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Background: Evidence for a role of human gut microbiota in multiple sclerosis (MS) risk is 

mounting, yet large variability is seen across studies. This owes, in part, to the lack of 

standardization of study protocols, sample collection methods and sequencing approaches.

Objective: This study aims to address the effect of a household experimental design, sample 

collection and sequencing approaches in a gut microbiome study in MS subjects from a multi-city 

study population.

Methods: We analyzed 128 MS patient and cohabiting healthy control pairs from the 

International Multiple Sclerosis Microbiome Study (iMSMS). A total of 1,005 snap frozen or 

desiccated Q-tip stool samples were collected and evaluated using 16S and shallow whole 

metagenome shotgun sequencing.

Results: The intra-individual variance observed by different collection strategies was 

dramatically lower than inter-individual variance. Shallow shotgun highly correlated with 16S 

sequencing. Participant house and recruitment site accounted for the two largest sources of 

microbial variance, while higher microbial similarity was seen in household-matched participants 

as hypothesized. A significant proportion of the variance in dietary intake was also dominated by 

geographic distance.

Conclusion: A household-pair study largely overcomes common inherent limitations and 

increases statistical power in population-based microbiome studies.
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Introduction

Although genetic factors can account for a significant proportion of susceptibility to multiple 

sclerosis (MS), almost two thirds of monozygotic twins are discordant, suggesting a major 

role of the environment1. Among the environmental factors, low vitamin D, Epstein-Barr 

virus (EBV) infection, smoking and adiposity have been consistently reported2. Yet, 

additional environmental factors are expected to influence the onset and or perpetuation of 

MS. The gut microbiome has recently emerged as a potentially critical interface between 

environmental exposures and autoimmunity that may modulate both risk and phenotype 

across a number of diseases including MS3, 4. The composition of the gut microbiota was 

recently shown to differ between people with MS and healthy controls5–7. Furthermore, the 

observed differences appear to be of functional importance, as transplanting human MS 

microbiota into germ free mice results in exacerbation of symptoms in a murine model of 

the disease5.

Despite initial evidence for a role of gut microbiota in MS risk, few studies have been 

performed to date, and results are not always concordant. Several causes can be cited for the 

observed lack of replication. First, small sample size (ranging from a few dozen to a little 

over a hundred) and patient heterogeneity (disease sub-types, diet, medication use, etc). In 

addition, diverse experimental designs including the choice of a control population, sample 

et al. Page 2

Mult Scler. Author manuscript; available in PMC 2021 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



collection strategies and sequencing techniques could also account for the observed 

heterogeneity.

The International MS Microbiome Study (iMSMS) is a global effort to collect biospecimens 

(blood and stool) and investigate how gut microbiota of individual patients impacts MS 

susceptibility, progression, and response to treatment. A large-scale study like this requires 

rigorous experimental design, assessment of existing technologies, and application of 

appropriate statistical methods for data interpretation.

Here, we present a pilot microbiome analysis of 128 household pairs (256 samples) of the 

iMSMS with a goal of addressing some of the challenges posed by large-scale microbiome 

research and validate the current experimental design. This analysis focused primarily on 

technical and computational work needed to accurately characterize microbiome structure 

with respect to the impact of study design, the environmental and dietary factors that most 

greatly influence variability in microbiome composition. Such knowledge is critical to 

ensure that appropriate control for these factors is achieved either during future analyses or 

by amendment to the experimental design for future sample capture.

Materials and methods

Recruitment

Participants were recruited for the study through multiple sclerosis clinics at UCSF (San 

Francisco, CA), Brigham and Women’s Hospital (Bostin, MA), Mount Sinai (New York, 

NY), the Anne Rowling Clinic (Edinburgh, UK), and FLENI (Buenos Aires, Argentina) and 

by self-referral through the iMSMS website (imsms.org). Each collaborating site obtained 

human subject research approval through their respective ethics review committees, 

following a master protocol established at UCSF (protocol no. 15–17061). Sample collection 

procedures were performed as specified by the protocol. All participants provided written 

informed consent and also signed a HIPAA Authorization that allows for use of their 

medical record for research purposes.

