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Abstract
Objective: To investigate the impact of sampling patients on descriptive characteris-
tics of physician patient-sharing networks.
Data Sources: Medicare claims data from 10 hospital referral regions (HRRs) in the 
United States in 2010.
Study Design: We form a sampling frame consisting of the full cohort of patients 
(Medicare enrollees) with claims in the 2010 calendar year from the selected HRRs. 
For each sampling fraction, we form samples of patients from which a physician 
(“patient-sharing”) network is constructed in which an edge between two physicians 
depicts that at least one patient in the sample encountered both of those physicians. 
The network is summarized using 18 network measures. For each network meas-
ure and sampling fraction, we compare the values determined from the sample and 
the full cohort of patients. Finally, we assess the sampling fraction that is needed to 
measure each network measure to specified levels of accuracy.
Data Collection/Extraction Methods: We utilized administrative claims from the tra-
ditional (fee-for-service) Medicare.
Principal Findings: We found that measures of physician degree (the number of ties 
to other physicians) in the network and physician centrality (importance or promi-
nence in the network) are learned quickly in the sense that a small sampling fraction 
suffices to accurately compute the measure. At the network level, network density 
(the proportion of possible edges that are present) was learned quickly while meas-
ures based on more complex configurations (subnetworks involving multiple actors) 
are learned relatively slowly with relative rates of learning depending on network size 
(the number of nodes).
Conclusions: The sampling fraction applied to Medicare patients has a highly hetero-
geneous effect across different network measures on the extent to which sample-
based network measures resemble those evaluated using the full cohort. Even random 
sampling of patients may yield physician networks that distort descriptive features of 
the network based on the full cohort, potentially resulting in biased results.
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1  | INTRODUC TION

With the growing use of network analysis methods in health and 
other areas of research,1-15 various limitations on data availability 
frequently result in the need to perform such research based on 
samples rather than using data from the entire population. Many 
systems of interest can be represented as bipartite networks, where 
the network nodes can be divided into two disjoint subsets, and each 
tie connects a node in one subset with a node in the other subset.16 
There are several ways in which bipartite data may be sampled: The 
actors of one type (eg, patients), the other type (eg, physicians), or in-
dividual encounters of patients with physicians can each be sampled. 
The fee structure or requirements for purchased health data neces-
sitate certain forms of sampling. For example, utilizers of claims data 
from the US Medicare program often are limited to a 20% random 
sample of data on physician encounters. Even without such a limita-
tion, users are charged a fee determined by the number of patients 
(eg, Medicare enrollees or diagnosis or procedure-based subgroup 
thereof) sampled and thus often specify a fraction of patients to 
be sampled from the full patient cohort that ideally would be used 
to form a patient-sharing network. The impact of the patient sam-
pling probability on the resulting “patient-sharing” network of phy-
sicians—the projected unipartite network of physicians with edges 
determined by the number of times each pair (“dyad”) of physicians 
encounter the same patients17,18—is of critical importance to the 
trustworthiness of studies involving such networks.19

The sequence of patient-physician encounters in claims data 
lends itself to the use of network measures based on patient-sharing 
networks to study the utilization, quality, cost, and clinical outcomes 
of health care treatments and procedures. In one type of analysis, the 
general approach is to describe the structure of the patient-sharing 
network for each health unit being studied using various summary 
measures of the network as a whole (eg, the relative prominence of 
PCPs to specialists) or reflecting the position of physicians or orga-
nizations within the network. Outcomes (eg, cost) can then be re-
gressed on the summary network measures and physician positional 
network measures along with any other covariates.2,6,7 Another 
common analysis encompasses the study of peer-effects and the 
diffusion of treatments or procedures. Following formation of the 
patient-sharing network, community detection may be used to par-
tition the patient-sharing network into mutually exclusive groups 
of actors.13,20,21 The analysis then evaluates whether nonadopter 
physicians who are grouped in communities with a greater extent of 
adoption or use at baseline are more likely to adopt or have greater 
utilization in the follow-up time period.

