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A B S T R A C T   

With the coronavirus pandemic wreathing havoc around the world, power industry has been hit hard due to the 
proposal of lockdown policies. However, the impact of lockdowns and shutdowns on the power system in 
different regions as well as periods of the pandemic can hardly be reflected on the foundation of current studies. 
In this paper, a prediction-based analysis method is developed to point out the electricity consumption gap 
resulted from the pandemic situation. The core of this method is a novel optimized grey prediction model, 
namely Rolling IMSGM(1,1) (Rolling Mechanism combined with grey model with initial condition as Maclaurin 
series), which achieves better prediction results in the face of long-term emergencies. A novel initial condition is 
adopted to track data with various characteristics in the form of higher-order polynomials, which are then 
determined by intelligent algorithms to realize accurate fitting. Historical power consumption data in China are 
utilized to carry out the monthly forecasts during COVID-19. Compared with other competitive models’ pre
diction results, the superiority of IMSGM(1,1) are demonstrated. Through analyzing the gap between predicted 
consumption values and the actual data, it can be found that the impact of the pandemic on electricity varies in 
different periods, which is related to its severity and the local lockdown policies. This study helps to understand 
the impact on power industry in the face of such an emergency intuitively so as to respond to possible future 
events.   

1. Introduction 

1.1. Background 

Increasing fluctuations in energy consumption has become a basic 
problem that draws attention worldwide [1,2]. To understand the in
fluence of emergencies on power industry as well as arrange energy 
distribution appropriately, it’s crucial to investigate the industry [3]. 
Scale of power industry in China has expanded continuously in the past 
few decades, which now ranks the second around the world. For the 
sustainable development of national economy, China will continue to 
develop power industry as the basic industry in the coming decade. 
Generally, accurate forecast helps to determine electricity scheduling as 
well as methods of power storage, and the layout of facilities can thus be 
improved [4,5]. However, due to the sudden outbreak of COVID-19, 
power consumption shows a downward trend in 2020. In current 

situation, the consumption of electricity has been given new connota
tions that help to evaluate the impact of COVID-19 on power system at 
different stages, and can also be regarded as a reference indicator for the 
resumption progress of production. 

As the most commonly used energy resources, there are plentiful of 
determinants that affect electricity consumption such as economy, 
demography, climate, public emergencies and other factors. In terms of 
economy, influential elements include National Gross Product, price 
fluctuations and the organization of market [6,7]. The trend of economic 
development is proved to be consistent with electricity consumption, 
which especially prompts the increasing variety of power generation 
approaches [8]. Factors pertinent to electricity consumption from the 
aspect of demography involve population in rural and city areas [9]. In 
practice, the optimization of economic structure and implementation of 
energy conservation policies to reduce emission also have an impact on 
power industry [10]. Factors such as industrial structure adjustments, 
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technological progress, and changes from generating capacity also play 
their part in electricity consumption [11]. As for whether the con
sumption level can return to normal after disasters, factors such as 
people’s attitude towards energy saving consciousness and residents’ 
income are vital [12]. Therefore, prediction of electricity consumption 
through the establishment of an overall model is complex as many fac
tors need to be considered and the model is tied with unknown possi
bilities, while mathematical methods are more succinct to be conducted. 

As an unprecedented challenge faced by mankind, governments 
worldwide are doing their utmost to contain the spread of COVID-19. In 
view of the fact that vaccines haven’t been promoted successfully by 
now, many countries have adopted stringent measures such as nation
wide lockdowns or partial lockdowns in certain areas. In China, where 
the lockdown policies are carried out at the earliest, restrictions 
including individual isolation, blockade of high-risk areas and move
ment of personnel in non-epidemic areas have effectively prevented the 
spread of the disease [13]. However, due to these policies, there are also 
adverse effects such as the increased cost of pandemic control and im
pediments on social and economic development, which have certain 
influence on China’s power supply, grid operation and market trans
action. Restricted operations of industries and mobilities of residents 
lead to electricity consumption decline in 2020 in China compared with 
the same period in previous years. To understand the impact on power 
industry during the pandemic, this paper proposes a prediction model 
that can precisely forecast power consumption gap caused by the 
pandemic so as to better grasp the influences owing to lockdown policies 
and industry downtime. 

1.2. Literature review 

Based on the need to estimate the impact under current situation, 
forecast energy consumption accurately is significant to make full ar
rangements of energy industry [14]. The selection criteria of apropos 
forecasting method include the inherent abilities of historical data, 
correlation of variables in prediction, and how the predictions are car
ried out. In the field of energy consumption forecast, various method
ologies have been put forward, including Time Series [15,16], support 
vector regression [17], Markov model [18], Artificial Neural Networks 
(ANNs) [19,20], Fuzzy Systems [21] and other advanced methodolo
gies. Each method has its own characteristics and performs differently in 
diverse research contexts. 

For the above methods, predictions can be carried out only when 
there are enough training data, while for problems related to uncertainty 
and lack sufficient input information, Professor Julong Deng proposed 
grey theory, whose mechanism is on the basis of grey generating func
tion and differential fitting that directly converts time series into dif
ferential equations to establish the dynamic model of an abstract system. 

