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H U M A N  G E N E T I C S

Nuclear genome-wide associations  
with mitochondrial heteroplasmy
Priyanka Nandakumar1, Chao Tian1, Jared O’Connell1, 23andMe Research Team1, David Hinds1*, 
Andrew D. Paterson2,3, Neal Sondheimer2,4*

The role of the nuclear genome in maintaining the stability of the mitochondrial genome (mtDNA) is incompletely 
known. mtDNA sequence variants can exist in a state of heteroplasmy, which denotes the coexistence of organel-
lar genomes with different sequences. Heteroplasmic variants that impair mitochondrial capacity cause disease, 
and the state of heteroplasmy itself is deleterious. However, mitochondrial heteroplasmy may provide an inter-
mediate state in the emergence of novel mitochondrial haplogroups. We used genome-wide genotyping data 
from 982,072 European ancestry individuals to evaluate variation in mitochondrial heteroplasmy and to identify 
the regions of the nuclear genome that affect it. Age, sex, and mitochondrial haplogroup were associated with the 
extent of heteroplasmy. GWAS identified 20 loci for heteroplasmy that exceeded genome-wide significance. This 
included a region overlapping mitochondrial transcription factor A (TFAM), which has multiple roles in mtDNA 
packaging, replication, and transcription. These results show that mitochondrial heteroplasmy has a heritable 
nuclear component.

INTRODUCTION
Human mitochondrial DNA (mtDNA) is the maternally inherited 
genome that is dedicated to the generation of cellular energy through 
oxidative phosphorylation (1). mtDNA is small, expressing only 
13 protein-coding genes, along with the ribosomal and transfer RNAs 
required for their translation. Despite its size, sequence changes in 
mtDNA and their interaction with the nuclear genome may have 
outsized impact upon health and disease.

Control of the mtDNA copy number per cell is variable between 
different cell types, with some human cells containing no mtDNA 
and others containing thousands of copies. As a multicopy genome, 
mutation of mtDNA leads to a state of mitochondrial heteroplasmy 
(MtHz) where mtDNA with distinct sequences coexist. Once viewed 
as uncommon, it has been recognized that MtHz is widely present 
in humans (2). MtHz can be transmitted through the maternal germ 
line so that mother and offspring are heteroplasmic at the same po-
sition(s) (3). In addition, somatic MtHz occurs in the context of 
aging and tissue damage (4, 5).

Most of the pathogenic variants in mtDNA are heteroplasmic. 
Homoplasmic mutations are less common and cause disorders such 
as Leber’s hereditary optic neuropathy, which does not impair re-
productive fitness. For heteroplasmic disease-causing variants, the 
ratio of the pathogenic variant to the total mitochondrial pool 
(commonly referred to as load) plays an important role in the pen-
etrance and expressivity of the disorders (6). Below a variant-specific 
threshold, symptoms are not observed. Above the therapeutic 
threshold, symptoms become progressively more severe. Therapeu-
tic shifting of MtHz toward the wild-type allele has long been pro-
posed (7), and several approaches are under investigation (8–10), 
but there are no clinically approved means to directionally alter 

MtHz to treat disease. In addition, there is evidence from both quan-
titative models and animal studies that MtHz itself is deleterious 
and that homoplasmic states are preferred, even when the two 
mtDNA sequences present contain no pathogenic variants (11, 12).

Conversely, MtHz may serve a beneficial role by allowing a tran-
sitional state between two mitochondrial genotypes. As a uniparen-
tally inherited genome, new alleles and new combinations of alleles 
are introduced via mutation to a heteroplasmic state. Commonly 
inherited sets of mitochondrial polymorphisms, known as haplo-
groups, have arisen during the course of human migration and 
evolution, likely in response to challenges encountered in new envi-
ronments (13). Mitochondrial polymorphisms associated with mito-
chondrial haplogroups are known to affect mtDNA copy number, 
rates of mitochondrial transcription, and capacity for oxidative 
phosphorylation (14–16).

Despite the importance of MtHz in health and disease, its origins 
and the balance between its benefits and consequences are incom-
pletely understood. We sought to further our understanding of MtHz 
by evaluating nuclear loci that affect MtHz in a large sample.

RESULTS
Dataset and analytical strategy
We used genome-wide genotyping data from saliva samples of 
982,072 individuals of European ancestry who were participants in 
the research program of 23andMe (Table 1), a personal genomics 
and biotechnology company. MtDNA is densely genotyped with 
3287 single-nucleotide polymorphisms (SNPs) assayed. Quality 
control (QC) measures were applied to remove assays that geno-
typed poorly due to either a lack of hybridization or inaccurate dis-
crimination of the alleles. Ultimately, 326 mtDNA SNPs were 
evaluated (Fig. 1). MtHz values were calculated as the ratio of the 
lesser allele intensity to the total intensity at that position so that the 
maximum possible heteroplasmy value was 0.5. We used mother- 
offspring duos to examine pairs of points where the mother had a 
heteroplasmy value of >5% (fig. S1; n = 28,963 pairs). There was a 
correlation in maternal-offspring values as would be expected for 
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an inherited heteroplasmy [Spearman’s r = 0.1846, P = 3.4 × 10−70 
where maternal B-allele frequency (BAF) value was <0.5, and 
Spearman’s r = 0.1800, P = 8.9 × 10−185 where the maternal BAF 
was >0.5].