This research is motivated by the fact that little is known about 
the sensitivity of network features to the sampling fraction of the 
nodes of one type in a bipartite network. While the challenges posed 
by sampling have been investigated for studies of directly measured 
(unipartite) networks,22-25 a study investigating the impact of sam-
pling observations in the bipartite space prior to forming a projected 
unipartite network has not to our knowledge been performed. A 
study of bipartite network sampling is timely given their growing use 

in studying physician, hospital, and health organization patient-shar-
ing networks. In patient-sharing networks, it is common for data to 
be sampled at the patient level. Yet, the extent to which such sam-
pling results in inaccurate network projections of physician-physician 
networks is unknown. Although we focus on this specific applica-
tion, our results generalize to other settings that sample one type of 
actor prior to forming the bipartite network, which is then projected 
to form the unipartite network of the other actor type. We assume 
that global information about the network based on the full cohort 
is unavailable, and so, we cannot strategically sample actors in order 
to best estimate a particular feature of the network. Therefore, we 
focus on evaluating the consequences of simple random sampling 
across many network measures.

The general graph sampling problem has been assessed in terms 
of the ability to recover topological characteristics often focusing on 
a single characteristic or objective; for example, degree (the number 
of other physicians to which a particular physician is connected).26-28 
However, there is a multitude of other aspects of the topology of the 
network that may be used as metrics against which to evaluate the 
impact of sampling.29 In the relatively scant literature on sampling 
bipartite network data, the sampling of nodes and edges has both 
been considered and compared.30 We focus on sampling one type of 
node in the bipartite space to mirror the handling of administrative 
health insurance claims data purchases.

What is already known on this topic

•	 The use of network methods in health services research 
is becoming increasingly common and holds the promise 
of revealing new insights about important problems in 
health care and medicine.

•	 Network analyses frequently are based on data col-
lected for a sample of individuals from the population of 
interest, rather than the full cohort, and unlike standard 
surveys, the complexity of network topology can result 
in the sample network differing substantially from the 
full-cohort network it is intended to represent.

What this study adds

•	 A compendium of findings concerning the relationship 
of the patient sampling fraction to the relative and ab-
solute accuracy of the descriptive measures for the pa-
tient-sharing physician network based on the sample in 
relation to the full cohort of patients.

•	 A much smaller sampling fraction suffices for physician-
level network centrality measures, including physician 
degree, but less so for network-level measures based 
on complex configurations of actors such as transi-
tivity, clustering coefficient, and number of network 
communities.
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The remainder of this paper is structured as follows. The 
Methods section begins with relevant background material per-
taining to networks. We then describe some important theoretical 
results derived in the Appendix S1 (in the supplemental materials) 
that provide insights into the relationship between the probability 
of sampling each patient and the likelihood of sampling various 
configurations of actors. We then describe a simulation study 
that evaluates the relationship between the distribution of 18 
network features derived from regional samples of patients in the 
Medicare database and from the full cohort of patients in a region 
in relation to the sampling probability. The results of the simula-
tion study and their connection to the theoretical derivations are 
described in the Section 3, including a set of recommendations of 
what a minimum sampling fraction should be in order to measure 
each network measure with a desired level of accuracy, before 
the Conclusion.

2  | METHODS

A patient-sharing network is generated from a data set of patient-
physician encounters that summarize whether and the extent to 
which each patient encountered each physician. The bipartite net-
work has two sets of nonoverlapping nodes, one for patients and 
one for physicians. Edges only exist between nodes in different sets. 
Bipartite network data may be projected to form a network in which 
physicians are nodes and the number of shared patients is derived 
for each physician pair (“dyad”). We assume that the simplest bipar-
tite projection strategy of multiplying the adjacency matrix by its 
transpose is used to form the physician network (see Appendix S1). 
In this study, we consider a weighted and a binarized (0-1) version 
of each network, allowing the computation of both binary-valued 
and weighted network measures. The latter is obtained by making all 
nonzero edge weights equal to 1.