To be eligible, participants must carry a diagnosis of multiple sclerosis8; be of White 

(Hispanic or non-Hispanic) ethnicity (i.e. to match characteristic genetic risk profile of 

MS9); and be enrolled with a genetically unrelated household healthy control (HHC) that 

cohabitated for at least six months. MS and control subjects must have been free of other 

autoimmune disorders (excluding the patient’s MS), gastrointestinal infections, and other 

neurological disorders. Participants were excluded if they had been on oral antibiotics within 

the past three months, had received corticosteroids within the past 30 days, or were on a 

disease modifying therapy for less than three months. Participants were provided with a 

stool sample collection kit, and instructed to obtain two consecutive stool samples in the 

privacy of their own homes. Each stool sample time point included 3 collection vials - a Q-

tip (Q, dry), a snap frozen vial (S, wet), and a vial filled with lysogeny broth (LB) and 

glycerol. Participants were instructed to freeze the samples for at least 12 hours, and ship 

them frozen. Samples were returned to each site via overnight shipping.
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All data were collected and stored through secure REDCap questionnaires and a validated 

Block 2005 food frequency questionnaire (FFQ)10, which was set up through an external 

vendor (NutritionQuest). An analysis of nutritional intake was performed by NutritionQuest 

in a standardized fashion for all participants based on their responses to the FFQ.

Dietary analysis

37 items were summarized from the FFQ and grouped as antioxidants, average intake, B-

vitamins, food group servings and minerals. Dietary dissimilarity was measured using 

Jaccard distance. The effect of confounders on the variation of diet and the effect of dietary 

items (covariates) on the variation of gut microbiome were accessed by PERMANOVA 

(Permutational multivariate analysis of variance)11. The test was performed by using the 

“adonis” function implemented in R package “vegan”12. The permuted P-value was obtained 

by running 999 permutations. Redundancy analysis (RDA) between microbial composition 

and dietary items was performed by using “rda” function implemented in R package 

“vegan”12.

Sample preparation for sequencing

Stool samples collected from each recruiting site were shipped in dry ice to the central 

processing lab at the University of California, San Francisco (UCSF) and immediately 

stored at −80° C. Bacterial DNA was obtained for each sample at UCSF and then shipped to 

the University of California San Diego, Institute for Genomic Medicine for sequencing. Q-

tip samples (i.e. dry) and snap frozen (i.e. wet) samples were processed using the QIAamp 

PowerFecal DNA Kit (ref 12830–50). After lysis solution was added to bead beating tubes, 

dry samples were transferred by grinding the Q-tips into the bottom while snap frozen 

samples were chipped to an appropriate size for the kit. Sample processing was done on a 

QIAcube platform according to the protocols generated by the manufacturer. DNA sample 

quantity and purity were measured by NanoDrop spectrophotometry.

16S rRNA sequencing and data analysis

The V4 region of the bacteria 16S ribosomal RNA gene was amplified on an Illumina MiSeq 

platform using the Earth Microbiome Project protocol13. Amplicon reads were analyzed by 

QIIME14 to join the forward and reverse reads, trim short reads in length less than 250bp 

and assign filtered reads to OTUs using a closed-reference OTU picking protocol against 

Greengenes database (version 13.8) at 97% identity. Taxonomy was assigned to each read by 

accepting the Greengenes taxonomy string of the best matching Greengenes sequence. 

Samples were filtered to at least 10,000 sequences per sample, and OTUs were filtered to 

retain only OTUs present in at least 5% of samples, covering at least 500 total reads. OTU 

abundance for each individual was averaged from all corresponding Q-tip and snap frozen 

samples. 128 paired household MS and healthy controls were counted for downstream 

analyses.

Microbial diversity

The OTU abundance table generated in the previous step was rarefied to 10,000 sequences 

per sample. α-diversity was measured by Shannon15 and Chao116 indexes. Both weighted 
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and unweighted UniFrac17 distances were computed between all samples, and principal 

coordinates analysis (PCoA) was applied to visualize the β-diversity. All these analyses were 

performed with QIIME. Bray-Curtis18 dissimilarities were calculated to compare gut 

microbiome among individuals in terms of geographic distance. Microbiome dissimilarity 

between each pair within the same recruitment site was compared with that between two 

individuals from different recruitment sites by controlling in same disease status. Since the 

MS and control subjects within household are often of different sex, the random 

comparisons between households utilized only heterosexual comparisons to control for the 

sex effect. Statistical significance was determined by ANOVA.

Variance of gut microbiome given by confounding factors

The PERMANOVA11 was used to assess the effect of host metadata categories 

(confounders): demography, lifestyle, diseases, medication and physiology, on the variation 

of microbiome abundance. The test was performed by using the “adonis” function with 

default method “bray” distance implemented in R package “vegan”12. The permuted P-value 

was obtained by running 999 permutations.