MtHz was widely present, and all assayed positions had individ-
uals with >25% MtHz (Fig. 2A). Because our approach did not eval-
uate all positions in the mitochondrial genome, we quantified MtHz 
for each individual as the mean value across all 326 positions as-
sayed. The mean MtHz for all individuals evaluated was 0.00744 

(interquartile range = 0.0046 to 0.012; Fig. 2B). Notably, the mean 
heteroplasmy values were not driven by a subset of the mitochon-
drial positions, as heteroplasmy averaged across individuals at each 
position was tightly distributed (Fig. 2C).

Impact of age, sex, and mitochondrial haplogroup on MtHz
To evaluate the impact of genetic and nongenetic factors upon 
mean MtHz, we calculated the natural log-transformed mean MtHz 
value winsorized at 99.5% to remove the influence of outliers 
(Fig. 2D). An initial model was generated to evaluate influences 
upon mean MtHz (Table 2). The variance of allelic intensity for 
homozygous autosomal SNPs (“autosomal variance”) was strongly 
positively associated with MtHz. This was anticipated as samples 
with high autosomal variance at homozygous positions likely had 
technical characteristics that indicate noisier samples. This noise 
overestimates MtHz, and the use of autosomal variance in the 
genome-wide association study (GWAS) corrects for minor differ-
ences in sample quality.

The impact of mitochondrial haplogroup was evaluated for the 
19 most common haplogroups that were present in the population, 
each having at least 10,000 individuals, i.e., ~1% of the total popula-
tion (Table 2). Mean MtHz differed between differing haplogroups. 
H1 was the most common haplogroup in the dataset (n = 203,003; 
20.7%). Although the impact on MtHz was significant for many of 
the haplogroups, the magnitude of the MtHz difference was small, 
and individuals with T1 haplogroup (n = 21,921; 2.2%) had a mean 
MtHz that was only 0.0010 greater than H1 individuals (P = 1.1 × 
10−248 in the null model). Within the population, mean MtHz sig-
nificantly declined with increasing age. In addition, females had 
significantly lower mean MtHz than males. Age and sex were in-
cluded as covariates in the GWAS model.

Elimination of mitochondrial pseudogenes
We performed GWAS of mean MtHz. Initially, 37 loci reached 
genome-wide significance, P < 5 × 10−8, after adjusting for a genomic 
inflation factor of  = 1.077 (Fig. 3 and fig. S2). However, an import-
ant potential confounder is the presence of nuclear mtDNA segments 
(NUMTs). NUMTs include partial, fragmented, complex, or com-
plete copies of the mtDNA that have been retrotransposed into the 
nuclear genome (17, 18). The direct hybridization of ostensibly 
mitochondrial probes to nuclear DNA from NUMTs will overesti-
mate MtHz if the NUMT sequence contains alleles that vary from 
an individual’s true mtDNA sequence. Therefore, NUMTs have the 
potential to produce false-positive GWAS signals at SNPs, which 
are in linkage disequilibrium (LD).

An example of this is illustrated at rs1951197 (near AKAP6), 
which was associated with log mean MtHz ( = 0.0087, P = 7.81× 
10−26). This position overlaps NUMT 474, which is polymorphic in 
Europeans (esv3633987) (fig. S3). NUMT 474 is 93% identical to 

Table 1. Characteristics of the subject sex and age groups by mean MtHz quartile.  

Mean MtHz Total Male Female Age <30 Age 30–45 Age 45–60 Age >60

<0.0046 245,518 113,906 131,612 23,157 58,126 64,360 99,875

0.0046–0.0074 245,518 114,262 131,256 23,408 58,086 65,009 99,015

0.0074–0.012 245,518 116,018 129,500 23,983 59,018 65,330 97,187

>0.012 245,518 118,107 127,411 24,292 58,685 64,888 97,653

Initial 3287 assays

Standard QC
1. MAF > 0.0001

2. Genotyped >99% in population
3. Biallelic

599 assays

mtHz QC
1. Individual data >3 SD below LRR removed. 
2. Assay removed if >1% of samples removed.

