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ABSTRACT

The ability to identify different cell populations in a noninvasive manner and without the use of fluorescence labeling remains an important
goal in biomedical research. Various techniques have been developed over the last decade, which mainly rely on fluorescent probes or
nanoparticles. On the other hand, their applications to single-cell studies have been limited by the lengthy preparation and labeling protocols,
as well as issues relating to reproducibility and sensitivity. Furthermore, some of these techniques require the cells to be fixed. Interestingly, it
has been shown that different cell types exhibit a unique intracellular environment characterized by specific acidity conditions as a conse-
quence of their distinct functions and metabolism. Here, we leverage a recently developed pH imaging modality and machine learning-based
single-cell segmentation and classification to identify different cancer cell lines based on their characteristic intracellular pH. This simple
method opens up the potential to perform rapid noninvasive identification of living cancer cells for early cancer diagnosis and further down-
stream analyses.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0031615

INTRODUCTION

For many biological and biomedical applications, immunofluo-
rescence has been widely used over the last few decades to visualize
specific biological phenomena occurring at the cellular and subcellular
levels even though it has multiple drawbacks. Firstly, fluorophores can
induce phototoxic effects, which are primarily associated with the gen-
eration of reactive oxygen species that have been shown to have
adverse effects on cell physiology and health.1 Although phototoxic
damage can be quantified and minimized, it cannot be eliminated.2

Moreover, as antibodies are unable to move across the cell membrane,
immunofluorescence requires a cell fixation step.3 This renders it
impossible to perform any further downstream analysis that requires
the cells to be alive. Furthermore, research areas, such as in vitro stem
cell and drug discovery studies, require minimal cell manipulation.4

Therefore, new efficient and sensitive alternative methods are needed
to enable scientists to extract valuable information out of living cells.
Additionally, to account for the inherent heterogeneity associated with
biological samples, single-cell information is often required.

Among other approaches, looking at intracellular acidity has
been shown to be a valuable option to study single cells. Specifically,

intracellular acidity is directly associated with many physiological pro-
cesses, such as cell migration,5,6 division,7 and apoptosis,8,9 and affects
how the whole cellular environment functions by controlling events
spanning from enzymatic activity to cytoskeletal structure dynam-
ics.10–12 Physiological pH varies between 4.7 and 8.0,13,14 and devia-
tions from healthy intracellular acidity have been linked with the onset
of various diseases such as Alzheimer’s and even heat stroke.15,16

Furthermore, cancer growth, invasion, and metastasis have been asso-
ciated with abnormal levels of cytosolic pH.17,18 The roles of dysregu-
lated pH dynamics in cancer initiation, progression, and adaptation
have been recently highlighted by White and colleagues.19 Specifically,
in cancer cells, the intracellular pH tends to be higher than in normal
cells, whereas the extracellular pH follows the opposite trend. This
phenomenon has been observed in the early phases of cancer develop-
ment,20 and the differences in pH between the intracellular and extra-
cellular environment tend to increase during neoplastic progression.21

Increased intracellular pH has been proposed to be associated with
epithelial-to-mesenchymal transition,22 which is linked with metastatic
initiation. Various methods have been developed to study cellular pH,
mainly relying on fluorescence indicators23–26 and decorated
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nanoparticles.17,27,28 However, they have limitations such as complex
multi-step protocols for synthesis and functionalization of nanopar-
ticles. Moreover, fluorescence imaging methods are commonly
affected by photobleaching, which is known to affect cell physiology.1

In 2017, Hou et al. reported for the first time a novel single-cell pH-
based imaging method, where the authors were able to rapidly identify
cancer cells by combining UV-vis micro-spectroscopy and the use of
common pH indicators.29

Numerous advancements in the field of computer vision enabled
innovative approaches to extract valuable information from biological
and medical images.30–32 Specifically, various Machine Learning (ML)
based algorithms have been developed to obtain multiple features
from single cells and even subcellular components and used to identify
complex phenotypes and diagnose diseases.33,34

Here, we report a novel approach that combines quantitative pH-
based colorimetric imaging with ML-based single-cell segmentation
and classification. Using this method, we aimed to differentiate nontu-
morigenic from cancerous breast cells purely on their intracellular
acidity conditions. Furthermore, we sought to extend the analysis to
the classification of human single cells of various tissues, both normal
and cancerous.