Power and sample-size estimation.—Effect size (corrected coefficient of 

determination ω2) and power calculation for the permutational multivariate analysis of 

variance test based on Bray-Curtis distances were performed using the R micropower 
package19. The power was estimated by bootstrapping the distance matrices 100 times with 

different sample sizes ranging from 2 to maximum samples in each group.

Shallow whole metagenome shotgun sequencing (WMGS) and data processing

1 ng of input DNA was used in a 1:10 miniaturized Kapa HyperPlus protocol. For samples 

with less than 1 ng DNA, a maximum volume of 3.5 μl input was used. Library 

concentration was determined with triplicate readings of the Kapa Illumina Library 

Quantification Kit; 20 fmol of sample libraries were pooled and size selected for fragments 

between 300 and 800 bp on the Sage Science PippinHT to exclude primer dimers. The 

pooled library was sequenced as a paired-end 150-cycle run on an Illumina HiSeq2500 v2 in 

Rapid Run mode at the UCSD IGM Genomics Center.

Raw Fastq files were processed using Atropos v1.1.1820 to remove adapters and filter reads 

with lower quality score than 15 and length less than 100 base pairs. Putative human genome 

contaminations were identified and removed by using Bowtie 2 v2.2.321 with the “--very-

sensitive” option against the human reference genome GRCh37/hg19. Functional and 

taxonomic predictions of processed sequences were performed by SHOGUN in Qiita22, 23 

with parameters “rep82_bowtie2” to align forward reads to representative bacterial genomes 

from the reference database RefSeq version number 82. 5% samples with the lowest shotgun 

sequencing library size were excluded from the analysis. Species classified were filtered by 

the criteria that present in at least 5% of samples. The correlation of phylum/genus 

abundance characterized by 16S rRNA and WMGS was measured by Pearson correlation.

et al. Page 5

Mult Scler. Author manuscript; available in PMC 2021 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Availability of data and materials

The datasets generated and analyzed during the current study are available in the EMBL-

ENA repository (https://www.ebi.ac.uk) with accession number ERP115476.

Results

The iMSMS recruited 128 pairs of MS patients and their household healthy controls (HHC) 

between September 2015 and October 2016 from five sites (recruiting centers) located in 

San Francisco, Boston, New York, Buenos Aires and Edinburgh (Figure 1, Table 1, Datasets 

S1). In our paired household design, cases and controls (typically spouses) are of similar 

age, while as a consequence of the uneven sex distribution of MS, 71% of the MS 

participants were female, compared with 37.5% of controls (Table 1). The median disease 

duration of MS was 9.5 years (IQR: 4.75–17 years) and duration of cohabitation was 15 

years (IQR: 8–27.5years). MS patients with disease courses of relapsing-remitting MS 

(RRMS), secondary progressive MS (SPMS) and primary progressive (PPMS) were 

included. As a natural consequence of the disease process, patients with progressive disease 

(SPMS and PPMS) had relatively higher Expanded Disability Status Scale (EDSS) scores, 

disease duration and cohabitation time with HHC than those with RRMS (Table 1, Figure 

S1). Given the small numbers of SP and PP patients, both groups were combined into 

progressive MS (PMS) for subsequent analyses.

Patient demographics, disease status, medication, lifestyle and physiology data were 

summarized in Datasets S2. A summary of dietary questionnaires and the dietary intakes, 

including average intake, food group servings, antioxidants, minerals and vitamins et al. was 

provided in Datasets S3.

Inter-individual outweigh intra-individual differences in the microbiome

1005 stool samples were collected from the 256 participants by rubbing Q-tip (Q, dry) and 

snap freezing (S, wet) methods in two consecutive days (time point 1 and 2 when possible) 

(Figure 1B).

A total of 1206 microbial OTUs were identified from 867 samples that were qualified the 

sequencing depth (at least 10,000 reads per sample) by 16S rRNA sequencing (Datasets S4). 

The impact of the sample collection method on the microbial composition and diversity was 

first accessed. No significant difference of microbiome α-diversity (Shannon index) was 

observed between collection methods or across both time points (Figure 2A). A statistically 

significant but small difference in beta-diversity was observed by collection method (Q1 vs 

S1, Q2 vs S2) but not by time (Q1 vs Q2, S1 vs S2), however, the microbiome variability 

explained by sample collection was dramatically lower (Figure 2B, PERMANOVA R2= 

0.0102). Indeed, the microbiome dissimilarity observed by collection method (Q-S) didn’t 

differ from the one observed by time (T1-T2) (Figure 2C). Samples collected by different 

methods over time (QT-ST) showed larger dissimilarity than each alone (Figure 2C); 

however, this intra-individual difference is almost negligible compared to the one measured 

across individuals (Figure 2D). The high intra-individual microbiome similarity opens the 
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possibility of averaging microbiome abundance of samples from each individual and 

suggests that either collection methods, snap freezing or Q-tip, can be selected.