3. Assay removed if >10% of individuals >20% MtHz.

356 assays

Remaining hypervariable positions removed

326 assays

BAF
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Fig. 1. Evaluation mitochondrial SNPs on the 23andMe v4 array. The array in-
cludes 3287 positions across the mitochondrial genome. These were pruned to 
keep biallelic variants, with >99% call rate across the test population and minor 
allele frequency (MAF) > 0.001. Calls from individual participants at single SNPs were 
removed, where the intensity (LRR, log2 R ratio) was >3 SDs below the mean intensi-
ty for all individuals at that position. Where a position had >1% of samples fail these 
criteria, the position was removed for all individuals. (A) Well-performing assay with 
heteroplasmic samples between two homoplasmic clusters and a small number of 
samples with intensity >3 SDs below the mean value (lowest line) where individual 
calls were excluded. SD lines are shown for both the (A) (green) and (B) (red) allele 
assay. Assays that identified excessive heteroplasmy with poor homoplasmic clus-
ters were entirely removed. (B) Poorly performing assay where >10% of the individ-
uals in the dataset had MtHz of >20% [B-allele frequency (BAF) values, 0.2 to 0.8]. For 
this position, data from all individuals were removed from the analysis.
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positions 5583 to 6606 of the revised Cambridge Reference Sequence 
(rCRS) mtDNA (NC_012920.1). We tested the validity of the asso-
ciation of rs1951197 by repeating analysis after removing any posi-
tion between mt.5583 and mt.6606 from the quantitation of MtHz 
(table S1). As expected, the association between rs1951197 and mean 
MtHz was no longer significant. Using a similar approach, we also 
eliminated the association of rs7728823, which overlaps NUMT 
228, and rs571982832, which maps to a recently identified com-
plex NUMT (18).

Because not all NUMTs are known or precisely located, we 
sought to identify other loci where apparent association was driven 
by cryptic NUMTs. We separately estimated mean MtHz after di-
viding the mitochondrial positions into three groups. We reasoned 
that nuclear positions would show marked differences in associa-
tions with these subsets of mitochondrial positions if NUMTs drove 
an artificial association. SNPs were removed from further analysis 
when the association was reduced below genome-wide significance 
when the analysis of heteroplasmy was based on a subregion. This 
identified four additional loci whose association was strongly re-
gion dependent (table S1), and these were also removed from the 
subsequent analyses.

Genome-wide association identifies loci 
associated with MtHz
After the exclusion of NUMT-dependent positions, 30 loci initially 
had at least one position with genome-wide significance. To avoid 
evaluating poorly supported associations, 10 loci at which only a 
single imputed SNP exceeded genome-wide significance were 

Table 2. Effect of covariates on mean MtHz. The pc values are from 
principal components analysis. Autosomal variance refers to the variability 
from homozygosity at autosomal positions. Haplogroup values are 
compared to haplogroup H (n = 72,363). The number of individuals with 
each haplogroup is noted. 

Covariate Estimate () SE t value Pr(>|t|)

Age −0.000246 3.28 × 10−5 −7.5 6.80 × 10−14

Sex, F −0.040726 1.15 × 10−3 −35.3 9.80 × 
10−273

pc.0 0.006926 5.90 × 10−4 11.7 8.00 × 10−32

pc.1 −0.001214 5.80 × 10−4 −2.1 0.036

pc.2 −0.001546 5.80 × 10−4 −2.7 0.0077

pc.3 −0.000978 5.79 × 10−4 −1.7 0.091

pc.4 0.001443 5.82 × 10−4 2.5 0.013

Autosomal 
variance 0.640646 8.52 × 10−4 752.3 <×10−300

Hap H1 
(203003) 0.000753 2.47 × 10−3 0.3 0.76

Hap. H2 
(31389) 0.017434 3.86 × 10−3 4.5 6.10 × 10−6

Hap. H3 
(28107) 0.082418 4.01 × 10−3 20.6 6.80 × 10−94

Hap. H4 
(15052) 0.047945 5.11 × 10−3 9.4 6.30 × 10−21

Hap. H5 
(37219) 0.018601 3.64 × 10−3 5.1 3.20 × 10−7

Hap. H6 
(20240) 0.040591 4.53 × 10−3 9 3.40 × 10−19

Hap. HV 
(23855) 0.021313 4.26 × 10−3 5 5.80 × 10−7

Hap. J1 
(76312) 0.092318 2.96 × 10−3 31.2 1.20 × 

10−213

Hap. J2 
(17812) 0.113978 4.77 × 10−3 23.9 3.70 × 

10−126

Hap. K1 
(71844) 0.134303 3.02 × 10−3 44.4 <×10−300

Hap. K2 
(18034) 0.134744 4.75 × 10−3 28.3 1.10 × 

10−176

Hap. T1 
(21921) 0.148079 4.40 × 10−3 33.7 1.10 × 

10−248

Hap. T2 
(76650) 0.118618 2.96 × 10−3 40.1 <×10−300

Hap. U2 
(12438) 0.134402 5.53 × 10−3 24.3 3.20 × 

10−130

Hap. U4 
(23358) 0.122405 4.29 × 10−3 28.5 1.10 × 

10−178

Hap. U5 
(84439) 0.120046 2.89 × 10−3 41.5 <×10−300

Hap. V 
(17675) 0.009295 4.78 × 10−3 1.9 0.052

Hap. X2 
(14869) 0.049903 5.13 × 10−3 9.7 2.50 × 10−22

Hap. Other 
(115492) 0.079721 2.71 × 10−3 29.4 1.90 × 

10−190

Fig. 2. Quantitation of MtHz data. (A) MtHz plotted by percentile within the pop-
ulation for each of the mitochondrial positions evaluated. Highly heteroplasmic 
individuals were observed at every position. (B) Mean mitochondrial heteroplasmy, 
averaged across the evaluated positions, for individuals in the dataset. (C) Distribu-
tion of mean MtHz values across the 326 tested mitochondrial positions in the QC 
subset. (D) Natural log transformation of mean MtHz with outlier removal at 99.5%.
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removed from further analysis, leaving a final 20 loci associated 
with mean MtHz (Table 3 and fig. S4). Estimated from the array, the 
observed scale heritability of MtHz was 0.65% (SE = 0.1%, mean 
2 = 1.1914, intercept = 1.032) (19). The 20 loci accounted for 32% 
of the observed heritability (table S2). We confirmed the lack of de-
pendence of these associations upon haplogroup by retesting the 
peak association with the inclusion of haplogroup in the model 
(table S3).