RESULTS
Single-cell pH-based colorimetric imaging

The first step of our study was to develop and optimize a facile
colorimetric imaging approach that would allow us to differentiate
among various cell lines of the same or different organs, based on
characteristic intracellular pH levels. Specifically, we sought to test
whether we could successfully classify two breast cell lines: MCF-10A
and MDA-MB-23. Next, we included in our study the pancreatic can-
cer cell line Mia-PaCa-2 and the human umbilical vein endothelial
cells (HUVECs). To implement a pH-based imaging modality, the
pH-sensitive dye Bromothymol Blue (BTB) was used. BTB needs to
be internalized by the cells, as Hou et al.29 previously demonstrated
by incubating cells with aqueous ethanol solution. The authors
showed that this treatment increases the permeability of the cells to
BTB. We first determined the highest ethanol concentration that
could be tolerated by the various cell lines under investigation.
Moreover, the incubation time was additionally tested. Figure S1
shows the results of the viability tests conducted by varying the con-
centration and the incubation time. While incubating for only 5min
at ethanol (EtOH) concentration of 20% caused a dramatic drop in
cell viability, the cell viability was �98.9% for lower EtOH concentra-
tions, for all the cell lines under investigation. Given the similarity in
viability profiles between MCF-10A, MDA-MB-231 and HUVEC, we
then sought to test the viability of MDA-MB-231 and MiaPaCa-2 by
incubating them for 15 and 30min, at increasing concentrations of
EtOH (0.1%, 0.5%, 1%, 5%, and 10%). For both cell lines, the viability
was high at all the tested concentrations and incubation times, and
hence, we decided to use the EtOH concentration of 5% and an incu-
bation time of 15min for the BTB internalization part of our protocol.
To further investigate the effect of ethanol treatment, we assessed cell
growth over time. After incubating cells with 5% EtOH for 15min,
cells were washed once with Dulbecco’s Phosphate Buffered Saline
(DPBS) and culture media were added. MDA-MB-231 (passage number
10) was monitored for 72h as it has the longest doubling time (38h).
MCF-10A (passage number 13), MiaPaCA-2 (passage number 20),

and HUVECS (passage number 8) have doubling times of 16, 22,
and 23 h, respectively, and as such, we followed their growth for 48 h.
The growth curves are shown in Fig. S2. We decided not to extend
our analysis beyond 72 h for MCF-10A and 48 h for the other cell
lines as any change in the growth curves beyond these time points
would be relative to cells that belong to successive generations, which
did not undergo ethanol treatment.

Next, we aimed to determine the working concentration of BTB by
investigating the effects of the BTB on cell viability by testing three differ-
ent concentrations of 0.25mg/ml, 0.5mg/ml, and 1mg/ml. The internal-
ization increased by increasing the BTB concentration, as shown in Fig.
S3, in which the intensity exhibited by MiaPaCa-2 cells just after incuba-
tion with BTB at increasing concentrations is shown. Finally, the long-
term effects associated with the increasing concentration of BTB were
tested [Fig. S3(b)] after 2days. At concentrations of 0.25 and 0.5mg/ml,
cells appear mostly viable and actively spreading, similar to the control
case. On the other hand, at 1mg/ml, which is the concentration used in
the previous study by Hou et al.,29 most of the cells are rounded, sugges-
ting possible cytotoxic effects. Taken together, our results indicate that
the best trade-off between internalization and viability is the intermediate
concentration of 0.5mg/ml, which was then adopted in our protocol.

Imaging, automated single-cell segmentation, and fea-
ture extraction

Each experiment started by seeding cells in three separate wells of
a standard 24-well plate to allow for technical replicates. In each well,
culture media were removed and replaced with 5% ethanol solution
(in DPBS) and incubated for 15min in an incubator. The ethanol solu-
tion was then replaced with 0.5mg/ml BTB of solution (in DPBS) and
incubated for 15min in an incubator. Finally, the BTB solutions were
removed and the wells were washed three times with DPBS to remove
excess BTB. Bright-field images were subsequently acquired using an
inverted microscope (Nikon Eclipse TS100) equipped with a digital
color camera (Nikon Digital Sight DS-Fi1c) [Fig. 1(a)]. The shape and
position of each cell in the raw color [Red/Green/Blue (RGB)] images
were estimated by the simultaneous application of two independent
methods (Otsu’s and k-means clustering), as shown in Fig. 1(b).
Finally, watershed was used to segment individual cells and colorimet-
ric features were extracted and exported into a spreadsheet file. The
workflow of our approach is summarized in Fig. 1. Examples of the
output of our segmentation can be seen in Fig. S4.

