offer important insights 

into language connectivity and intra-operative course in patients undergoing surgery for 

eloquently-located brain tumors.[82] Ultimately, a prospective study evaluating the intra-

operative (seizures, number of DECS, current) and post-operative (EOR, KPS, ∆ KPS) 
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outcomes between ML and BL patients would be needed to further elucidate differences 

between these cohorts.

Conclusion

In summary, the primary goal of this study was to investigate (1) any differences in 

complications (i.e., seizures) and DECS techniques during intra-operative brain mapping, (2) 

differences in the extent of resection (EOR) and (3) any differences in the recovery pattern 

post-surgery, between ML and BL patient population. We have shown that BL patient has a 

lower incidence of intra-operative seizures, tolerates higher DECS current, lower EOR, and 

higher post-operative KPS compared to ML patients. Furthermore, we describe important 

clinical perioperative differences between monolingual and bilingual patients, including 

seizure incidence and cortical stimulation parameters such as current. Taken together, these 

results suggest a difference in the outcome of these two patient populations; however, the 

underlying mechanism remains unclear.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
A 3D reconstruction of a brain image highlighting variation in language localization and 

lateralization derived from fMRI and intraoperative direct cortical stimulation in three 

patients. A) Sagittal brain illustration showing the native and the secondary language for 

three patients. Patient#1 showed a unilateral cortical representation of both English (Native), 

and Latvian (Secondary) languages, and was represented by light blue and blue color, 

respectively. Patient#2 showed a unilateral cortical representation of both Spanish (Native), 

and English (Secondary) languages, and was represented by light green and green color, 

respectively. Patient#3 showed a bilateral cortical representation of Spanish (Native), while 

unilateral cortical representation of English (Secondary) language, and was represented by 

light red and red color, respectively. B) Axial brain illustration showing the unilateral and 

bilateral cortical language representation.

ReFaey et al. Page 15

J Neurooncol. Author manuscript; available in PMC 2021 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Reconstructive functional MRI (fMRI) results from a word-generation task in a bilingual 

patient with a WHO Grade III astrocytoma of the left frontoparietal operculum. A) The 

results for the patient’s native language is shown in blue and secondary language in orange. 

The native language shows an expected pattern of language activation in the left hemisphere, 

including both frontal and posterior language areas. B) fMRI representation of the secondary 

language in the right hemisphere. Non-contrast enhancing T1-weighted imaging showing the 

tumor in C) Left-sided sagittal cut and D) Axial cut on the left hemisphere.
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Figure 3: 
A) Intra-operative surgical field photograph showing the circular grid over the brain surface. 

B) Direct cortical stimulation using Ojemann stimulator with showing after-discharge on the 

electrocorticography (ECoG) monitoring using the circular grid. C) Intra-operative 

photograph showing the stickers identifying the eloquent cortical and subcortical areas: 

mouth motor, Broca’s, IFOF (inferior fronto-occipital fasciculus), and SLF (superior 

longitudinal fasciculus). D) Showing intra-operative neuropsychology language testing in 

both languages for bilingual patients.
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Table 1.

Univariate analysis of patient characteristics, intra-operative findings, tumor characteristics, and outcomes of 

bilingual versus monolingual patients. Categorical and binary data is represented by counts; continuous data is 

represented by means.

Bilingual (n=14) Monolingual (n=42) P-Value

Preoperative patient characteristics

  Age 45.2 50.5 0.18

  Male 10 (71%) 20 (47%) 0.22

  Pre-KPS 88.6 86.1 0.67

  Pre-Op Vol (cm3) 38.1 36.7 0.83

  Pre-op Seizures 3 (21.4%) 14 (33%) 0.40

   Monotherapy 2 (66%) 8 (57.1%) 0.76

   Dual Therapy 1 (33%) 6 (42.8%) 0.76

   Levetiracetam (Keppra®) 3(100%) 12 (85.7%) 0.48

   Phenytoin (Dilantin®) 0 (0%) 4 (28.6%) 0.29

   Other 1 (33%) 4 (28.6%) 0.87

Intra-operative analysis of BL vs ML Patients

  Intra-Op Seizures 0 (0%) 3 (7%) 0.73

  # of Stimulations (Range) 98.8 (86–123) 94.2(75 −124) 0.12

  mAMPS* (Range) 4.7 (3– 6) 3.8(2.5 −6.5) 0.03

Post-operative outcome measures

  Seizure 1 (7%) 0 (0%) 0.56

  KPS 84.3 77.4 0.03

  ΔKPS −4.3 −8.7 0.03

  Post-Op Vol (cm3) 13.5 8.1 0.03

  EOR (%) 64.8 80.9 0.04

  Trans. Lang. Def. 5 (36%) 9 (21%) 0.48

  Hospital Stay (days) 4 5.3 0.64

Pathology
†

  High Grade 11 (79%) 34 (81%) 0.85

  Low Grade 3 (21%) 8 (19%) 0.85

  Glioblastoma 8(57%) 21(50%) 0.87

  Oligodendroglioma 2(14%) 6(14%) 1

  Anaplastic Astrocytoma 3(21%) 13(26%) 1

  Astrocytoma 1(7%) 2(5%) 0.73

Tumor location
‡

  Frontal Lobe 9 (64%) 16 (38%) 0.09

  Parietal Lobe 8 (57%) 13 (31%) 0.08

  Temporal Lobe 5 (36%) 24 (57%) 0.16
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KPS = Karnofsky Performance Score; Preop = Preoperative; BL = Bilingual; ML = Monolingual.

*
Largest current that did not evoke after discharges. AMPS = Amperes. EOR = Extent of Resection; Δ = Delta; Trans. Lang. Def. = Transient 

Language Deficits. Vol = Volume.

†
Tumors were classified using the World Health Organization 2016 classification of diffuse gliomas.

‡
Tumor may be located in overlapping eloquent regions.
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