We compare an extensive range of network measures between 
the networks formed from the full 100% patient cohort (or the “pop-
ulation”) and the sampled data (Table 1). Each measure has been fre-
quently used in network applications, and so, the extent to which its 
value in the full network is expected to be captured in a sample has 
direct applicability to research involving patient-sharing and other 
networks generated from bipartite data.

In addition, we also run a community detection algorithm on the 
whole network for each geographic region. This algorithm seeks to 
partition the nodes in the network into groups such that modular-
ity, a quality function that is proportional to the number of edges 
among a group of nodes less the expected number of edges among 
the group of nodes under random assignment of edges, such that 
the degree distribution of the network is conserved, is maximized.31 
As a way of summarizing the extent to which community structure 
exists in the network, we compute the number of communities for 
each health referral region32 (the geographic region of interest) and 
sampling fraction. We also compute the average number of physi-
cians per community.

2.1 | Theory: Patient-level sampling

To gain general insights into the impact of sampling one node type 
in a bipartite network on the resulting projected network for the 
other node type, in the Appendix S1, we derive expressions for the 
probability distributions and related summary measures of various 
quantities evaluated on the network constructed from the sampled 
data. Calculations are performed under independent and equal 

TA B L E  1   Network measures for a bipartite network of 
physicians connected via shared patients

Network measures Definition

(Number of) Nodes Size of network measured in terms of 
number of physicians

(Number of) Ties Number of physician dyads sharing at 
least one patient

Degree Distribution Distribution of number of degree (number of 
ties to other physicians) across physicians 
in the network

Proportion of isolates Proportion of physicians with no ties

Density Proportion of ties out of the total possible 
for network; proportional to average 
physician degree

Strength Average number of shared patients per 
physician dyad

Centralization Variance of degree across physicians

Triadic averages Extent to which closure occurs in triads and 
higher-order configurations

Transitivity Proportion of 2 stars (triads with at least 
two ties) that are closed

Weighted clustering 
coefficient

Extent to which nodes who share high 
numbers of patients with common actors 
share high numbers of patients among 
themselves

Triad census Frequency counts of the different types of 
triads

Proportion with 0 ties Proportion of triads with 0 ties

Proportion with 1 tie Proportion of triads with 1 tie

Proportion with 2 ties Proportion of triads with 2 ties (open 
triads or 2 stars)

Proportion with 3 ties Proportion of triads with 3 ties (closed 
triads)

Centrality The structural importance of a node in the 
network

Degree Number of ties in the network

Weighted closeness The inverse length of the shortest path 
from a given node to another node 
through the network averaged over each 
other node

Weighted 
betweenness

Proportion of shortest paths through a 
node

Weighted eigenvector Centrality capturing the notion that you 
have high (low) centrality if the nodes 
you are tied to have high (low) centrality
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probability sampling without replacement as this emulates the sam-
pling of patients in data from the Center for Medicare and Medicaid 
Services (CMS). The summary measures include the number of 
shared patients between two providers, the likelihood of a tie in the 
full-cohort network being in the π-sample network (the network 
based on sampling patients with probability π), the likelihood of a 
physician in the full-cohort network being in the π-sample network, 
and the likelihood of a closed triad being in the π-sample network.

2.2 | Simulation experiment

We illustrate the impact of sampling patients on the resulting pro-
jected physician networks using the following 10 health referral re-
gions (HRRs) in the United States in 2010: Bend, OR; Alexandria, LA; 
Duluth, MN; Lubbock, TX; Bakersfield, CA; Eugene, OR; Harrisburg, 
PA; San Bernardino, CA; New Haven, CT; and Manhattan, NY. In 
order to visually represent our results, we selected 10 HRRs from 
a nationally representative set of 50 HRRs for which we had full 
Medicare claims data. To select the HRRs, we arranged the 50 HRRs 
by the number of Medicare enrollees (size) and then selected every 
5th one in order to be certain to capture HRRs of vastly different 
sizes. The resulting networks were also diverse in location and ur-
banicity. See Appendix S1: Section A.3 for a fuller description of the 
10 HRRs.