Single-cell computational classification: Noncancerous
vs cancerous breast cells

A single-cell classification “visual algorithm” was developed in
Orange (the workflow shown in Fig. S5). We first sought to apply our
single-cell classification method to two breast cell lines: MCF-10A, a
human nontumorigenic mammary epithelial cell line, and MDA-MB-
231, a known metastatic breast cancer cell line. Datasheets containing
the single-cell colorimetric features were imported in Orange for fur-
ther data analysis and visualization. The t-distributed Stochastic
Neighbor Embedding (t-SNE) plot in Fig. 2(a) shows a neat separation
between the two cell lines. These two cell lines exhibited a characteris-
tic color profile, as shown in Fig. 2(b). To make sure that no correla-
tion was present among the features used for the cell classification, we
conducted a principal component analysis (PCA) and the first six PCs
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were selected to achieve 99% explained variance. Multiple supervised
learners were then applied to the transformed data and their perform-
ances compared. The best classification results between nontumori-
genic and metastatic breast cells were obtained using a logistic
regression classifier: the accuracy and precision of 96.8% [Fig. 2(c)]
were achieved using a 10-fold cross-validation for model testing. For
both cell lines, the diagnostic ability of the binary classifier system is
illustrated by the confusion matrix in Fig. 2(d) and the receiver operat-
ing characteristic (ROC) curves in Fig. 2(i). Further validation using
an “in silico co-culture” as validation dataset resulted in an accuracy
and precision of 95.1% and 95.3% using a Support Vector Machine
(SVM) model [Fig. S7(a)].

Single-cell computational classification: Multiple cell
lines

Moreover, we sought to test whether we could successfully differ-
entiate the cell lines previously analyzed from an additional one

belonging to a different organ. For this, we used the human pancreatic
cancer cell lineMia-PaCa-2. This third cell line exhibited a distinguish-
able, characteristic color profile compared with the other two previ-
ously analyzed [as shown in Fig. 3(b)]. Even in the presence of three
different cell types, the t-SNE plot [Fig. 3(a)] shows a neat separation
among the three cell populations. In this case, the MCF-10A ROC
curve exhibits an almost ideal profile [in Fig. 3(i)], whereas the other
two ROC curves indicate that the classification occurred with slightly
lower sensitivity and specificity compared to MCF-10A. In this case, a
neural network model best scored in the single-cell classification
achieving 91.8% accuracy and 91.9% precision using 10-fold cross-val-
idation for model testing, as shown in Fig. 3(c). Further validation
using an in silico co-culture dataset resulted in an accuracy and preci-
sion of 85% and 86% using an SVMmodel [Fig. S7(b)].

Finally, we sought to extend our classification to a cell line from a
normal human tissue: human umbilical vein endothelial cells
(HUVECs). Once again, a neat separation among the groups can be
seen in the t-SNE plot [Fig. 4(a)] and all the cell lines exhibited a

FIG. 1. Single-cell pH-based imaging, segmentation, and feature extraction workflow. (a) Workflow of the colorimetric pH imaging. Color images are acquired using an optical
microscope equipped with a color digital camera. (b) Automated single-cell segmentation pipeline. Raw images are converted to the L�a�b color space and each pixel classi-
fied as being a “background pixel” or “cell pixel” using k-means clustering. In parallel, RGB images are converted to the grayscale and thresholded using Otsu’s method. A
mask is created by selecting only the pixels that were classified as cell pixel by both methods simultaneously. Watershed is used to segment individual cells. Finally, 16 colori-
metric features are expected from each cell.
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different color profile [Fig. 4(b)]. Both the classification accuracy (CA)
and precision were 92.7%, as shown in Fig. 4(d). Further validation
using an in silico co-culture dataset resulted in an accuracy and preci-
sion of 78% and 79.9% using a neural network model [Fig. S7(c)].