Gut microbiome quantified by shallow WMGS sequencing

16S rRNA sequencing is widely used as the primary approach for bacterial classification and 

abundance estimation, but this approach which based on targeted sequencing of a short 

region (hypervariable region) of the 16S rRNA gene, is limited by its low resolution to 

resolve organisms on strain or species level24. In contrast, whole-genome (shotgun) 

metagenomic sequencing can provide higher resolution in identifying lower taxa but it is 

more costly, particularly for large-scale studies25. Shallow shotgun sequencing with as little 

as 0.5 million sequences per sample has been proposed as a cost-effective alternative to 16S 

rRNA sequencing22. We therefore applied shallow shotgun sequencing on 1005 stool 

samples.

Samples were sequenced at an average depth of 591,648 (±10,158) paired-end non-human 

genome reads, classified in 2146 species, among which 596 remained after filtering the less 

present and abundant species (Datasets S5). Even if the number of species is reduced after 

removing rare taxa (see Methods), this number is still dramatically higher than the species 

identified by 16S rRNA sequencing (Figure S2, Datasets S6). Thus, shallow WMGS offers a 

higher resolution of species classification, increasing the potential to discover new 

associations in a particular study.

A similar number of higher taxa (phyla, classes and orders) were identified by 16S and 

shallow shotgun sequencing. The microbe composition measured by the two methods is 

shown in Figure 3. Figure 3A shows the composition shift of phyla (up) and genera (down) 

among RRMS, PMS and HHC groups. 100% of phyla (n=10) identified by 16S rRNA 

sequencing were also identified by WMGS with similar structure of Proteobacteria, 

Verrucomicrobia and Actinobacteria, while detecting a decrease in Firmicutes and an 

increase in Bacteroidetes. As reported in other studies, these differences are likely due to the 

fact that more bacteroides species can be resolved using WMGS (Figure 3) and that the 

sequencing target genes and reference databases used for classification are different25. 

However, when specifically compared, a high correlation was detected between 16S rRNA 

and corresponding WMGS at both phylum and genus level (Figure 3B), confirming shallow 

shotgun sequencing is a cost-effective alternative of 16S to study the microbiome on large 

populations.

We next investigated how microbiome structure is impacted by an array of confounding 

factors.

The effect of co-habitation on gut microbiome variability

The abundance of 1206 OTUs (classified in 95 genera) by 16S rRNA sequencing, were 

averaged from snap freezing and Q-tip samples to individual data (Datasets S7), and 

analyzed for the inter-individual variability. Geography-specific microbial divergences were 

observed, as participants from different sites (recruiting centers) differed more than 

participants from the same site within the same disease status (Figure 4A) or disease course 

(Figure S3A). Furthermore, MS and healthy participants within the same house shared more 
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gut microbiota than those from different houses at the same site (Figure 4B, Figure S3B). An 

even greater microbial dissimilarity was observed between MS and HHC from different sites 

in different houses (Figure 4B, Figure S3B).

Our data suggest that the household case-control pair design indeed minimizes microbial 

differences by exposed environment, thus will potentially enhance the power to detect true 

differences between cases and controls collected from multi-cities.

Additional confounding factors affecting the gut microbiome

To understand how microbial composition differs between patients and household healthy 

controls, we compared the diversity of microbe communities characterized by 16S rRNA 

sequencing within (α-diversity) and between individuals (β-diversity).

Unsurprisingly, due to the small sample size, we found no significant difference in α-

diversity between MS and HHC groups as measured by Shannon and Chao1 index (Figure 

5A). β-diversity based sample clustering did not reveal major difference in disease status 

(Figure 5B, PEARMANOVA, P > 0.05), consistent with our earlier studies that no major 

global shift in bacterial community was observed between MS and control1, 5. A trend 

towards a decrease in microbiome diversity was observed in PMS compared to RRMS or 

HHC, but these differences were not significant (Figure S4A–B).

As a large-scale study will introduce more confounding factors that shape the microbiome 

composition beyond disease status, we used PERMANOVA to test for effect size 

(quantitative differences between two or more groups) and power of metadata categories (i.e. 

confounders), including demography, lifestyle, disease, medication and physiology, on gut 

microbiome. Four confounders were identified to be significantly associated with gut 

microbial variation measured by inter-individual weighted uniFrac distances under a 

multiple testing corrected P value < 0.05 (Figure 5C). House location accounted for the 

largest effect size (Figure 5C, adonis R2=0.62), far more than any other metadata category. 