For each of the regions, we sample patients using sampling 
fractions ranging from π = 0.05 to 0.9 and evaluate the measures 
in Table  1. We compute the Pearson correlation ρ between the 
network measure evaluated on the network obtained from the 
full cohort and the π-sample network. The extraction of the sam-
ple and subsequent calculations are performed multiple times to 
reduce Monte Carlo sampling error. The results, presented graphi-
cally, quantify relative performance in that they reveal the extent to 
which the pattern across the HRRs in the sample reflects that based 
on the full cohort; the attainment of a high ρ at a small π for a given 
network measure implies that it is learned quickly with respect to π. 
To evaluate the absolute relationship between the measure evalu-
ated on the sample for each π and that evaluated on the full cohort, 
we also plot the correlation profiles for each network measure for 
each of the 10 HRRs.

In addition to examining the occurrence of specified network 
microstructures, such as closed triads (a common network mea-
sure examining the extent to which two physicians already con-
nected to another physician are also connected to each other), 
we also investigated groupings of network nodes (physicians) 
into so-called network communities.33 This clustering of net-
work nodes into mutually exclusive subgroups of nodes (in our 
case physicians) is often carried out using modularity maximiza-
tion.34,35 Modularity maximization is challenging as there are no 
algorithms that will in general find the global optimum in finite 
time. Therefore, community detection algorithms tend to accept 
solutions as good enough when a local optimal solution has been 
found. Thus, rerunning the algorithm may lead to a different 

solution even with the full patient cohort. We ran the community 
detection algorithm multiple times on both the sampled and the 
full networks, estimating the correlation coefficient for each net-
work measure in Table 1 at each π, averaging over the physician 
dyads to obtain the average estimated correlation coefficient.

3  | RESULTS

We first plot the correlation between each network measure on the 
π-sampled network and that based on the full cohort of patients as 
a function of π (the sampling fraction). We then present the value 
of each network measure across the 10 HRRs for each value of π. 
The former evaluates the extent to which the relative value of the 
network measures across the HRRs is able to be learned, while the 
latter reflects the absolute accuracy under sampling and the hetero-
geneity in these relationships across different regions. Finally, rec-
ommendations are made for the minimal π to use in order to measure 
each feature of a network such that its correlation with the feature's 
value in the network based on the full cohort is sufficiently high. 
The threshold at which a correlation is considered to be sufficiently 
high is not a normative global quantity. Rather, it ought to reflect the 
role of that measure in the problem at hand and the extent to which 
sampling error can be accommodated. In our case, we consider two 
thresholds, 0.95 and 0.99, as corresponding to a minimal level and a 
desired level, respectively.

3.1 | Correlations of network measures at given 
sampling fraction to whole network

The correlation of all measures derived from the π-sampled patient 
data with their corresponding value under the full cohort increases 
with π (Figure  2). However, there is notable heterogeneity in the 
comparative rates of increase. We will use the terms “rapid learning” 
and “slow learning” to group the measures into those whose cor-
relation with the full network value approaches 1 very quickly and 
those that require larger sampling fractions to be learned (eg, <0.95 
correlation at a sampling probability of 0.2).

The correlation functions for the number of nodes (network size) 
and the number of ties both depict rapid learning. However, the gra-
dient of the correlation function for network size is steeper than for 
the number of ties, indicating that network size is more conducive 
to being learned quickly. The theoretical results in the Appendix S1 
predict these findings because there is a much greater opportunity 
to sample a given node than a specific edge in which it is involved 
(see Equations 1 and 3 and Figure A in the Appendix S1).