Though the prediction results of the traditional GM(1,1) model can 
reach certain degree of accuracy, they are not satisfying enough. To 
enhance forecast performance, many scholars have made efforts in three 
aspects to optimize the original grey model:  

1. Adjustments to optimize the initial condition;  
2. Applying intelligent algorithms to optimize parameters or to 

construct hybrid models;  
3. Consideration of circumstances with multivariate or non-linear 

problems. 

The initial condition in grey model has been modified in diverse 
ways. Traditionally, the initial condition adopts the first number in 
historical data sequence as the coefficient, which does not correspond 
with the computational disciplines that use accumulated generating 
operation (AGO) data. Therefore, some studies are implemented on this 
issue. Dang et al. [22] choose x(1)(1) as the initial condition in grey 
differential equation. The improved initial conditions x(1)(n) is 

generated by the original sequence x(0) through accumulation process, 
therefore, the information of data sequence can be fully reflected. Xiong 
et al. [23] present an original grey model that optimizes the initial value 
by giving preference to more timely data. Song et al. [24] come up with 
a model that involves uneven influential level of each individual element 
to the AGO sequence by inserting a dynamic weighted coefficient that 
further improves the initial condition. These modifications overcome 
the shortage in grey model as they avoid the problem that the initial 
conditions are not concerned with the growth trend of the data 
sequence, which are in line with new information principle. 

Meanwhile, different intelligent algorithms have been employed to 
optimize parameters or to construct hybrid models. Lee et al. [25] come 
up with a model combining genetic programming symbol evaluation 
with residual correction in the case of small original data set. To reduce 
the simulation error and improve the model adaptability to different 
data features, Xu et al. [26] construct a nonlinear model with an opti
mized time response function (TRF) on the basis of particle swarm 
optimization (PSO). Yuan et al. [27] put forward a hybrid model 
composed of GM(1,1) and ARIMA by giving equal weights to both 
methods. Li et al. [29] integrate regression models with GM(1,1) aiming 
at compensating for the residual sequence, and Markov chain has been 
utilized in improving predictive performance. Considering the research 
background of these studies, the prediction accuracy is enhanced to 
some extent by hybrid grey models. 

Multivariate and non-linear prediction problems are taken into 
consideration due to the complexity under real circumstances. Wang 
et al. [30] analyze the advantages of linear and nonlinear models and 
make a combination of nonlinear grey model and ARIMA model 
appropriate for predicting shale gas production in the U.S. Liu et al. [31] 
deal with multivariate prediction problems through GM(1,n) model 
which includes n − 1 input and single output of the sequence number in 
the grey system. Li et al. [32] propose a second-order univariate 
improved dynamic model, and the cubic spline function and Taylor 
approximation method are applied to compute background values. 
Wang [33] proposes a method combining grey model with technologies 
in multivariate statistics, in which the sample data are divided into 
different categories through hierarchical clustering analysis and 
discriminant analysis. 

Studies related to prediction have made contributions in many fields 
and have improved our understanding of prediction mechanism. 
Through analyzing the updated electricity consumption data in China as 
well as studying previous prediction models in depth, grey prediction 
models proposed in former researches turned out to have some limita
tions since the specific impact of COVID-19′s on the reduction of elec
tricity consumption is not clear yet. 

Whether it is due to the COVID-19 pandemic or other major disasters 
that have occurred in the past, many scholars have studied their impact 
on power system. WAKASHIRO [34] uses the ordinary least squares 
model to analyze 276 days of electricity consumption data in 10 Japa
nese regions, and estimates its reduction in electricity demand in the 
emergency state of COVID-19. Gillingham et al. [35] assume that the 
impact of COVID-19 is temporary, and the trend before the pandemic 
would continue after a brief interruption, including investments in green 
technologies such as wind and solar power generation capacity and 
energy efficiency investments. Narajewski [36] uses the high- 
dimensional time series change point model to analyze the power load 
of European countries, and the load forecast model is applied to analyze 
the structural changes in power demand due to shutdowns. Wang et al. 
[37] study Black Marble’s artificial satellite night lighting products, 
which are used to monitor the scope and restoration of power outage 
space at the community level, and have been successfully used to 
monitor disaster-related power outages. Ruan et al. [38] quantify the 
“delay” effect of COVID-19 cases, social distance, and retail liquidity on 
electricity consumption, and develope a cross-domain open access data 
center to track and measure COVID-19′s impact on the US power 
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industry. Chen et al. [39] develop a load forecasting method, discussing 
the load change brought by home isolation and the transformation of 
people’s travel patterns, and respond to the load forecast challenge 
during COVID-19 pandemic in a timely manner. 

Although previous works have made it clear for us to understand the 
impact of such emergencies, there are still some gaps in the existing 
studies on the impact on power industry due to the different severity of 
the pandemic in different regions. When energy growth trend changes, 
existing models seem not capable of making timely adjustments to 
predict the future situations. To fill this research vacancy, this paper 
considers public health data such as COVID-19 cases and deaths, and put 
forward a new prediction model to analyze the consumption gap 
resulted from the pandemic. The model establishes its basic form by 
virtue of grey model. From the perspective of optimizing initial condi
tion, innovative coefficients are introduced to better reveal the deviance 
from normal growth trend due to the pandemic situation. 