Of these candidates, three loci are proximal to four genes (TFAM, 
TWNK, MRPL43, and NDUFS4) with clear mitochondrial function 
and documented mitochondrial localization (20). The strongest as-
sociation was identified at rs1049432 (P = 1.7 × 10−223), which is 
proximal to mitochondrial transcription factor A (TFAM). TFAM 
is an intriguing candidate with many interactions with mtDNA.  
TFAM was initially characterized as a mitochondrial transcription 
factor (21), but over time, numerous roles have emerged for TFAM 
in the maintenance and packaging of mtDNA (22). Previous tissue- 
specific expression quantitative trait loci analyses show that the 
T allele at rs1049432, which was associated with elevated MtHz, is 
significantly associated with lower TFAM expression (Fig. 4 and 
fig. S5). rs1049432 is noncoding and is correlated with rs1937 
(p.Ser12Thr) (r2 = 0.44), which is the most commonly observed 
coding SNP in TFAM (MAF = 0.08).

Previous studies showed that rs11006126, which is proximal and 
in strong LD with our identified TFAM peak at rs1049432 (r2 = 0.96) 
and included in our credible set (rs11006126), is associated with 
mtDNA copy number in saliva and blood samples in two studies 
(23, 24). We tested whether alterations in mtDNA copy number 
could potentially confound our findings on MtHz. We quantified 
the relative mtDNA copy number phenotype using intensity data 
from the genotyping array. We retested both the null model for 
MtHz and the association between mean MtHz and the candidate 
loci from the GWAS and found that the identified associations were 
independent of mtDNA copy number (tables S4 and S5).

Beyond TFAM, other genes proximal to associated SNPs have 
the potential to affect MtHz based on their known cellular activities. 
This includes rs58678340 near C10orf42, which encodes the mito-
chondrial helicase Twinkle (TWNK) and the mitochondrial ribosomal 

protein MRPL43. Notably, this SNP is in strong LD with the TWNK 
coding variant rs17113613 (r2 = 0.84; p.Val368Ile). TWNK is part 
of the replication machinery of mtDNA, and inherited defects lead 
to syndromes with depleted or deleted mtDNA (25). TWNK pro-
tects against the emergence of mtDNA variation (26), suggesting 
a potential mechanism that associates changes in TWNK activity 
with MtHz.

MtHz was also associated with rs10063311, which is proximal to 
NDUFS4, a subunit of complex I of the electron transport chain. 
Although no clear link exists between the operation of the electron 
transport chain and mtDNA integrity, it was previously shown that 
the loss of complex V subunits affected mtDNA quantity (27).

In addition to these, CLEC16A and PRKAB1 have potential 
functional links to the fidelity and stability of mtDNA replication 
despite the absence of mitochondrial localization by the encoded 
proteins. CLEC16A, identified from a GWAS of type 1 diabetes, reg-
ulates mitophagy through its interaction with NDRP1 and PARKIN 
(28). PRKAB1 encodes a subunit of adenosine monophosphate– 
activated protein kinase, which has been implicated in a range of 
pathways that promote biogenesis and energy production within 
the mitochondria (29). This suggests that cytosolic and nuclear pro-
cesses important for mitochondrial QC play a role in the regulation 
of MtHz.

Several genes with roles in immunity, including HLA-DQB1, 
IL1RN, IFNL4, and FUT2, were located proximal to SNPs associ-
ated with MtHz. Variations in immune system function may have a 
direct impact upon MtHz, but it is also possible that these variants 
may affect the ratio between cell types in the DNA sample. Further 
testing in other sample types would be required to confirm this 
association.

Pathway and gene-based analysis
We evaluated our GWAS results using gene set analysis (MAGMA 
[v1.07]) and identified that the Gene Ontology biological pathway 
of urate transport was enriched for associations (P = 6.7 × 10−7) 
(30, 31). The association remained significant after Bonferroni 
correction for 15,484 pathways. There were five genes within the set 
(SLC22A13, SLC2A9, SLC17A1, SLC17A3, and SLC22A12), but none 

Fig. 3. Manhattan plot of the initial association with mean MtHz. 
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were in loci that met GWAS significance. Gene-based results for 
SLC17A1 and SLC17A3 both met significance criteria (P = 4.1 × 10−11 
and 8.4 × 10−9, respectively) and are adjacent in the genome, while 
the three other members of this gene set did not survive correction 
for multiple genes, suggesting that the signal may be driven by a 
single locus. In addition, the similarities between urate transport 
pathways and the mechanisms controlling MtHz are not intuitive.