The geographical shape of the microbiome was in addition reflected by recruitment site, as 

also shown in several previous studies26–28. A PCoA of the microbiome beta-diversity 

showed the significant difference of samples from San Francisco, Edinburgh and Buenos 

Aires (Figure 5D, PERMANOVA, P < 0.05). Age also exerted significant effects (Figure 

5C), consistent with previous studies showing that the gut microbiome can vary across the 

lifespan28, 29. The average difference of age in MS (age 47.7±12.9) and HHC (age 

46.1±11.9) was small (3.85±5.92) in our data, thus age-associated variation can be also 

potentially reduced by the household design. Surprisingly, EDSS (a measure of disease 

severity) was significantly associated with microbiome diversity. We speculated this 

diversity could be partially explained by age, as a significantly positive correlation between 

EDSS and age was observed (Fig S4C). A smaller microbiota divergence was explained by 

sex, disease status, or medication use (Figure 5C), although the modest size and clinical 

heterogeneity of our sample limits interpretation of this observation. Similarly, MS 

comorbidities and lifestyle show a relatively small influence on gut microbiome.

To formally test whether a household design reduces the influence of geographic and 

environmental factors on microbiome diversity, we repeated the PERMANOVA test by 
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constraining permutations within the house group (strata) as MS and healthy controls are 

nested in the same house. Remarkably, no significant influence was observed by recruitment 

site or age while a significant effect was observed for sex and EDSS (P value < 0.05 without 

multiple testing correction, Figure S4D). While encouraging, this is unsurprising as most 

MS patients are female and they naturally have higher disability than HHC (EDSS 

considered as 0). The human microbiome is influenced by sex despite a relatively weak 

effect across body sites30, 31. The microbiome differences given by confounders like sex will 

be adjusted in a lager cohort to resolve the true difference in microbiota between MS and 

control. In summary, the paired design indeed reduces the influencing of confounding 

factors, thereby potentially enhancing power to identify MS-associated microbiome.

Power and sample-size estimation

The power and sample size required to reveal a statistical difference between two or more 

groups depend on within-group distances (within-group sum of squares) and effect size (the 

difference between the between-group distance and within-group distance). To estimate the 

samples needed in a study, assumptions need to be made about desired effect size and 

variance within the data. However, to date no standardized effect size has been reported in 

any MS gut microbiome study. Here we applied micropower19, a simulation-based method 

for PERMANOVA-based beta diversity comparisons, to assess the effect size and statistical 

power of this pilot study with 128 pairs of MS and healthy controls, and expand the analyses 

to two previous published microbiome study in MS1, 5.

1206 OTUs were classified in the 256 subjects by at least 10,000 16S rRNA gene reads per 

subject. To estimate the minimum number of samples adequate to represent the total OTUs, 

we performed random sampling of different sample sizes and measured the observed OTUs 

in each recruitment site as we observed a strong geographic effect on gut microbiome. The 

number of observed OTUs increased proportionally to the sample size in all recruitment sites 

and approached a maximum at n=25 (Figure6A). This result suggests that at least 25 

participants per group could capture the maximum composition of human gut microbiome. 

However, this sample size only provides approximately 60% power to detect differences 

between groups, even within each recruitment site, as measured by the corrected coefficient 

of determination ω2 (Figure 6B, San Francisco ω2=0.00068 with 64% power, Edinburgh 

ω2=0.0012 with 58% power, Buenos Aires ω2=0.0016 with 56% power). The modest power 

and effect size can be explained by the comparable within-group distance to between-group 

distance, and this varied from one recruitment site to another (Fig 6C). A sample size of only 

37 participants from San Francisco provided 90% power to detect a difference at ω2 = 

0.00068 while sample size in all other sites was much too low to reach a similar power. The 

highest effect size (ω2 = 0.0021) was detected in the “all sites” group which included 

samples from all recruitment sites (n=128). However, more samples (n=86) were required to 

reach 90% power to detect the difference in this combined sets compared to a unique site, 

underscoring sample and geographical heterogeneity.