1.3. Contributions of this work 

Main contributions of this work are shown as below: 

(1) A prediction-based framework is proposed to study the con
sumption gap of electricity caused by long-term emergencies.  

(2) The Rolling IMSGM(1,1) whose prediction goal is the power 
consumption gap is proposed. Initial condition of the model is in 
the form of Maclaurin series and is resolved by intelligent algo
rithms, which better concludes the long-term laws of data and 
predicts more accurate under long-term emergency.  

(3) Predictions using other grey models are carried out with the same 
sample data, and the comparison results demonstrate the supe
riority of the new model.  

(4) The proposed framework is validated by the case in China after 
COVID-19. In the first two months of this year, total electricity 
consumption in Chine decreased by 7.8% year-on-year. On the 
fundamental of the difference between the forecasted and actu
ally reported values of China’s electricity consumption achieved 
through the new model, combined with the severity of the 
outbreak, the impact of the outbreak on the power sector in 2020 
is discussed in this paper. 

1.4. Paper organization 

The organization of the remainder of this article is described here
inafter. A succinct demonstration of the electricity prediction problem is 
given in Section 2. Section 3 introduces the newly proposed IMSGM 
(1,1). Section 4 contains the modelling steps and solution methods of the 
new model in detail. Empirical cases are carried out to testify the per
formance and effectiveness of Rolling IMSGM(1,1) in Section 5, and 
monthly predictions in 2020 are conducted to appraise the pandemic 
influence. The last part gives the conclusions of this paper. 

2. Problem description 

Pandemic caused by the coronavirus continuously spreads across 
China. In order to fight against the pandemic and safeguard the lives of 
the people, the State Council of China issued the Notice on extending the 
Spring Festival Holiday in 2020 and many corporations postponed the 
resumption of work according to the actual situation. Under this 
circumstance, forecasting the gap between the normal electricity con
sumption values and the real data during the pandemic helps to indicate 
the influence of lockdown policies as well as industry shutdowns, and 
further judges the resumption of each industry. Constructing an overall 
prediction model for electricity industry contains many difficulties, 
including thorough surveys of local infrastructures and the acquisition 
of plentiful of historical data during different periods. Given this com
plex structure of the model, it is more convenient and accurate to make 

predictions through mathematical models which can avoid errors 
caused by the defects of incomplete information. According to data 
released by the National Energy Administration of China, the newly 
established model is applied to analyze the impact of this pandemic on 
electricity consumption. 

At present, most of the existing forecast models set their research 
period as annual forecasting or short-term forecasting (generally within 
a day or so). Considering that dynamic lockdown policies have been 
carried out in different stages of the pandemic, the research period in 
this study should be reconsidered as well. In China, some regions have 
already arranged to permit residents to return to work step by step. In 
response to the impact of COVID-19 and to stimulate the recovery of 
consumption, more than 30 cities have recently issued policies to raise 
domestic consumption. 

The lockdowns and shutdowns have reduced power consumption to 
a lower level than in previous years. Different from the annual con
sumption data of electricity, the consumption in each month fluctuates 
greatly within a year as shown in Fig. 1, while for each month, the 
consumption shows an overall growth trend with regularity. Therefore, 
taking time intervals by month can better reflect the actual impact in 
different stages of the pandemic. Meanwhile, if the historical con
sumption data of previous years are used as the benchmark with the 
actual consumption data, the thwarted development momentum of the 
power industry is thus ignored. This paper develops a suit of monthly 
electricity consumption gap forecast model, which is applied to the 
analysis of China’s electricity consumption in the most severe months of 
the pandemic. As depicted in Fig. 2, in the case of unknown severity of 
an emergency,using data from previous years for analysis cannot fit the 
original development trend of the power industry. The figure on the left 
in Fig. 2 indicates that if the impact is not enough to bring power con
sumption back to the previous year’s level, using data of previous years 
will even come to a conclusion that there is only slight impact, which is 
inconsistent with the reality. In the figure on the right side, when using 
real consumption data rather than forecast results to discuss the con
sumption gap, the discrepancy is underestimated as the ignorance of 
growth trend. Therefore, it is more appropriate to analyze the gap by 
using the predicted results. It can be seen that gap analysis based on 
predicted results is more practical than that based on the data of pre
vious years since it can better reflect the original development trend. 

Conventional sequential forecasting method is applied to the forecast 
and its basic idea is shown in Fig. 3. We arrange the known data to be the 
input of the model, then, coefficients in prediction are formulated by 
mining the internal discipline of historical data sequence. Through the 
modelling procedures of IMSGM(1,1) model, the predictive values can 
be obtained. Periodic and rolling predictions can be made continuously 
according to the latest acquired data. 

Fig. 1. Monthly electricity consumption data in China from 2017 to 2019.  
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3. Methodology 

In this section, the construction of GM(1,1) is introduced in sec
tion3.1. Then, extensions of GM(1,1) with optimized initial condition 
are introduced. Lastly, Section 3.2 gives a systematic introduction to the 
new Rolling IMSGM(1,1) model. Details of these models are described 
below. 