PheWAS analysis
Using phenome-wide association study (PheWAS) from 23andMe, 
we tested 19 SNPs for association with 1123 traits. Two hundred 
eighty-seven SNP-phenotype pairs met criteria for significance after 
applying a Bonferroni correction for the traits and SNPs evaluated 
(table S6). We focused on associations with SNPs most strongly as-
sociated with MtHz. For rs1049432 (TFAM), the T allele, associated 

Table 3. Loci associated with mean MtHz. The positions (GRCh37/hg19 assembly) are ordered by P value, and those exceeding genome-wide significance are 
provided. The SNP with the smallest P value in each interval is given. Beta values are the per-allele effect of the B allele upon natural log mean MtHz value. 

Chromosome Position SNP Alleles (A/B) BAF Beta 95% CI P Nearest 
gene(s)

Nearest gene 
function

10q21.1 60,155,120 rs1049432 G/T 0.183 0.035 0.033–0.037
2 × 
10–
223

TFAM mtDNA packaging 
factor

6p21.32 32,626,574 rs28539606 A/G 0.147 0.020 0.016–0.024 4 × 
10–23 HLA-DQB1 Immune response

Xp22.3 1,413,667 rs28602228 C/T 0.371 0.008 0.006–0.010 8.4 × 
10–16 CSF2RA Signal transduction

2q13 113,876,498 rs4251979 C/T 0.733 −0.008 −0.010 to 
−0.006

1.2 × 
10–15 IL1RN Viral response

3p14.3 58,302,935 rs73081554 C/T 0.068 −0.014 −0.018 to 
−0.010

3.2 × 
10–14 RPP14

Nuclear 
ribonuclease P 

component

19p13.3 5,555,098 rs12461806 A/G 0.913 −0.012 −0.015 to 
−0.009

1.8 × 
10–13 TINCR Noncoding RNA

19q13.2 39,737,576 rs370209610 C/T 0.981 −0.023 −0.029 to 
−0.016

6.3 × 
10–13 IFNL4 Viral response

10q24.31 102,764,338 rs58678340 C/T 0.014 −0.026 −0.033 to 
−0.018

3.2 × 
10–12

TWNK/ 
MRPL43

mtDNA helicase/
mitoribosome

15q21.3 54,107,732 rs200605061 D/I 0.121 0.009 0.007–0.012 6.9 × 
10–12 WDR72 Regulator of 

membrane shape

13q22.1 73,690,621 rs7319964 A/T 0.539 −0.006 −0.008 to 
−0.004

7.4 × 
10–12 KLF5 Nuclear DNA 

binding factor

20p12.3 7,014,445 rs2149642 C/T 0.775 0.007 0.005–0.009 1.5 × 
10–11 BMP2

Bone 
morphogenetic 

protein

7p22.1 6,933,726 rs143803034 A/G 0.961 −0.015 −0.019 to 
−0.011

1.8 × 
10–11 CCZ1B Vacuolar fusion 

protein

5q11.2 52,832,775 rs10063311 C/G 0.224 −0.006 −0.008 to 
−0.004

9.4 × 
10–10 NDUFS4

Structural 
component of 

complex I

2p11.2 87,831,354 rs145232625 C/T 0.257 −0.006 −0.008 to 
−0.004

2.0 × 
10–9 PLGLB2 Plasminogen like 

protein

10q23.32 93,306,966 rs4933661 C/G 0.356 0.005 0.004–0.007 2.2 × 
10–9 HECTD2 Ubiquitin ligase

16p13.13 11,143,355 rs758049676 D/I 0.432 0.005 0.003–0.007 4.1 × 
10–9 CLEC16A

Promoter of 
antigen 

presentation

5q32 149,579,857 rs2286639 A/G 0.208 −0.006 −0.008 to 
−0.004

1.0 × 
10–8 SLC6A7 Neurotransmitter 

transport

12q24.23 120,146,925 rs11064881 A/G 0.926 −0.009 −0.012 to 
−0.006

1.4 × 
10–8 CIT/PRKAB1 Ser-Thr kinase/

AMP-kinase subunit

19q13.33 49,206,462 rs681343 C/T 0.484 0.005 0.003–0.006 2.0 × 
10–8

FUT2/ 
MAMSTR

Fucosyltransferase/
transcription factor

2p13.2 72,256,404 rs11679052 C/G 0.578 −0.005 −0.006 to 
−0.003

5.0 × 
10–8 CYP26B1 Retinoic acid 

metabolism
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with higher heteroplasmy, is associated with a reduced risk for polycystic 
ovarian syndrome (61,181 cases and 839,824 controls; odds ratio = 
0.96, P = 6 × 10−7), an association that was not previously identified in 
a meta-GWAS for polycystic ovarian syndrome with 10,074 cases (32).

DISCUSSION
We evaluated characteristics that affect the level of MtHz, using a 
large cohort with genotyping of Mt variants using arrays. There are 
several limitations to our work. First, the use of arrays has previously 
been validated for MtHz by comparison to allele-specific quantita-
tive polymerase chain reaction but not with the exact array used in 
this study, and there may be noise present in the estimates of MtHz 
(33). An additional limitation of the study is that it does not evalu-
ate all mitochondrial positions in its estimation of MtHz, but in-
stead focuses on a subset of SNPs selected for their high call rate and 
appreciable BAF. Last, the tissue type used (saliva) may not be rep-
resentative of all tissues for a trait affecting mtDNA.