Characteristic RGB ratios were exhibited by each cell line, as
shown in Figs. 5(a)–5(d). Moreover, the blue signal, which is associ-
ated with the color change of the BTB, was significantly lower
(p<0.001) in HUVECs if compared with all the other cell lines [Fig.
5(i)]. Significantly higher pH levels (p<0.001) were observed in
MDA-MB-231 with respect to MCF-10A. The highest pH (p<0.001)
levels were measured in MiaPaCa-2. We also sought to understand
whether our method could work in the absence of BTB treatment, by
leveraging the potential inherent colorimetric differences between cell
lines. Figure S6(a) shows the outcomes of the classification between
MDA-MB-231 and MiaPaCa-2 where images were acquired without
BTB. A classification accuracy of 87% was achieved. The same cell
lines were also imaged using BTB and a classification accuracy of 91%
was achieved [Fig. S6(b)], indicating that the presence of the BTB
enhanced the classification performance. Furthermore, we sought to

assess the importance of acquiring RGB compared to grayscale fea-
tures only. We then performed a classification of the four cell lines
shown in Fig. 4, but in the first case, we used only grayscale-related
features, whereas in the second case, we used RGB-related features
only. The results are summarized in Fig. S8, where it is visible that the
use of RGB-related features leads to superior classification
performances.

Single-cell computational classification in co-cultures

To further validate our method, we applied it to images acquired
from co-cultures. Specifically, we co-cultured MDA-MB-231 with
MCF-10A andMDA-MB-231 withMCF-7. In the first case, we sought
to extend our first analysis (shown in Fig. 2) by co-culturing the two
cell lines. In the second case, we sought to investigate whether we
could differentiate two physiologically similar breast cancer cell lines,
as they are both derived from metastatic sites. An accuracy of 78% was
achieved in the first case, whereas an accuracy of 76% in the second
case, as shown in Fig. 6.

FIG. 2. Single-cell computational classification of breast cell lines: MCF-10A and MDA-MB-231. (a) The t-SNE plot of two breast cell lines. (b) Examples of color bright-field
images of individual MCF-10A and MDA-MB-231 cells. Cells are imaged just after incubation with BTB using a 40� objective. (c) Evaluation results of the models using 10-
fold cross-validation. AUC¼ Area Under the Curve; CA¼ classification accuracy. The table is sorted based on the scoring values of CA and precision. (d) Confusion matrix of
the logistic regression model, which best scored in the classification. (e) Receiver operating characteristic (ROC) curves for each cell line using logistic regression. The size of
each sample is N¼ 157 for MCF-10A and N¼ 152 for MDA-MB-231.
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DISCUSSION

In this study, we developed a novel protocol for noninvasive,
single-cell classification based on the characteristic values of intracellu-
lar pH exhibited by different cell lines. Our protocol combines bright-
field color imaging and automated ML-based image analysis. The pH-
imaging principle is based on a recent work by Hou et al.29 where for
the first time, live-cell imaging and single-cell intracellular pH sensing
and profiling were achieved and used for cancer cell identification. In
our study, we conducted a more in-depth analysis to identify the range
of ethanol concentrations to enable dye internalization without affect-
ing the cellular physiology. We then tested the short- and long-term
effects of the exposure to the pH-sensitive dye Bromothymol Blue at
different concentrations and found that the concentration of 1mg/ml,
previously reported by Hou et al.,29 was not well tolerated by all the
cells included in our investigation. Hence, our results suggested that
lower BTB concentrations should be used. Specifically, we found that
the best trade-off in terms of BTB internalization and cell viability was
0.5mg/ml. We then developed an ad hoc computational tool to auto-
matically extract single-cell optical information associated with the
characteristic color profiles acquired by each cell after the incubation
with BTB. Furthermore, we leveraged the power of Orange, open-

source visual programming software for data mining and ML, to clas-
sify single cells based on the specific colorimetric features associated
with their intracellular pH levels. Using our segmentation algorithm,
images of single cells were automatically segmented and colorimetric
features were extracted from the raw images. Using our single-cell clas-
sification algorithm, we found that various cell lines could be classified
based on their intracellular pH with an accuracy>90%, in all the ana-
lyzed cases. Specifically, we were able to differentiate between nontu-
morigenic and metastatic breast cancer cells and among human cell
lines from various tissues, both normal and cancerous. Our method
was further validated using “in silico co-cultures” datasets and in actual
co-cultures, where a classification accuracy of �78% was achieved in
the case of MCF-10A and MDA-MB-231 and �77% in the case of
two cell lines that are expected to exhibit similar pH values as they are
both metastatic breast cancer cell lines from the same site (MCF-7 and
MDA-MB-231). We also demonstrated the potential use of our
method in the absence of BTB internalization, by leveraging the inher-
ent colorimetric differences between cell lines. Although results from
Fig. S6 show that BTB enabled better computational classification,
being able to classify cells without using BTB looks promising too and
will enable development toward a label-free version of our approach.