To generalize the difference of gut microbiome in MS, we calculated the effect sizes in two 

previous MS microbiome studies1, 5. Similar within-group and between-group distances, but 

a smaller effect size (ω2 = 0.00012) were observed in Cekanaviciute et al5 (n=71 cases and 
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71 controls) study compared to those from the UCSF site of this study (n=40 pairs, both 

recruited in San Francisco) (Figure S5). This reduction of the effect size required more 

samples (n=59) to provide 90% power to detect MS associated differences compared to the 

37 UCSF pairs required in the present study (Figure 6). These results suggest the 

environment-controlled paired design reduces confounding effects and increases the MS-

associated effect size. Although lower dissimilarity and higher effect size (ω2 = 0.0057) 

were found in Berer et al1 (a discordant twin study, n=34), the small sample size limited the 

power to detect global microbiome difference (Figure S5).

Diet and gut microbiome

Giving the significant role of diet in shaping the gut microbiome32, 33, we hypothesized that 

studying its interaction with the gut microbiome might shed light on how diet influences the 

immune system in MS6, 34. We first explored whether diet differs by disease course, 

household, recruitment site and other confounders. Furthermore, we assessed which types of 

dietary intake were associated with a change of microbial composition.

A high proportion of participants (93.75%, n=240) completed online food frequency 

questionnaires in which 38 specific dietary components were quantitated (Datasets S4). The 

average intake structure, measured by the percentage of nutrient intake, was similar between 

MS and HHC (Figure S6A). In fact, when visualized in a PCA, samples were not clustered 

by disease status based on diet (Figure S6B), and the difference between the diets of HHC 

and MS subjects was not statistically significant. Based on these results, we then tested to 

what extent other confounders were involved in the divergence of diet. The two largest 

sources of variance in dietary intake were associated with participant house and recruitment 

site (Figure 7A). This finding is in agreement with the diversity of gut microbiome by 

geography we observed previously, as it is known microbial communities are significantly 

shaped by dietary habits.

The observation that gut microbiomes are most similar between household individuals led to 

the hypothesis that the similarity was related to shared environment and diet. However, 

despite observing a trend, we were not able to identify a significantly similar diet within 

household pairs, even those within the same city (Figure 7B). We speculate this might be 

due to the relatively small sample size. We did, however, observe a significantly lower diet 

dissimilarity across pairs from the same city compared to pairs randomly assembled from 

different cities (Figure 7B, P < 0.001), which could reflect distinct dietary habits across 

cities (some of them in different continents).

A deeper analysis of the relationship between gut microbiome and diet led us to identify that 

sweets (as a % of total calories), whole grains, and “good oils” in foods explain the largest 

variation of microbiome composition (Figure S7A). Redundancy analysis (RDA), used to 

evaluate the relationship between explanatory variables diet and response variables 

microbial community, also revealed that sweets, whole grains, “good oils” were highly 

correlated with microbiome composition, explaining 42.3% and 24.1% of the variance even 

the samples were not clustered by disease status (Figure S7B). We found several 

relationships between nutrients and bacteria (e.g. sweets and Bacteroides, Bifidobacterium, 

“good oils” and Akkermansia, Blautia, Ruminococcus, whole grains and Roseburia), as 
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illustrated by their close proximity in the same quadrant of Figure S6B (angles between lines 

of response variables and lines of explanatory variables represent a two-dimensional 

approximation of correlations). Similar relationships were previously reported: Bacteroides 
was enriched in mice taking saccharin35 and non-digestible carbohydrates from whole grain 

have been shown to increase the abundance of Roseburia33. Further elucidating how diet 

shapes the gut microbiome and how diet is related to disease course require will to study 

much larger sample sizes, which the iMSMS is set out to do.

Discussion

The precise mechanism by which the gut microbiome may be involved in the pathogenesis 

of MS still remains unclear. To address that question, the iMSMS consortium is recruiting 

patients and controls in the US, Europe and South America. However, a large study faces 

numerous challenges in design, not the least of which are developing the appropriate 

experimental protocols, computational methods to model associations between the gut 

microbiome and disease phenotypes such as progression or treatment. Although no disease 

associated microbiota were studied in this pilot analysis, it provided invaluable information 

allowing us to identify the main sources of expected microbiome variance (technical, 

biological, and related to the experimental design) observed.

Prior to DNA extraction and sequencing on large-scale samples, sample collection and 

storage methods, e.g. room temperature storage or immediately fresh freezing, should also 

be considered as they have been shown to impact microbial community analyses36, 37. This 

study assessed the impact of two technical covariates, sample storage methods and 

sequencing strategies, on the structure and diversity of bacterial community. Gut microbes 

characterized in Q-tip (dry) and snap frozen (wet) samples showed higher correlation of 

structure and no difference in alpha-diversity, implying either method can be used for sample 

collection. Notably, the intra-individual dissimilarity as measured in experimental dry and 

wet samples is dramatically lower than the inter-individual microbial diversity as measured 

among participants stratified by sampling sites or even by house.