While the comparative number of nodes and ties in one network 
versus another is learned rapidly, the proportion of isolates is the 
slowest quantity to be learned (Figure 1). The contrast is due to the 
higher prevalence of isolates at small values of π leading to a low 
correlation with the proportion in the network determined from the 
full cohort.
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Density, which is equivalent to normalized mean degree, is 
learned slower than the number of ties. Centralization, as mea-
sured by the heterogeneity of the node degrees, is learned at a yet 
slower rate than density (eg, at a 90% sampling fraction, the value 
for Manhattan is about one-fifth of its value for the 100% cohort). 
Because the sample variance is more sensitive to outliers than the 
sample mean, a greater proportion of the network must be sampled 
in order for centralization to be learned accurately.

Despite both being learned quickly, the rate of increase in the 
correlation for total strength (the sum of the number of shared 
patients across all edges in the network) exceeds that of the total 
number of ties (the total number of instances of at least one shared 
patient). This result implies that edges with more patient sharing are 
more likely to be sampled and have more influence on a summary 
measure than when each edge is treated equally, such as for density. 
In the weighted projected network, edges are weighted in propor-
tion to the observed number of shared patients, not the number of 

selected edges, and so are less impacted by edges involving a small 
number of shared patients than the total number of distinct edges.

Transitivity has a yet slower rate of learning than density. Under 
dyadic independence, the probability of a triad being closed is a 
product of three edge existence probabilities (Appendix S1: Equation 
(4)). The correlation function for the (weighted) clustering coef-
ficient, computed as the geometric average of the subgraph edge 
weights,36,37 increases relatively slowly with π due to its dependence 
on edges between pairs of actors both connected to the focal actor, 
as opposed to the actor themselves. The correlations for the propor-
tion of triads of each type also increase slowly, especially in the case 
of the closed triangle, but generally are faster than transitivity and 
the clustering coefficient.

The results for the measures of centrality (mean degree, weighted 
closeness, weighted betweenness, and weighted eigenvector) are 
shown on the fourth row of Figure 1. Degree centrality is the most 
local measure in that it only depends on edges involving the focal 

F I G U R E  1   Plots of the Pearson correlation coefficient between network measures evaluated on the network derived from a 100 π% 
sample of patients and that based on the full cohort of patients (the full cohort). The plotted points are the correlations of the network 
measures for the networks built on the �-sampled data and the full cohort across the 10 HRRs. Clustering coefficient and closeness, 
betweenness, and eigenvector centrality are all evaluated on the weighted network [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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node. Closeness and betweenness both involve geodesic (shortest) 
paths through the network and are distinguished by whether the 
focal node is at the start or is a midpoint of the path. These cen-
trality measures involve varying proportions of the network. At the 
opposite end of the spectrum to degree is eigenvector centrality, 
which is a function of the entire network. A comparison of the cor-
relation trajectories for these four measures reveals that closeness 
is learned the slowest, followed by degree, betweenness, and then 
eigenvector centrality. The disparate learning rates for closeness and 
betweenness are explained by closeness depending on path lengths 
from the focal node to other nodes, whereas betweenness is a count 
of all pairwise shortest paths through the focal node. The former 
relies on a greater sampling proportion of patients to be measured 
accurately and is sensitive to long paths involving weak connections. 
In contrast, betweenness is learned quickly from the preferential 
sampling of well-connected nodes and of paths involving them being 
captured. Eigenvector centrality measures the extent to which a 

node is connected to nodes with high centrality. Because the most 
connected nodes have a higher likelihood of being sampled, the key 
nodes underlying the infrastructure of the network based on the full 
cohort are preferentially sampled and eigenvector centrality is the 
most rapidly learned centrality measure.