3.1. GM(1,1) and its extensions 

Among various prediction models, GM(1,1) is one of the most 
frequently applied first-order single-variate models used in predicting 
problems with uncertain factors and incomplete information. As the 
theory of grey model describes, the basic grey model does not consider 
the background of the research problem. Raw data are processed by 
means of accumulation, and then the law of potential trend derives from 
the discrete equation. Afterwards, a continuous differential equation 
which possesses undecided coefficients is utilized as the reflection 
equation. Data are mapped to an adjustable function and simplified into 
TRF as the prediction fundament. 

Considering that many studies have explained the mechanism of GM 
(1,1) in detail, we only outline its steps briefly in this paper. Flowchart of 
GM(1,1) is given in Fig. 4 to present the model in a clearer way. 

Step 1: Define the original data (which require the value to be pos
itive) as 

X(0) =
(
x(0)(1), x(0)(2),⋯, x(0)(n)

)

Achieve the one-time accumulated generating operation (abbrevi
ated as 1-AGO) sequence 

X(1) =
(
x(1)(1), x(1)(2),⋯, x(1)(n)

)

in which x(1)(k) =
∑k

i=1x(1)(i),k = 1,2,⋯,n. 
Later, calculate background values through getting the average 

values of consecutive neighbors by Eq. (1): 

z(1)(k) = 0.5x(1)(k − 1)+ 0.5x(1)(k), k = 2, 3,⋯, n (1) 

Step 2: Define grey differential equation of GM(1,1) by the formula 

x(0)(k) + az(1)(k) = b (2)  

where k = 2,3,⋯,n, a is the development coefficient and b is the grey 
driving coefficient. 

Step 3: Whitened equation in GM(1,1) is defined as 

dx(1)

dt
+ ax(1) = b (3) 

Least square method is utilized as a tool to acquire the parameters: 
[

a
b

]

=
(
BT B

)− 1BT Y (4)  

where B =

⎡

⎢
⎢
⎣

− z(1)(2) 1
− z(1)(3) 1

⋮ ⋮
− z(1)(n) 1

⎤

⎥
⎥
⎦ and Y =

⎡

⎢
⎢
⎣

x(0)(2)
x(0)(3)

⋮
x(0)(n)

⎤

⎥
⎥
⎦. 

Therefore, calculating results of a and b can be obtained. 
Step 4: At time point k, the winterization equation dx(1)

dt +ax(1) = b 
possesses solution: 

Fig. 2. Power consumption gap analysis with different benchmark.  

Fig. 3. Simplified structure of electricity consumption gap prediction.  
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x̂(1)
(k) =

(

x(0)(1) −
b
a

)

e− a(k− 1) +
b
a

(5) 

Step 5: Restored response function is achieved through reverse 
procedures of AGO. Then the predictive values can be obtained through 
extrapolating conditions 

x̂(0)
(k) = x̂(1)

(k) − x̂(1)
(k − 1) =

[

x(0)(1) −
b
a

]

(1 − ea)e− a(k− 1), k = 2, 3,⋯, n

(6) 

When k > n, x̂(0)
(n + 1), x̂(0)

(n + 2),⋯ and the subsequent values 
represent the predictive values. 

Among various approaches to optimize the basic grey model, many 
scholars choose to improve the initial values, which are among the most 
significant elements that influence forecast performance. As the basis of 
the IMSGM(1,1) method, extensions of GM(1,1) related to optimized 
initial condition are introduced in the rest of this section. 

Newly priority grey model (NP-GM(1,1)) is an extended grey model 
that adopts the law of new information principal. Traditional solutions 
of grey models appoint x(0)(1) to be the initial condition in prediction 
model while the process of building GM(1,1) are not associated with 
x(0)(1) directly. This disadvantage can be overcome by taking x(1)(1) as 

coefficient in the model. 
The TRF of whitened equation adopts x(1)(1) as initial value [31] is 

presented as follows: 

x̂(1)
(k) =

[

x(1)(1) −
b
a

]

e− a(k− n) +
b
a

(7) 

To exploit more timely information, Dang et al. [40] substitute 
x(0)(1) with x(1)(n) in the GM(1,1) to build GM(1,1)-x(1)(n). The corre
sponding TRF turns out to be: 

x̂(1)
(k) =

(

x(1)(n) −
b
a

)

e− a(k− n) +
b
a

(8) 

Taking every item in 1 − AGO as influential factors of predictive 
values, Xiong et al. optimize the GM(1,1) by inserting weight co
efficients to each element, and the new model is named OICGM(1,1). 

x̂(1)
(t)

⃒
⃒

t=β = α1x(1)(1)+ α2x(1)(2)+⋯+ αnx(1)(n) (9)  

in which α1 + α2 + ⋯ + αn = 1, αk = k/
∑n

k=1k, k = 1, 2,⋯, n and β is 
time parameter. 

TRF function of whitened equation with this initial condition is 
transformed to be: 

x̂(1)
(t) |t=β =

[

α1x(1)(1) + α2x(1)(2) + ⋯ + αnx(1)(n) −
b
a

]

⋅e− a(k− β) +
b
a

(10) 

In view of different influential level of each element in 1-AGO 
sequence of the prediction results, the initial condition of the whit
ening equation is modulated by a newly imported weight coefficient, in 
which data of more recent years are more influential to the predictive 
value of the next year. Such an initial condition is able to enhance 
overall timeliness of the model. Data in 1-AGO sequence can be 
computed by Eq. (11) as below [24]: 

x̂(1)
(t)

⃒
⃒

t=β = wn− 1x(1)(1)+wn− 2x(1)(2)+⋯+wn− nx(1)(n) =
∑n

k=1
wn− kx(1)(k)

(11)  

where w(0 < w < 1) denotes the dynamic weight coefficient and β is the 
time input. 