Current high throughput sequencing techniques, known as 16S rRNA and whole 

metagenome shotgun sequencing (WMGS), are widely applied to characterize the microbial 

community. 16S rRNA amplicon sequencing is more cost-effective and suited for large-scale 

studies, but offers limited taxonomical (especially species) and functional resolution24, while 

WMGS increases the identification of species or strains and provides additional functional 

information but is not always affordable for large population studies38, 39. The shallow 

shotgun metagenomics sequencing with as few as 0.5 million sequences per sample was 

proposed as an alternative of 16S rRNA sequencing on large studies22. Several studies 

reported a difference on microbial community detected by 16S rRNA and WMGS as 

observed in our study, but also showed an overall similar microbial diversity and 

composition40, 41. We found a high correlation of microbiome structure identified between 

16S rRNA sequencing and shallow WMGS at both the phylum and genus level, suggesting 

that either of these two technologies could be sufficient for microbial characterization, but a 

higher resolution of species classification and functional profiling by WMGS will provide a 

higher resolution picture of bacteria-host interactions associated with the disease42.
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Although larger sample sizes generally increase statistical power, recruitment of subjects 

from multiple sites also introduces more cofounders such as geography, demography, host 

lifestyle, diet, and medication use that could shape the gut microbiome26, 27. A better 

understanding of how such confounders contribute to microbial variation will help inform 

appropriate statistical approaches for data analyses. As individuals living in the same house 

share similar gut, skin and oral microbiome, a household case-control design has been 

suggested as optimal for disease-associated microbiome studies43–46. Not surprisingly, 

household case-control comparisons shared a more similar microbiome than between 

houses. The largest variation of microbiome was driven by house location confirming that 

the paired design of the iMSMS will help reduce the influence of geographic and 

environmental factors, thereby potentially enhancing power to identify MS-associated 

microbiome. While this paired design may lead to underestimation of MS-associated 

microbes, it plays a critical role in controlling false positive observations introduced by 

numerous confounding variables in non-household designs. Specifically, our study design, 

effectively minimizes confounders such as recruitment site, sex and diet all of which are 

major drivers of microbiome differences found in smaller, uncontrolled studies.

This MS microbiome study accessed for first time effect sizes on gut microbiome 

differences due to the disease, taking into account recruitment site and also estimated the 

sample size required to achieve adequate power. The global effect depends on the 

heterogeneity of participants (e.g. geography, medication use and genetic background), and 

thus either environment-controlled (household pairs) or genetic-controlled (twin pairs) 

studies will increase the effect size. Given that colonization by some gut bacteria is a 

heritable trait47, genetic variants (either within or outside of the HLA region), might affect 

the statistical power to detect disease-associated communities. The effect of gene–

environment interaction on shaping gut microbiome needs to be investigated in a larger 

cohort.

Western diet, generally recognized as hypercaloric and high in saturated fat and sugar, has 

been associated with a higher prevalence of MS48. Studies have investigated the role of 

dietary intervention in experimental autoimmune encephalomyelitis (EAE), an animal model 

of MS, revealing that specific dietary regimens may have either proinflammatory or anti-

inflammatory effects. The ‘Swank diet’, a low saturated fat diet (no more than 10–15 g/day), 

has been widely used by MS patients since 1950s and shown, possibly, to modestly reduce 

MS disease activity and disability progression in follow-up studies49–51. Complementary 

and alternative medicines (CAM), usually with vitamins, minerals and essential fatty acids, 

also have been taken by MS patients in conjunction with conventional treatments but with 

limited research evaluating their safety and effectiveness52, 53. We did not observe a 

significant difference of dietary structure between MS and household healthy controls in this 

relatively small cohort study, but a correlation of diet and gut microbiome was detected, 

which will be further explored in the larger study.