3.2 | Values of network measures for the 10 HRRs

The closer the HRR-specific plots of the network measure against 
π are to a horizontal line, the closer the π-sampled value is to the 
value based on the full cohort. The number of nodes (physicians), 
betweenness centrality, and eigenvector centrality have fairly flat 
trajectories, whereas strength increases linearly, degree increases 
nonlinearly, and the number of isolates decreases nonlinearly.

Centralization has one of the most interesting trajectories across 
π. For every HRR, it increases linearly over �∈{0.05, 0.90} but then 

F I G U R E  2   Values of network measures for the 10 health referral regions (HRRs). Clustering coefficient and closeness, betweenness, and 
eigenvector centrality are all evaluated on the weighted network, whereas the other measures are for the binarized version of the network. 
Notable HRRs for their extremity are colored as follows: Manhattan (NY) = light blue, Bend (OR) = pink, San Bernardino (CA) = orange 
[Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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jumps substantially to the value for the full cohort. This may be a 
consequence of centralization being hard to learn because a number 
of the weakest edges are often only captured using the full cohort. 
The presence of these low degree nodes substantially changes the 
spread of the degree distribution.

A standout feature of the HRR-specific sampling plots is that 
network size has a substantial impact. Manhattan, the largest HRR, 
typically has a trajectory that is the highest or the lowest across the 
HRRs (Figure 2). For example, network size and the number of ties 
have much higher values in the Manhattan network due to the large 
number of physicians, whereas density is the lowest in Manhattan, a 
reflection of the phenomenon that density typically dissipates with 
network size.

The proportion of isolates is an exception in that Manhattan is 
not an extreme HRR. The reason is that a physician is only included 
in the sampled network if a patient seeing that physician was sam-
pled. Hence, the numerator and denominator of the proportion of 
isolates both change with π, lowering the correlation with its value 
for the full cohort (physicians in the original bipartite network 
that are not sampled are not considered isolates in the sampled 
network).

The network measures with the trajectories that vary the most 
between the HRRs are eigenvector centrality and other measures 
based on the status of configurations involving three or more edges, 
such as transitivity, clustering, and the proportions of the remaining 
types of triads.

3.3 | Results based on community structure

The correlation plot for the number of communities obtained from 
the community detection algorithm suggests that a point of inflec-
tion occurs at �=0.30 (Figure 3, upper segment). Community struc-
ture thus appears harder to learn than most other measures. The 
correlation for the number of communities is approximately 0.96 
when using the full cohort, implying that the results across all sam-
pling probabilities might be penalized downwards by an amount of 
around 0.04 due to the failure of the community detection algorithm 
to find the global optimal partition of physicians.

The number of communities and the mean number of physi-
cians per community attain flat trajectories for 𝜋 >0.2 implying that 
the actual value in the network based on the full cohort is learned 
quickly. A slight exception is the Manhattan HRR, whose trajectory 
increases more quickly than that for the other HRRs.

The number of communities decreased with π especially for the 
Manhattan HRR (lower segment of Figure 3). For small π, commu-
nity detection algorithms will tend to find many communities with 
several of the communities being small in size, likely because some 
linking ties that would have strengthened the bridge between those 
communities were not sampled. As π increases, the community de-
tection algorithm stabilizes due to the network being larger and thus 
more difficult to break into communities, resulting in a structure 

close to that obtained when the full cohort of patients is analyzed. 
The number of physicians per community is again quicker to learn 
and increases with π.

3.4 | Practical considerations: what sampling 
fraction is sufficient?