We identified associations between age, sex, mitochondrial hap-
logroup, and the MtHz value. MtHz was lower with increasing age. 
This finding was unexpected, as previous studies have identified 
increasing MtHz with age. Sequencing of blood DNA from 356 in-
dividuals from the Framingham Heart Study found elevated MtHz 
at multiple positions across the genome with increasing age (34). 
Similarly, a study of 2077 Sardinians using leukocyte DNA also 
found increasing MtHz and copy number reduction with increasing 
age (35). One possible explanation for this discrepancy is that the 
type of tissue studied may affect the dynamics of MtHz and aging, 
and our observation may be specific to saliva. Another possibility is 
that our quantitation of MtHz across a larger number of positions 
may differ from previous studies, which used peaks of heteroplasmy 
or a smaller number of tested mtDNA sites in their analyses.

Variation in MtHz has not frequently been evaluated by sex. A 
study of urine samples from 235 patients with heteroplasmy for the 
pathogenic mt.3243A>G variant found that MtHz is higher in urine 
samples from males than females (36). However, a sequencing study 
using leukocyte DNA in 1035 individuals without mitochondrial 
disease did not identify significant sex differences (5). Similarly to 
age, this may reflect a property of the tissue evaluated. In addition, 
our study has higher power to detect smaller age- and sex-dependent 
differences in MtHz.

The possibility that females may generally have lower MtHz 
than males is intriguing from the perspective of mitochondrial in-
heritance, as the impact of male MtHz would be limited to the indi-
vidual rather than risking the transmission of MtHz to subsequent 
generations. However, studies of somatic heteroplasmy cannot easily 
be extended to an understanding of the female germline.

We have identified 20 loci that are associated with levels of MtHz. 
Two of the loci are proximal to genes encoding proteins that are 
directly involved in the replication of mtDNA: the DNA binding 
TFAM and the mitochondrial helicase TWNK. Expression data sug-
gest that variant rs1049432 at TFAM is associated with differences 
in TFAM expression in numerous tissues. One obvious question is 
whether haploinsufficiency of TFAM would be associated with in-
creased mtDNA MtHz. It has been recently shown in a mouse model 
that reduced TFAM expression leads to a decline in the level of a 
pathogenic MtHz (37). Notably, this study showed that the conse-
quences of a pathogenic variant were greater at lower copy number 
rather than high copy number regardless of the change in hetero-
plasmy, demonstrating that the copy number for the wild-type 
allele may be the controlling feature for disease phenotype. In the 
single report of patients with pathogenic variants in TFAM, homo-
zygosity for a rare missense variant led to a loss of TFAM, mtDNA 
depletion, and a mitochondrial phenotype (38), but again, the 
impact of this TFAM loss on mitochondrial sequence fidelity is 
unknown.

TFAM is a multifunctional binding protein of mtDNA (39). As 
its name indicates, it was originally identified with its role in mito-
chondrial transcription, but TFAM also has diverse roles in mtDNA 
replication and in the overall compaction of the genome. An SNP 
proximal and in strong LD with our identified TFAM peak 
(r2 = 0.96) and included in our credible set (rs11006126) is associated 
with mtDNA copy number in both saliva and blood samples in two 
studies (23, 24). The directionality of the observed effect on copy 
number is intriguing, as the allele associated with greater copy 
number in these studies is associated with increased MtHz. It is pos-
sible that the previously observed impacts of TFAM upon mtDNA 
copy number and our finding on heteroplasmy may be related. 
Cai et al. (24) observed that MtHz at the unstable dinucleotide re-
peat mt.514 to mt.523 is also associated with mtDNA copy number and 
may have been underpowered to observe this association at other loci.

In our analysis, we sought to exclude the impact of NUMTs. 
These blocks of mitochondrial sequence within the nuclear genome 
can inflate heteroplasmy estimates if their sequence is distinct from 
an individual’s mtDNA. This presents a potential problem in our 
study because NUMTs are in LD with proximal nuclear loci. We 
identified known NUMTs driving a false association with nuclear 
loci but also demonstrate that additional loci may be proximal to 
unidentified NUMTs. Our strategy for identifying these false asso-
ciations may not be effective with very large “mega-NUMTs” that 
contain the full length of the mitochondrial genome; however, they 
are apparently uncommon in the population (18), limiting their  
impact.

The state of MtHz is an important property of organellar ge-
nomes that affects the emergence of novel combinations of poly-
morphisms and plays a crucial role in the penetrance and severity of 
disease due to pathogenic variants. Heteroplasmic variants can 
emerge both somatically and are altered by germline transmission. 
In this study, we evaluated a large sample to identify nuclear-encoded 
variants and nearby genes that influence heteroplasmy. Our results 

Fig. 4. Association of rs1049432 with TFAM expression. Data for tibial artery 
expression are shown, and the numbers below the genotype are the sample size. 
P = 9.3 × 10−30. Normalized effect size = −0.33.
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show that nuclear variants proximal to genes required for mtDNA 
replication (TFAM and TWNK) and others associated with mito-
chondrial capacity and QC (CLEC16A and PRKAB1) are associated 
with MtHz, potentially based on their role in maintaining replica-
tive fidelity within the mitochondrion.