FIG. 3. Single-cell computational classification of three cell lines: MCF-10A, MDA-MB-231, and MiaPaCa-2. (a) The t-SNE plot of three cell lines. (b) Examples of color bright-
field images of individual MCF-10A, MDA-MB-231, and MiaPaCa-2 cells. Cells are imaged just after incubation with BTB using a 40� objective. (c) Evaluation results of the
modeling using 10-fold cross-validation. AUC¼ Area Under the Curve; CA¼ classification accuracy. The table is sorted based on the scoring values of CA and precision. (d)
Confusion matrix of the neural network model, which best scored in the classification. (e) Receiver operating characteristic ROC curves for each cell line using the neural net-
work model. The size of each sample is N¼ 157 for MCF-10A, N¼ 152 for MDA-MB-231, and N¼ 155 for MiaPaCa-2.
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Interestingly, lower levels of pH were found in normal cells
(HUVECs) when compared with all the cancer cell lines. Moreover,
higher pH levels were measured in the metastatic breast cancer cell
line MDA-MB-231 when compared with the noncarcinogenic MCF-
10A. These results are in line with the previous literature.20,21

Increased intracellular pH in cancer cells is maintained by the
enhanced activity of plasma membrane ion transporters and pH regu-
lators such as Naþ-driven HCO3 exchangers,

35 Naþ–Hþ exchangers 1
(NHE1),36 monocarboxylate transporter 1 and 4 (MCT1 and
MCT4),37 and carbonic anhydrases (Cas).38

Many studies involving pH-based sensors require cells to inter-
nalize nanoparticles, which tend to remain in the lysosome by endocy-
tosis unless modified with specific targeting ligands.39 Our method
relies on a dye internalization step that increases the permeability
of the cell membrane allowing the BTB to homogenously diffuse
across it.

Other noninvasive imaging modalities have been developed over
the last decade such as digital holographic microscopy (DHM),40–42

transport-of-intensity equation (TIE) based imaging,43 and ptychogra-
phy.4,44,45 They are all aimed at overcoming the limitations of genetic

FIG. 4. Single-cell computational classification of four cell lines: MCF-10A, MDA-MB-231, and MiaPaCa-2 and HUVEC. (a) The t-SNE plot of four cell lines. (b) Examples of
color bright-field images of individual MCF-10A, MDA-MB-231, MiaPaCa-2, and HUVEC cells. Cells are imaged just after incubation with BTB using a 40� objective. (c)
Evaluation results of the modeling using 10-fold cross-validation. AUC¼ Area Under the Curve; CA¼ classification accuracy. The table is sorted based on scoring values of
CA and precision. (d) Confusion matrix of the neural network model, which best scored in the classification. (e) Receiver operating characteristic ROC curves for each cell line
using the neural network model. The size of each sample is N¼ 157 for MCF-10A, N¼ 152 for MDA-MB-231, N¼ 155 for MiaPaCa-2, and N¼ 58 for HUVECs.
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and synthetic fluorescent labels. However, the implementation of these
imaging techniques requires rather complex and expensive optical sys-
tems. Novel high-throughput technologies recently emerged to iden-
tify and classify different cell types and the effects of specific drugs
based on intrinsic cellular properties of single cells in suspension.46–48

Although allowing for minimal cell manipulation and being valuable
diagnostic methods, on their own or in combination with other sys-
tems for multiplexed analyses,49 these methods require high-end,
high-speed imaging systems to acquire images of single cells flowing at
high flow rates through microfluidic devices. Further developments of
our method are warranted to extend it to cell suspensions, potentially
increasing its throughput, and integrating it in lab-on-a-chip applica-
tions, flow cytometry, and cell sorting.