Researchers may wonder about the extent to which a sampling frac-
tion of 20% or 5% influences the physician network since CMS often 
provides Medicare data using a patient sampling fraction of 20% or 
5%38 or, conversely, of knowing what value of π is needed in order 
for a certain correlation between the sample and full-cohort meas-
ures to be attained. We evaluated which measures can be measured 
with sufficient accuracy for the four combinations of the use of a 
20% and a 5% sample crossed with the requirement of a 0.95 and 
a 0.99 minimum correlation with the value of the network measure 
in the full-cohort network. Results are summarized by grouping the 
measures into the 5-tiered hierarchical categorization: those that 
meet the 0.99 correlation standard using a 5% sample (category I), 
those who fail this but meet the 0.95 correlation standard (category 
II), those who miss category II but meet the 0.99 correlation standard 
with a 20% sample (category III), those who miss category III but 
meet the 0.95 correlation standard with a 20% sample (category IV), 
and those who fail to meet the 0.95 correlation standard with a 20% 
sample (category V).

The category I network measures are the number of nodes, 
the number of ties, average strength, and eigenvector centrality 
(Table  2). Betweenness centrality is the only measure in category 
II. Category III consists of average degree (or equivalently density), 
while category IV consists of most elements of the triad census, 
weighted clustering coefficient, and closeness centrality. The two 
other elements of the triad census were very close to satisfying the 
criteria for category IV. Finally, the proportion of isolates, transitiv-
ity, and the community measures failed to attain the lowest standard 
and so comprise category V.

Based on the above, we propose the following normative rules 
for investigators planning network studies to use in order to com-
pute the network measures of interest with sufficient accuracy:

1.	 Measures of network size such as the number of nodes and 
the number of ties are learned very quickly, and they accu-
rately reflect the full cohort with π as small as 0.001 (a 0.1% 
sample).

2.	 Average strength is more robust than density or average degree. 
Its measurement is aided through preferential measurement of 
the edges with the highest values enabling it to be accurately 
measured (above 0.99 correlation) using a 5% sample, whereas 
degree is only just above the 0.95 threshold.

3.	 Eigenvector centrality followed by betweenness centrality is 
learned more rapidly than degree centrality and closeness when 
𝜋 <0.2.
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4.	 Degree and density can be learned modestly accurately with a 
sample as low as 5% but are learned precisely with a sample of 
20%.

5.	 Closeness centrality is learned the slowest of the centrality 
measures.

6.	 While the triad census is partially measured above a 0.95 correla-
tion with a 20% sample, transitivity is more challenging to learn 
and so a sampling fraction greater than 20% is needed. Estimates 
based on this analysis suggest using a 30% sample.

7.	 Centralization requires a 50% sample to be learned with 0.95 ac-
curacy. It is a measure of spread that is not robust to outliers.

8.	 Measures that partition the network such as the number of com-
munities and the proportion of outliers are learned very slowly, 
and it may be necessary for the full cohort to be analyzed in order 
to be confident in the measured values.

The above recommendations may vary depending on the number 
of patients available to sample as well as the number of distinct phy-
sicians that they can encounter. This point is evidenced by the plots in 
Figure 3 that reveal differences between the HRRs in the value of the 
network measures at the same sampling probabilities. The differences 
are largely proportional but not perfectly. However, the substantial 
differences between the rapid-learning and slow-learning measures 
make the above recommendations universal in their applicability.

4  | CONCLUSION

Because bipartite networks have complicated topologies, it is peril-
ous to assume that sampling will not affect results of analyses based 
on these networks. In fact, for measures like density and even more 

F I G U R E  3   Plots of the Pearson correlation coefficient of the number and the mean size of the communities detected in the network 
evaluated on a 100 π% sample of patients and the corresponding measures evaluated on the 100% cohort (upper plots). In addition, the 
number of communities and the mean number of physicians per community are presented for the 10 HRRs (lower plots). Values at �=1 do 
not exactly emulate those of the full network due to the nonoptimality of the community detection algorithm [Color figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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so transitivity, the sampled network will underestimate the true 
value as the probability that a given physician is sampled far exceeds 
the probability that one of its edges is sampled. To extend the appli-
cability of this work, the theoretical results in Appendix S1 Section 
A.2 are presented for the sampling of patients and for the sampling 
of patient episodes.