MATERIALS AND METHODS
Quality control
Selection of mtDNA variants
We performed QC of mtDNA variants in a subset of randomly se-
lected 278,196 individuals. Variants were pruned to remove those 
that were noninformative. There were initially 3,287 V4 mtDNA 
variants, which we pruned to 641 variants by retaining variants 
meeting the criteria of MAF > 0.001, biallelic and platform genotype 
call rate > 99%. We partitioned the per-variant data into two BAF 
groups for the remainder of the QC process (“low BAF” and “high 
BAF” groups, with the former defined as BAF ≤ 0.5 and the latter 
defined as having BAF > 0.5) to account for the arbitrary assign-
ment of the value of unity to one of the two alleles at each biallelic 
SNP. Because both alleles are present within the population, the 
maximal observable value for heteroplasmy is 0.5.

We applied two additional filtering steps to each variant sepa-
rately in each BAF group. The first filter was related to the log2 R 
ratio (LRR) and was designed to remove samples with low intensity 
reflecting issues with probe binding. We computed the pooled SD 
of the LRR across the high and low BAF groups, and sample values 
that were below a threshold of three pooled SDs below each BAF 
group’s mean LRR were removed. We used the pooled SD to ensure 
similar threshold filtering in a majority of cases, as very small BAF 
groups with large variance will have less effective removal of sam-
ples with low LRR. We retained mtDNA variants with <1% of sam-
ples removed with this LRR threshold filter in both BAF groups.

The next filter was designed to remove poorly performing as-
says, which had limited discrimination of the A and B alleles that 
disrupted the expected clustering of homoplasmic data points for 
most individuals within the dataset. mtDNA variants where ≥10% 
of samples had ≥20% heteroplasmy (with minimum 10 samples in 
each group) were removed from the analysis.

There were 356 mtDNA variants remaining after the above. An 
additional 29 variants were then excluded from the hypervariable 
regions (positions in the following ranges: 57 to 372, 438 to 574, and 
16024 to 16383), producing a final set of 326 mtDNA variants. 
Hypervariable regions were removed from the analysis because of 
concerns about hybridization to the array due to variability at se-
quences proximal to the tested position.
Sample QC
Samples were removed entirely from analysis if they were missing 
more than 5% of the data following variant QC.
Selection of autosomal SNPs used in autosomal  
variance detection
We selected a high-quality set of autosomal SNPs available on all 
23andMe genotyping chips in Europeans with criteria MAF ≥ 0.1 
and genotype call rate > 99.98%, leaving 8205 variants for further 
analysis. We then randomly sampled 10 SNPs per autosome to 
produce a final set of 220 autosomal SNPs. We then computed the 
autosomal equivalent of the mtDNA heteroplasmy measure, or “au-
tosomal variance,” by computing the deviation of each sample’s 
BAF from their expected value of 0 or 1, across the subset of these 

variants that they had homozygous calls for. We used log-transformed 
autosomal variance (+ 1 × 10−6, as the minimum autosomal variance 
value was 0) as a covariate in the GWAS.
mtDNA copy number analysis
The mean LRR of the 326 evaluated mitochondrial positions was 
used to quantify the relative copy number between samples. We used 
the LRR cutoffs described above to remove low-intensity outliers 
caused by poor hybridization.

Phenome-wide association study
Nineteen sentinel variants (of 20 initial candidate variants) were 
available for use in a PheWAS analysis with 1123 phenotypes in the 
23andMe database, which comprised the comprehensive set for an 
internal large-scale GWAS run in 2018. The P values reported in the 
PheWAS study are unadjusted.

Genome-wide association study
The GWAS model used phenotype natural log-transformed mean 
heteroplasmy across 326 variants in 982,072 unrelated European 
ancestry samples genotyped on the V4 array, with covariates age, 
sex, principal components 1 to 5, and natural log-transformed auto-
somal variance. We tested association with 57,525,634 imputed vari-
ants. All individuals included in the analyses provided informed 
consent and answered surveys online according to our human 
subject protocol, which was reviewed and approved by Ethical & 
Independent Review Services, a private institutional review board 
(http://www.eandireview.com).

DNA extraction and genotyping were performed on saliva sam-
ples by National Genetics Institute, a Clinical Laboratory Improve-
ment Amendments–licensed clinical laboratory and a subsidiary of 
Laboratory Corporation of America. The platform was a fully cus-
tomized array with additional coverage of lower-frequency coding 
variation and about 570,000 SNPs. Samples that failed to reach 
98.5% call rate were reanalyzed. Individuals whose analyses failed 
repeatedly were recontacted by 23andMe customer service to pro-
vide additional samples.