Our approach can also be used for subcellular pH detection.
Different cellular compartments are characterized by different pH lev-
els, which have been previously reported.29 For instance, it has been
shown that some organelles, such as the nucleus, endoplasmic reticu-
lum, and peroxisomes, lack intrinsic pH-regulatory systems but seem
to readily equilibrate their luminal pH to the cytoplasmic levels.50

Based on our observations, this might differ based on the organ of ori-
gin of the cells analyzed. In fact, in some cases, BTB internalization
within different organelles appeared with high contrast compared with
the cytosolic environment [e.g., Fig. 2(b), MCF-10A, and MDA-MB-
231], while for other cell lines, the spatial color distribution appeared
more homogeneous [e.g., Fig. 3(b), MiaPaCa-2].

Our study presents a few limitations. Firstly, we restricted our
investigation to four cell lines. Therefore, the effects of EtOH and BTB
on other cell types remain to be explored. Secondly, the only primary

cells included in our study were the HUVECs. Hence, the extension to
other primary cells is warranted. Thirdly, a direct comparison with con-
ventional fluorescent pH indicators was not conducted. Nevertheless,
our segmentation and classification pipelines could also be adapted to
analyze fluorescence images. Additionally, it has been shown that intra-
cellular pH can be affected by extracellular pH.51 To account for this,
culture media were supplemented with HEPES [4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid] as pH buffers, and therefore, cell-
induced extracellular changes in the pH were constantly compensated.
Cells were then pretreated with DPBS and imaging was also conducted
in DPBS, which required about 5min. Furthermore, the number of
adherent cells in the 24-well plate was low compared to the volume of
DPBS. Therefore, we could argue that pH changes in the media would
be negligible within the image acquisition time.

In the future, the extension of our protocol to observe cellular
compartments will allow for novel basic and translational studies on
intracellular pH distribution and time-dependent analyses in living cells.
More studies are required to understand whether this approach could
be used to detect cells at different stages of malignancies. The noninva-
sive nature of our single-cell classification protocol makes it a valuable
option for identifying various cell types, and therefore, it could be lever-
aged for future integration with existing screening and diagnostic meth-
ods. At the current stage of development, our protocol requires about
35min: 15min for ethanol treatment, 15min for BTB treatment, 5min
for image acquisition, 10 s for image segmentation, and 10 s for classifi-
cation. Hence, future development of a real-time version of our
approach, where single cells in adherent or suspended conditions can be
automatically recognized and individually handled, could represent an

FIG. 5. RGB analysis. The pie charts show the Red/Green/Blue components of the single-cell images for the following cell lines: (a) HUVEC, (b) MCF-10A, (c) MDA-MB-231,
and (d) MiaPaCa-2. (e) Quantification of the blue signal with respect to the total intensity signal (RedþGreenþ Blue) for each cell lines. The histogram shows the average of
the median intensity values of the blue signal calculated across each cell. Error bars represent 95% confidence interval. Paired samples t-tests are performed. ���p< 0.001.
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inexpensive alternative to standard flow cytometry-based cell sorting.
This would have the advantage of maintaining cells viable and, there-
fore, opening up the potential for downstream analyses in separate or
integrated devices.

CONCLUSION

We developed a novel method for noninvasive, single-cell classi-
fication based intracellular pH levels and spatial profile exhibited by
different cell lines. Specifically, combining bright-field color

imaging and machine learning-based approach we successfully
classified: nontumorigenic breast cancer cells (MCF-10A), meta-
static breast cancer cells (MDA-MB-231), pancreatic cancer cells
(MiaPaCa-2), and human umbilical vein endothelial cells
(HUVECs). Our method was further validated on in silico co-
culture datasets as well as on actual co-cultures. This simple
method could potentially be used for rapid noninvasive identifica-
tion of living cancer cells for early cancer diagnosis and further
downstream analyses.

FIG. 6. Single-cell computational classification in the case of co-cultures. (a) Results of the computational classification between MCF-10A (N¼ 136) and MDA-MB-231
(N¼ 164). (b) Results of the computational classification between MCF-7 (N¼ 117) and MDA-MB-231 (N¼ 283). In both cases, at the top, the t-SNE plots are shown; in the
middle, the evaluation results of the modeling using 10-fold cross-validation and confusion matrices for the best scoring models are shown. AUC¼ Area Under the Curve;
CA¼ classification accuracy. Below, the ROC curves for each cell line relative to the best scoring models are shown.
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METHODS
Materials