3.2. The Rolling IMSGM(1,1) model 

The so-called initial condition in grey prediction includes the dy
namic weight coefficients, whose impact on the forecasting performance 
is reflected in different influential levels of historical data onforecast 
results. Although many scholars have made adjustments to these co
efficients, we can see from Fig. 5 that results obtained by different initial 
condition determination methods are still fixed values. In the newly 
proposed IMSGM(1,1) model, the result from ant colony algorithm 
(ACO) makes the initial coefficient be a dynamic parameter, which is not 
bounded by exponential or linear trend and can be better modulated 
when the trend changes. 

According to the initial condition put forward in Section 3.1, co
efficients [w, t]T can be expanded into higher-order polynomials for the 
purpose of converting the fixed coefficient in the initial condition of TRF 
to dynamic coefficients. 

As a special form of the Taylor series, the Maclaurin series depicts the 
given function with information on certain points to describe its value 
near the formula. If the function is smooth enough, derivative values of 
coefficients of Taylor’s formula in a known function of certain points can 
be used to build a polynomial approximation function, which can help 
obtain value of this field with a polynomial function to approximate a 
given function. To avoid fixed initial condition that might bring about 
grey model’s inner errors, we assume that the relationship between the t 

th accumulated value at time t namely x̂(1)
(i)

⃒
⃒
⃒
i=t

, (t = 1, 2,⋯, n, n + 1,⋯ 

) and each original accumulated value of given data namely x(1)(i), (i =

Fig. 4. Procedures of basic GM(1,1).  
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1, 2,⋯, n) is appointed to grow at the same exponential. Then, the novel 
coefficient can be folded into the Maclaurin series expansion. 

In line with the Taylor mean value theorem, if function f(x) has a 
derivative up to (n+1)th in some open interval (a, b) which contains x0, 
then for ∀x ∈ (a,b), there is: 

f (x) =
f (x0)

0!
+

f ’(x0)

1!
(x − x0)+

f ’’(x0)

2!
(x − x0)

2
+⋯+

f (n)(x0)

n!
(x − x0)

n
+Rn(x)

(12)  

where Rn(x) is the residual terms and Rn(x) =
f (n+1)(ξ)
(n+1)! (x − x0)

n+1, ξ is 
between x0 and x. There are several ways to express the residual terms of 
Taylor’s formula, and we employ the Lagrange residue term of Taylor’s 
nth order expansion in which the remainder of the nth order Taylor’s 
formula is further expanded in to (n + 1)th. 

When x0 = 0, the function is denoted as Maclaurin series. Therefore, 
the formula is substituted as: 

Fig. 5. Common forms of initial conditions in grey models.  

Fig. 6. Diagram of the operating principle of Rolling mechanism.  
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f (x) = f (0)+ f ’(0)x+
f ’’(0)

2!
x2 +

f ’’’(0)
3!

x3 +⋯+
f (n)(0)

n!
xn +

f (n+1)(θx)
(n + 1)!

xn+1

(13) 

By applying the value from the novel grey model, wx− 1 is substituted 
into Maclaurin formula, whose expansion can be obtained as:   

In this form, uneven influential levels of each individual element to 
the AGO sequence are reflected by inserting a dynamic weighted 
coefficient. 

Rolling mechanism (also known as Metabolic mechanism, whose 
theory is identical) is an efficiency technique to enhance forecast ac
curacy of grey model with exponential and chaotic data and use up-to- 
date data with good timeliness, which closely follows the rule of new 
information priority that recommend selecting recent data. In this way, 
data can be utilized to a large extent. In existing works, Rolling mech
anism has been applied to various forecast models in different domains 
[24,28,41–43]. In Fig. 6, the principle of RM utilized in prediction 
models is expressed. 

Through methodologies introduced above, optimal results of the 
higher-order polynomial can be obtained. Coefficients w and t are 
calculated by reversing the Maclaurin series formula. The prediction 
process progresses through the time response function. 

4. Modeling steps and solution methods 

4.1. Framework of the Rolling IMSGM(1,1) model 

Given that data for the object to be predicted is generally of little 
regularities, it is not an easy task to figure out its future growth trend. 
Grey prediction looks for the inner law of historical data andbuilds a 
model accordingly, and the predict procedures can be implemented to 
obtain the solution of the model. Previous studies investigated factors 
associated with the accuracy of forecast models and found that grey 
models with fixed initial conditions possess limited applicability to data 
of various features. Inspired by the small amount of data required for 
grey model, Rolling IMSGM(1,1) is established on the basis of GM(1,1) 
for electricity consumption gap forecast during the coronavirus 
pandemic. In this article, we present a novel model with an initial 
condition in the form of Maclaurin series for the purpose of raising 
precision in the original GM(1,1). Framework of the IMSGM(1,1) is 
presented in Fig. 7. 