We found support for the hypothesis that degree and the cen-
trality measures are more robust to sampling (ie, are learned more 
quickly) than community-based metrics. We also found that eigenvec-
tor centrality is learned most quickly followed by betweenness cen-
trality and degree. All centrality measures are learned substantially 
more quickly than the number of communities in the full network.

We have made recommendations on the sampling fraction 
needed to be needed for the value of a network measure determined 

from a sample of patients to be sufficiently highly correlated with 
the corresponding quantity in the full network. However, a limita-
tion of basing this on Medicare fee-for-service claims is that even 
the 100% sample misses Medicare advantage and privately insured 
individuals. Because these missed claims pertain to different types 
of claims and patients, an addition concern is whether the sample of 
individuals is representative of the entire population of claims and 
persons.

A consideration for future work concerns whether certain net-
work measures for the network as a whole can be recovered by uti-
lizing sampling probabilities. Weighting (dividing) each sampled edge 
by its probability of being sampled yields an unbiased estimator of 
the network density in the full network, whereas biased estimates 
will be obtained for higher-order network measures. However, a 

Measure p20 p05 q95 q99 Cat

Attained 0.99 correlation on 5% sample

(Number of) Nodes 1.000 1.000 <0.001 <0.001 I

Strength 0.999 0.997 <0.001 0.001 I

Weighted eigenvector 
centrality

0.999 0.994 <0.001 0.022 I

 (Number of) Ties 0.998 0.994 <0.001 0.015 I

Attained 0.99 correlation on 20% sample

Weighted betweenness 
centrality

0.993 0.979 0.003 0.147 II

Attained correlation between 0.95 and 0.99 on 5% sample

Degree centrality 0.983 0.957 0.034 0.319 III

Density 0.978 0.951 0.047 0.394 III

Attained correlation between 0.95 and 0.99 on 20% sample

Proportion of triads with 
0 edges

0.977 0.943 0.065 0.383 IV

Weighted closeness 
centrality

0.963 0.881 0.156 0.386 IV

Proportion of triads with 
1 edges

0.956 0.901 0.172 0.562 IV

Weighted clustering 
coefficient

0.953 0.803 0.193 0.335 IV

Did not attain 0.95 correlation on 20% sample

Mean physicians per 
community

0.943 0.732 0.212 0.314 V

Proportion triad 3 edges 0.942 0.908 0.258 0.683 V

Proportion triad 2 edges 0.935 0.847 0.262 0.604 V

Transitivity 0.833 0.167 0.286 0.336 V

Centralization 0.830 0.615 0.490 0.709 V

Number of communities 0.764 0.598 1.000 1.000 V

Proportion of isolates 0.554 −0.025 0.692 0.853 V

Note: Key: In order, the four numerical columns contain the estimated correlation with the truth 
when using a 20% (p20 column) and a 5% sample (p05 column) and the estimated sampling fraction 
needed to obtain a correlation with the truth greater than 0.95 (q95) and 0.99 (q99). The separate 
regions of the table show the measures that attain a correlation above 0.99 with a 5% sample; 
above 0.99 with a 20% sample; above 0.95 but below 0.99 with a 5% sample; and that fail to be 
above 0.95 with a 20% sample.

TA B L E  2   Threshold attainment by 
network measures
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weighting-based remedy relies on the full network being known in 
order to determine the sampling probabilities for each edge or high-
er-order configuration.

The results presented in this paper provide a warning to network 
analysts and researchers on the types of bias that occur when sam-
pling from one type of node before constructing a bipartite network. 
Inaccuracies evaluating network measures on samples of patients may 
manifest in both measurement error and confounding bias in subse-
quent analyses of the relationship of network measures to outcomes 
(see Appendix S1 Section A.4 for full description). Network-based stud-
ies that involve some form of sampling should pay allegiance to these 
results before drawing firm conclusions from their network analyses.
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