Bromothymol blue (Cat. No. 114413–25G) and pure ethyl alco-
hol (Cat. No. E7023) were obtained from Sigma Aldrich (Singapore).
Dulbecco’s Modified Eagle medium (DMEM, Cat. No. 12–604F),
Dulbecco’s Phosphate Buffered Saline (1X) (DPBS, Cat. No. 17–512F),
Mammary Epithelial Cell Growth Medium Bulletkit (MEGM, Cat.
No. CC-3150), and Penicillin and streptomycin (Pen-strep, Cat. No.
17–602F) were purchased from Lonza (Singapore). Fetal bovine serum
(FBS, Heat Inactivated, Cat. No. 10082147), LIVE/DEAD Viability Kit
(Cat. No. L3224), and TryPLE Express (1X, Cat. No. 12604013) were
purchased from Thermo Fisher Scientific (Singapore). All the chemi-
cals were used as received and without any further purification. All the
aqueous solutions were prepared using de-ionized (DI) water, pre-
pared in a Millipore Milli-Q purification system and with a resistivity
of 18.2 MX cm.

Ethics approval was not required.

Cell cultures

Four human cell lines were investigated: MiaPaCa-2 (CRL-1420,
pancreatic cancer), MCF-10A (CRL-10317, breast epithelial), MDA-
MB-231 (HTB-26, mammary gland, breast; derived from metastatic
site: pleural effusion), HUVEC (CRL-1730, umbilical vein/vascular
endothelium), and MCF-7 (HTB-22, mammary gland, breast; derived
from metastatic site: pleural effusion). They were all obtained from
ATCC (American Type Culture Collection). All cultures were cultured
in a plastic cell culture flask (SPL, Korea) in humidified 37 �C incuba-
tors supplemented with 5% CO2. All culture flask was maintained in
DMEM supplemented with 10% FBS and 1% v/v Pen-strep except for
MCF-10A, which was maintained in MEGM. Culture media were
replaced every 2 to 3 days. Once samples reached 70% confluency, cells
were detached from the flask using 1� TryPLE Express and seeded
into 24-well plates at 5� 104 cells/well. Cultures were allowed to settle
for 24-h before experimentation. The same culture media were used
for different biological and technical replicates to limit potential vari-
ability in their pH.

LIVE/DEAD cell viability assay

To measure the cytotoxicity of varying concentrations of ethanol
in vitro, a LIVE/DEAD kit for mammalian cells was used. In brief, 5�
105 cells/well were seeded in a 24-well plate with their specific culture
medium. The cells were allowed to attach for 24 h in a 37 �C, 5% CO2

incubator. After incubation, culture medium was removed, 500ll of
varying concentrations of EtOH (0.1%, 0.5%, 1%, 5%, and 10%) was
added and incubated for 30min in a 37 �C, 5% CO2 incubator. After
30min, EtOH was removed and wells were washed two times with
DPBS. The cells were then exposed to 500ll/well LIVE/DEAD assay
reagent (2ll of 2mM EthD-1 and 0.5ll of 4mM calcein AM (acetox-
ymethyl) in every 1ml of DPBS) in the dark at RT for 35min. The
reagent was then removed and replaced with 500ll of DPBS. Calcein
AM was viewed using a standard fluorescence bypass filter, while
EthD-1 was viewed under Texas red filter. Cells were imaged from
three different locations of each well. For each cell line, images were
acquired over three biological replicates. Enumeration of LIVE/DEAD
cells was conducted in ImageJ using a custom-made macro.

Cell staining and imaging

Bromothymol blue (BTB) was first dissolved in pure ethanol at
the concentration of 20mg/ml and then diluted in DPBS to the desired
concentration (0.25, 0.5, and 1mg/ml). The cell culture medium was
removed from the plates, and adherent cells were incubated with
400ll of 5% ethanol (v/v in DPBS) for 15min in the incubator. It was
then replaced with 400ll of BTB solution at the concentration of
0.5mg/ml (in DPBS) and incubated for 15min in the incubator. BTB
was removed, and the wells washed three times with DPBS to remove
noninternalized BTB. Bright-field images were obtained using a Nikon
Eclipse TS100 inverted microscope equipped with a digital color cam-
era (Nikon Digital Sight DS-Fi1c). Three technical repeats were
acquired by seeding the cells into different wells of a 24-well plate, and
three biological replicates were carried out for each cell line.