Traditional grey model uses least square estimation to solve the 

parameters, which is far less accurate than other optimization algo
rithms. In this study, PSO algorithm is adopted to preliminarily deter
mine the parameters which can reduce the computing time in 
subsequent processes. The optimal results from PSO are taken as the 
initial input of Maclaurin expansion. Since the operation of polynomials 
permits only addition, subtraction and multiplication, polynomials are 

generally utilized in terms of numerical calculation. To obtain higher 
accuracy, the function must be approximated by polynomial of higher 
degrees, and the error formula should be given at the same time. Af
terwards, an intelligent bionic algorithm known as ACO is combined to 
help adjust the coefficients of higher order polynomials in the 
Maclaurin’s expansion by taking the minimum fitting deviation from the 
actual values as the fitness function to obtain better results. Specific 
solutions to each parameter and the application of intelligent algorithms 
will be introduced in detail in the following section. 

4.2. Calculation of grey coefficients 

In order to obtain parameters involved in Rolling IMSGM(1,1), two 
intelligent algorithms namely PSO and ACO, are selected to solve these 
parameters. Firstly proposed by Kennedy and Eberhart [44], PSO has the 
traits of well robustness, search proficiency and can avert unreasonable 
convergence, and has been widely used in many fields [45]. With the 
accumulation of iterations, the optimal individual in the group can be 
found and the parameters are determined accordingly. ACO algorithm is 
designed for simulating ant foraging behavior which abstract the char
acteristics of the ant colony foraging into mathematical descriptions to 
solve optimization problems [46]. ACO algorithm has the advantage of 
positive feedback mechanism that makes the probe procedures converge 
continuously and approximate the optimal path. Traditional ACO al
gorithm has a slow convergence rate and is prone to local optimum 
while PSO is easy to prematurely converge while its local search ability 
is not satisfying [32]. After evaluating the pros and cons of the two al
gorithms, Rolling IMSGM(1,1) model utilizes PSO algorithm to acquire 
the initial value of vector [w, t]T and ACO algorithm to conduct path 
optimization under the action of pheromone to obtain the optimal co
efficients in Maclaurin series. How these two algorithms are used in this 
model is presented below. 

PSO algorithm first assumes that a bunch of random particles exists, 
then initialize their velocities and positions within a certain searching 
space. 

xi = rand × xmax 

Fig. 7. Flowchart of methodologies utilized in IMSGM(1,1).  

f (x) = wx− 1 = wx− 1
⃒
⃒

x=0 +
(
wx− 1lnw

)⃒
⃒

x=0x+
(
wx− 1ln2w

)⃒
⃒

x=0

2!
x2 +

(
wx− 1ln3w

)⃒
⃒

x=0

3!
x3 +⋯+

(wx− 1lnnw)|x=0

n!
xn +

(
wx− 1lnn+1w

)⃒
⃒

x=0

(n + 1)!
xn+1 (14)   
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vi = rand × vmax  

where xmax represents the maximum value of particles’ position, vmax 
represents the upper bound of speed of particle, which can be estimated 
within range. 

The position and velocity of each particle updates as follows: 

xi = xi + vi, i = 2, 3,⋯  

vi = w × vi + c1 × rand × (pbesti − xi)+ c2 × rand × (gbesti − xi), i

= 2, 3,⋯  

where c1, c2 are acceleration factors, rand is a random variable within 
the range rand ∈ [0,1]. 

The function to evaluate fitness value in PSO adopts minimal Mean 
Absolute Percentage Error (MAPE), whose construction is expressed as: 

fitness[Q(i, j)]T =
1
n
∑n

k=1

⃒
⃒x̂(0)

(k) − x(0)(k)
⃒
⃒

x(0)(k)

=
1
n
∑n

k=1

⃒
⃒
⃒
⃒

[
∑n

i=1wn− ix(1)(i) − b
a

]

(1 − ea)e− a(k− t) − x(0)(k)
⃒
⃒
⃒
⃒

x(0)(k)
(15) 

Each particle updates its location through following two optimal 
values: one is determined by each particle, which is denoted as personal 
best (abbreviated as pbest) and the other by the whole population 
(abbreviated as gbest). Each particle updates its value when individual 
fitness value conforms to the comparison expression 
pbest(i) < gbest[47]. 

Analogies to other intelligent algorithms such as GA (genetic algo
rithm) and PSO, ACO also has its own optimization strategy. The basic 
idea of ACO is to use the paths of ants on behalf of available methods for 

the unsolved problem. Individuals with shorter paths release more 
pheromone and all paths by the whole group make up for solution set of 
the problem. According to the principal to track the shortest path, the 
number of ants that choose the shorter path and the concentration of 
pheromones accumulate simultaneously, thus finding the optimized 
path. 

Before calculation, relevant parameters should be initialized, 
including colony size (numberofant), maximum iteration number 
(iterationnumber), limitation of maximum step (steplimitation) and the 
number of iterations (iter). The initial position of the ant colony is from 
the extended results of Maclaurin’s formula which is expressed as 
initialposition = (f(1), f(2), f(3),⋯, f(k)). 