The study of gut microbiome in MS is undoubtedly promising and potentially revolutionary, 

both for patient care and drug discovery. Developing methods that make best use of the high-

quality data produced in large-scale studies to identify unambiguous associations is the key 
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for meaningful new discoveries in this field. By considering the challenges summarized 

above, appropriate design and suitable statistical models should be possible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study summary. (A) Geographic distribution of samples collected from five recruiting 

centers, and the percentile of each disease course among all samples. (B) Workflow of 

microbiome study in MS patients and household healthy controls (HHC).
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Figure 2. 
Intra-individual diversity. (A) Microbiome α-diversity measured by Shannon index was 

compared by stool collection method (Q, S) across consecutive two (1,2) days (ANOVA, not 

significant). (B) Principal Coordinates Analysis (PCoA) of weighted UniFrac distance 

compared by collection methods and times. Statistical significance was determined by 

PERMANOVA, multiple testing corrected P value. (C) Microbial dissimilarity (weighted 

UniFrac) compared between samples by controlling collection method, time, or cross 

methods and times (ANOVA, multiple testing corrected P value, *P ≤ 0.05, **P ≤ 0.01, ***P 
≤ 0.001). (D) Percent explained variability (PERMANOVA R2) by each variable of 

participating subject, collection method and collection time. S, wet samples by snap 

freezing; Q, dry samples by Q-tip; T1, T2, sample collection time point 1 and continuous 

time point 2, respectively; S1, S2, S samples collected at time point 1 and 2, respectively; 

Q1, Q2, Q samples collected at time point 1 and 2, respectively.
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Figure 3. 
Microbial community compared between 16S rRNA and shallow whole-metagenome 

sequencing techniques (WMGS). (A) Average relative abundance of top 10 most abundant 

bacteria (phylum and genus level from top to bottom) in healthy control, RRMS and 

progressive MS. (B) Pearson’s correlation of bacteria (phylum and genus level from top to 

bottom) classified by 16S rRNA (x-axis) and shallow WMGS (y-axis).
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Figure 4. 
Microbial dissimilarity by geography. (A) Bray-Curtis dissimilarity of microbes measured 

between individuals in the same disease status within the same site (recruiting center) and in 

different sites. (B) Bray-Curtis dissimilarity of microbes measured between healthy control 

and MS within the same house, between different houses in the same time and between 

different houses in different sites. Random comparisons of healthy control and MS were 

female-male matched only to control sex effect. Statistical significance was determined by 

ANOVA (multiple testing corrected P value, ***P ≤ 0.001).
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Figure 5. 
Microbial diversity. (A) Microbiome α-diversity measured by Shannon and Chao1 index 

was compared by disease status. Data are presented as mean ± SEM (ANOVA, not 

significant). (B) PCoA of weighted UniFrac community distance by disease status. (C) Bar 

plot showing the size effect (Adonis R2) of confounders associated with gut microbial 

variations (weighted UniFrac distance). Confounders showing significant impact on gut 

microbiome were labeled. EDSS, expanded disability status scale. (D) PCoA of weighted 

UniFrac community distance by recruitment sites. Statistical significance was determined by 

PERMANOVA (multiple testing corrected P value, * P ≤ 0.05, ***P ≤ 0.001).
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Figure 6. 
Sample size estimation. (A) The number of observed OTUs in each recruitment site by 

randomly sampling samples from total samples (100 permutations with replacement). (B) 

Statistical power of PERMANOVA testing on Bray-Curtis distance to detect the group-level 

effect in each recruitment site, based on bootstrap sampling. ω2, corrected coefficient of 

determination. (C) Within-group and between-group dissimilarity measured in each site.
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Figure 7. 
Dietary dissimilarity. (A) Bar plot showing the size effect (Adonis R2) of confounders 

associated with dietary variations (Jaccard dissimilarity). Confounders showing significant 

impact on gut microbiome were labeled (PERMANOVA, multiple testing corrected P value, 

*P ≤ 0.05). (B) Jaccard dissimilarity of dietary intakes measured between healthy control 

and MS within the same house, between different houses in the same time and between 

different houses in different sites. Random comparisons of healthy control and MS were 

female-male matched only to control sex effect. Statistical significance was determined by 

ANOVA (multiple testing corrected P value, ***P ≤ 0.001).
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Table 1.

Participants’ characteristics

HHC MS RRMS SPMS PPMS

Number 128 128 99 (77%) 12(9%) 17(14%)

Age (y) 47.5 (38–57.75) 45(37–55) 41(35–51.75) 56.5(53.25–62) 56(50–59)

Female (%) 37.5% 71.1% 70% 91.7% 64.7%

EDSS n/a 2(0.75–4) 1.5(0–3) 6(4.75–6.5) 4(3–6.5)

Disease duration (y) n/a 9.5(4.25–17) 9(4–15) 21.5(13.25–30.75) 10(6–11)

Cohabitation (y) 15 (8–27.5) 15(8–27.5) 12(6–21) 32.5(28.5–39.75) 27(18.5–33.25)

Data are presented as median (interquartile range, IQR); y, year; n/a, data not available; EDSS, Expanded Disability Status Scale.
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