Single-cell segmentation and feature extraction

The bright-field images were first converted from the RGB for-
mat to the L�a�b color space, and each pixel was classified as being a
background or cell pixel according to its L�a�b values using k-means
clustering. In parallel, the bright-field RGB images were also converted
to the grayscale and thresholded using Otsu’s method. A conservative
mask was then created by turning on only those pixels that were classi-
fied as cell pixel by both methods. Finally, watershed was used on the
mask for demarcating and segmenting individual cells. Four classes of
intensity features, namely, the total intensity, the mean intensity, the
median intensity, and the standard deviation in intensity values were
measured at the single-cell level, for each RGB color and grayscale.
These were taken from the red, blue, and green components and from
the grayscale image of each cell, resulting in a total of sixteen color-
based features per cell. These analyses were performed by a custom-
written code in MATLAB (MathWorks-Natick, Massachusetts, USA).

Data visualization

T-distributed Stochastic Neighbor Embedding (t-SNE) plots are
used to reduce our high-dimensional data in a two-dimensional
map.52 In all the t-SNE plots presented, the perplexity is set to 30 and
six PCA components are selected to reach the level of 99% explained
variance.

Statistical analysis

Paired samples t-tests have been performed to quantify the blue
component signal with respect to the total intensity signal
(RedþGreenþBlue) for each cell lines (Fig. 5). A type I error thresh-
old of 0.05 was used for statistical significance.

Single-cell classification and validation in mono-
cultures

The computational classification was performed using Orange
(Version 3.24.1) open-source software for data mining and ML-based
on visual programming. Different cell lines were classified based on
color-based features. The workflow of the visual algorithm is shown in
Fig. S5. First, colorimetric features extracted using segmentation and
feature selection algorithms were imported into Orange, and PCA was
then performed to identify the top Principal Components (PC). The
number of PCs was chosen to achieve 99% explained variance. Then,
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the transformed data are sent to the “test and score” widget where var-
ious models are tested, and their predictive scores are calculated based
on a specific validation method. Specifically, the following ML models
are used: (1) k-Nearest Neighbors (kNN, number of neighbors¼ 5,
metric¼Euclidean, and weight¼ uniform). (2) Logistic regression
(regularization type¼ Lasso and strength¼C1). (3) Random forest
(number of trees¼ 10, the depth of the individual tree is limited to
five, and subsets smaller than five are not split). (4) Support Vector
Machine (SVM, cost¼ 1, regression loss¼ 0.1, kernel¼ linear, numer-
ical tolerance¼ 0.001, and iteration limit¼ 100). (5) Neural network
(neurons in hidden layers¼ 200, activation¼ReLu, solver¼Adam
with regularization¼ 0.0001, and maximum number of iter-
ations¼ 200). Model validation was performed using cross-validation
(number of folds¼ 10, stratified). Results of the model validation are
presented in tables showing the following scoring values: (1)
accuracy¼TPþTN/TPþ FPþ FNþTN, (2) precision¼TP/
TPþ FP, (3) recall¼TP/TPþ FN, and (4) F1 score¼ 2 � (recall �
precision)/(recallþ precision), where TP¼True Positives, TN¼True
Negatives, FP¼ False Positive, and FN¼ False Negatives. The size of
the cell samples is N¼ 157 for MCF-10A, N¼ 152 for MDA-MB-231,
N¼ 155 for MiaPaCa-2, and N¼ 58 for HUVECs. Further validation
was performed by generating “in silico co-cultures” datasets by ran-
domly combining the numeric values of the colorimetric features
extracted from each cell line and using them as validation sets.

Single-cell classification in co-cultures

The same method described in the previous paragraph was used
for the case of co-cultures. Specifically, we co-cultured MDA-MB-231
with MCF-7 and MDA-MB-231 with MCF-10A. MDA-MB-231 was
grown separately in their native media and labeled with VybrantTM

DiD cell-labeling solution (emission wavelength: 665 nm)
(InvitrogenTM, USA) before co-culture. This allowed us to distinguish
each cell type in the co-culture via fluorescence imaging. Therefore,
colored brightfield images and fluorescence images were acquired.
Both sets of images were then segmented and a dataset was produced
for each co-culture, containing the 16 colorimetric features together
with their type, which was extracted from the fluorescence image.

SUPPLEMENTARY MATERIAL

See the supplementary material for the supplementary figures
and characterization of the effects of the ethanol treatment on cell via-
bility and growth curves.
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