During iterations, the location of each individual in the colony is 
recorded as a two-dimensional variable antposition, which composes 
rows as numberofant and columnsas initialposition. Best position in his
tory of the whole group is denoted as historypositionbest. The calculation 
process of the position of each particle is denoted as process and is 
defined as a matric of the same dimension as antposition, which depicts 
the specific procedure to estimate path of particles. The entire process of 
the model proposed in this paper is shown in Fig. 8, including how the 
introduced intelligent algorithms adjust the coefficients in the grey 
model. 

Fitness function of ACO method adopts the minimal MAPE results the 
same as PSO as presented in the equation below: 

process(i, : ) = fitness[Q(i, j)]T =
1
n
∑n

k=1

⃒
⃒x̂(0)

(k) − x(0)(k)
⃒
⃒

x(0)(k)

=
1
n

∑n

k=1

⃒
⃒
⃒
⃒

[
∑n

i=1wn− ix(1)(i) − b
a

]

(1 − ea)e− a(k− t) − x(0)(k)
⃒
⃒
⃒
⃒

x(0)(k)
(16) 

The iteration number i updates from 1 to iterationnumber after each 

Fig. 8. Structure of the newly proposed IMSGM(1,1) model.  
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iteration. 
The history best position takes the minimal fitness value of position 

in the previous iteration, and updates the optimal position of each in
dividual by 

historypositionbest(i+ 1, : ) = historypositionbest(i, : )

antposition(j, : ) = historypositionbest(i, : )

Change the position of particle in each iteration, and constrain its 
moving step size. Random movement in each direction is carried out to 
achieve this iteration by the following equation: 

antposition(j, : ) = antposition(j − 1,

: )+ (steplimitation(1, 2) − steplimitation(1, 1) )*(rand − 0.5);

Compute the distance of each ant’s path and record the optimal so
lution (shortest path) in the current iteration number. At the same time, 
the pheromone concentration in the connection path of each position is 
updated. After the iteration is completed, account the iteration number, 
and let historyposition(nn, : ) = antposition(j, : ). m is the fitness value 
obtained by procedure process, if m < minvalue, then let 

minvalue = m, process(i+ 1, 1) = minvalue  

historypositionbest(i+ 1, : ) = antposition(j, : )

To illustrate the method, value of jth antposition is assumed to be the 
minimal. 

Define xstaras the optimal result of the algorithm: 

xstar = historypositionbest(iterationnumaber + 1, : )

When iteration time is smaller than the presupposed maximum 
number, the number of iterations increases by one and go back to the 
steps of constructing the solution space; otherwise, the calculation is 
terminated and output the optimal solution. 

In this way, coefficients in front of higher-order polynomials are 
adjusted to minimize the errors, so as to obtain more accurate fitting 
equations and increase the prediction accuracy. Replace the coefficients 
in Maclaurin’s formula expansions with ACO achieved results, we can 
attain a more precise conclusion of vector [w, t]T. 

In the form of grey prediction models, we insert w and t into the 
whitened GM(1,1) formula, then TRF is transformed as: 

x̂(1)
(k) =

[
∑n

i=1
wn− ix(1)(i) −

b
a

]

e− a(k− t) +
b
a

(17) 

Depending on the results of winterization function mentioned above, 
we attain the restored function as follows: 

x̂(0)
(k) = x̂(1)

(k) − x̂(1)
(k − 1) =

[
∑n

i=1
wn− ix(1)(i) −

b
a

]

(1 − ea)e− a(k− t)

(18)  

5. Case study 

5.1. Model accuracy analysis 

In this section, monthly electricity consumption in the first quarter of 
2019 in China is predicted to testify the precision of Rolling IMSGM 
(1,1). To appraise the performance of different models, we select three 
performance evaluation indicators namely PE (percentage error), RMSE 
(root mean square error), and MAPE. PE is the relative error multiplied 
by 100%. RMSE utilizes the average error to sensor aberrant points, if 
values at some points are abnormal, the error will increase largely and in 
turn affect RMSE results. The MAPE criterion is proposed for evaluating 
prediction model, taking the numerical value of errors as well as the 
deviation proportion into consideration [21]. The three frequently-used 

error metrics mentioned above are as Eq. (19) to Eq. (21). Test results 
have been compared with other forecasting methodologies put forward 
in previous researches. Same testing data is applied to GM(1,1), GM 
(1,1)-x(1)(n) [22], OICGM(1,1) [23], IRGM(1,1) [26] and Rolling NOGM 
(1,1) [24] to achieve competitive results. 

The definitions of the three criteria are as follows: 

PE =

⃒
⃒
⃒
⃒
(x(k) − x̂(k))

x(k)

⃒
⃒
⃒
⃒ (19)  

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
(x(k) − x̂(k))

x(k)

⃒
⃒
⃒
⃒ (20)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(x(k) − x̂(k))2

√

(21)  

where n is the total time series number; x(k) represents real data at time 
k; x̂(k) represents the predictive value at time k. 

Before the prediction, multiple cases have been organized to select 
the amount of input data. Considering the number of input data 
commonly used in the field of energy forecast by grey models, we 
sequentially use 5 to 8 historical data as input. Then, data in the 
following years are selected to verify the prediction accuracy. Based on 
the existing data, MAPE values are calculated. As shown in Fig. 9, when 
7 historical data are selected as input, the error is the smallest. 