For our standard GWAS, we restrict participants to a set of indi-
viduals who have a specified ancestry determined through an anal-
ysis of local ancestry (40). Briefly, our algorithm first partitions 
phased genomic data into short windows of about 300 SNPs. Within 
each window, we use a support vector machine (SVM) to classify 
individual haplotypes into one of 31 reference populations (www. 
23andme.com/ancestry-composition-guide/). The SVM classifica-
tions are then fed into a hidden Markov model (HMM) that accounts 
for switch errors and incorrect assignments and gives probabilities 
for each reference population in each window. Last, we used simu-
lated admixed individuals to recalibrate the HMM probabilities so 
that the reported assignments are consistent with the simulated ad-
mixture proportions. The reference population data are derived from 
public datasets (the Human Genome Diversity Project, HapMap, 
and 1000 Genomes), as well as 23andMe customers who have re-
ported having four grandparents from the same country. European 
ancestry was defined as European > 0.9.

A maximal set of unrelated individuals was chosen for each anal-
ysis using a segmental identity-by-descent (IBD) estimation algo-
rithm (41). Individuals were defined as related if they shared more 
than 700-centimorgan IBD, including regions where the two indi-
viduals share either one or both genomic segments IBD. This level of 
relatedness (roughly 20% of the genome) corresponds approximately 

http://www.eandireview.com
http://www.23andme.com/ancestry-composition-guide/
http://www.23andme.com/ancestry-composition-guide/
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to the minimal expected sharing between first cousins in an outbred 
population. When selecting individuals for case-control phenotype 
analyses, the selection process is designed to maximize case sample 
size by preferentially retaining cases over controls. Specifically, if 
both an individual case and an individual control are found to be 
related, then the case is retained in the analysis.

Imputation panels created by combining multiple smaller panels 
have been shown to give better imputation performance than the 
individual constituent panels alone (42). To that end, we combined 
the May 2015 release of the 1000 Genomes Phase 3 haplotypes (43) 
with the UK10K imputation reference panel (44) to create a single 
unified imputation reference panel. To do this, multiallelic sites 
with N alternate alleles were split into N separate biallelic sites. We 
then removed any site whose minor allele appeared in only one 
sample. For each chromosome, we used Minimac3 (45) to impute 
the reference panels against each other, reporting the best-guess 
genotype at each site. This gave us calls for all samples over a single 
unified set of variants. We then joined these together to get, for each 
chromosome, a single file with phased calls at every site for 6285 
samples. Throughout, we treated structural variants and small in-
dels in the same way as SNPs.

In preparation for imputation, we split each chromosome of the 
reference panel into chunks of no more than 300,000 variants, with 
overlaps of 10,000 variants on each side. We used a single batch of 
10,000 individuals to estimate Minimac3 imputation model param-
eters for each chunk.

To generate phased participant data for the v1 to v4 platforms, 
we used an internally developed tool, Finch, which implements the 
Beagle graph–based haplotype phasing algorithm (46), modified to 
separate the haplotype graph construction and phasing steps. Finch 
extends the Beagle model to accommodate genotyping error and 
recombination to handle cases where there are no consistent paths 
through the haplotype graph for the individual being phased. We 
constructed haplotype graphs for all participants from a representa-
tive sample of genotyped individuals and then performed out-of-
sample phasing of all genotyped individuals against the appropriate 
graph. For the X chromosome, we built separate haplotype graphs 
for the non-pseudoautosomal region and each pseudoautosomal 
region, and these regions were phased separately. For the 23andMe 
participants genotyped on the v5 array, we used a similar approach, 
but using a new phasing algorithm, Eagle2 (47). We imputed 
phased participant data against the merged reference panel using 
Minimac3, treating males as homozygous pseudo- diploids for the 
non-pseudoautosomal region.

We compute association test results for the genotyped and the im-
puted SNPs. For case-control phenotypes, we compute association 
by logistic regression assuming additive allelic effects. For tests using 
imputed data, we use the imputed dosages rather than best-guess 
genotypes. As standard, we include covariates for age, gender, the top 
five principal components to account for residual population struc-
ture, and indicators for genotype platforms to account for genotype 
batch effects. The association test P value we report is computed us-
ing a likelihood ratio test, which, in our experience, is better behaved 
than a Wald test on the regression coefficient. For quantitative traits, 
association tests are performed by linear regression. Results for the X 
chromosome are computed similarly, with male genotypes coded as 
if they were homozygous diploid for the observed allele.

A principal components analysis was performed independently 
for each ancestry, using ~65,000 high-quality genotyped variants. It 

was computed on a subset of participants randomly sampled across 
all the genotyping platforms (1 million participants were used for 
European). Principal component scores for participants not included 
in the analysis were obtained by projection, combining the eigen-
vectors of the analysis and the SNP weights.

Genotype-Tissue Expression
The data used for the analyses described in this manuscript were 
obtained from the Genotype-Tissue Expression (GTEx) Portal on 
30 Oct 2020 v8. The GTEx Project was supported by the Common 
Fund of the Office of the Director of the National Institutes of 
Health and by National Cancer Institute, National Human Genome 
Research Institute, National Heart, Lung, and Blood Institute, Na-
tional Institute on Drug Abuse, National Institute of Mental Health, 
and National Institute of Neurological Disorders and Stroke.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/12/eabe7520/DC1

View/request a protocol for this paper from Bio-protocol.
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