Results in Fig. 9 are obtained by accounting the MAPE in the 
following four years. As can be seen from the figure, when the same data 
are used for prediction, using seven historical data as the model input 
leads to smaller prediction error than using other input data number. 
Though Rolling Mechanism has been widely used in many areas, this 
study applies electricity consumption data to the model combined with 
rolling mechanism, which turns out to achieve smaller error than the 
original model. Prediction results of annual power consuption are given 
in Table 1. Additionally, fitting graphs are presented as Fig. 10 to 
directly display the results of Rolling IMSGM(1,1). 

To further illustrate the progress of the prediction, electricity con
sumption data from 2012 to 2018 in China are selected as model input. 
By unfolding coefficient w achieved through PSO algorithm into 
Maclaurin series, the initial position for ant colony in ACO algorithm are 
obtained. In this study, we expand the coefficient to a seventh-order 
polynomial. Coefficients a and b of grey model are obtained by least 
square method, and then by PSO, [w, t]T is calculated as shown in 
Table 2. The expanded form in this case is obtained as shown in Table 2. 
Substitute the expanded coefficient optimized through ACO algorithm 
into Maclaurin expansion formula, assign the result to [w, t]T, and also 
conduct predicting process through TRF. All parameters in Table 2 are 
non-dimensional. 

The optimized results by ACO are named xstar. When the ACO al
gorithm accesses the minimum fitness value, it is then accumulated in 
turn to obtain a fitting value as the optimal value of [w, t]T. Other related 
models are selected including traditional grey model and models that 
optimize the initial conditions. Forecast results are listed in Table 3. 

Rolling IMSGM(1,1) can detect fluctuations through rolling mecha
nism so as to be more accurate in the phase of predicting for the 
following years. Models with rolling mechanism take advantage of 
newly achieved data to calibrate the orientation for energy growth, 

Fig. 9. Comparison of the prediction errors of different input data number.  
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which can better control the latest growing tendency of power 
consumption. 

It can be directly seen from Table 4 that error analysis by the three 
indicators proves the performance of Rolling IMSGM(1,1), with per
centage errors at the values of 0.41, 0.38 and 0.23 for the first three 
months in 2019 separately. In aspect to criteria MAPE and RMSE, 
Rolling IMSGM(1,1) obtains 0.34 and 19.61 by the computational 
outcome, which is less than other models. 

For the initial condition proposed in this paper, IMSGM (1,1) out
performs other non-rolling models in the monthly electricity prediction 
tests. Although GM(1,1)-x(1)(n) is generally referred to as a grey model 
with optimized initial condition, in the case study, OICGM(1,1) and 

NOGM(1,1) does not provide forecast results as good as GM(1,1). 
Such accurate predictions with small errors have much to do with the 

optimal initial conditions of dynamic weighting coefficients that can be 
expanded into higher order polynomials. Therefore, the Rolling IMSGM 
(1,1) can judge the features in power system based on the data growth 
trend and provide the best behaviors in the competition models. More
over, the Rolling IMSGM (1,1) possesses higher prediction precision 
than other grey prediction models, indicating that coefficients calcu
lated before the expansion of the high-order polynomial using the ACO 
algorithm is optimized. Prediction accuracy plays an important role. The 
rolling mechanism is an important factor in optimizing the success of the 
initial conditions. Therefore, Rolling IMSGM(1,1) is the optimal method 
for forecasting power consumption. 

5.2. Electricity consumption gap research in China during COVID-19 

Since the accuracy of the model has been verified, the impact of 
COVID-19 on power consumption is analyzed to comprehend the pro
cess of the resumption work under the current situation. 

Through the observation of monthly historical power consumption 
data listed in Table 5, it can be found that power consumption of each 
month within a year is not very much the same, such as the low ebb in 
February and peaks in summer. Power consumption data in the past few 
years are selected as the model input to achieve the predictive con
sumption gap under the COVID-19 situation, whose results are shown in 
Table 6. 

According to data released by the Office of Health Emergency of 
China, the number of new and cumulative diagnosed with COVID-19 

Fig. 10. Fitting curves of Rolling IMSGM(1,1).  

Table 1 
Comparison results of rolling mechanism combined model (100 million kwh).   

2017 2018 2019 

IMSGM(1,1) 5061.34864 5274.6981 5497.0408 
Rolling IMSGM(1,1) 5061.34864 5286.51501 5684.84949 
Real 5168.9 5283.4 5697.9  

Table 2 
Parameter achieved from Rolling IMSGM(1,1).  

Years a  b  w  t  xstar  

Jan-20 − 0.06599 3,923.26 0.208727 7.997181 [− 0.0005856,0.0064261,− 0.0149236,− 0.0076881,− 0.0079772,− 0.012396,− 0.0073472] 
Feb-20 − 0.05995 3,290.47 0.294207 8.796217 [− 0.0001080,0.0008382,− 0.000523,0.0022754,− 0.0134055,− 0.0090861,0.0040955] 
Mar-20 − 0.04948 4,081.00 0.210646 8.167102 [− 0.0001231,0.0013373,− 0.0037269,0.0011311,0.0149984,0.0021661,− 0.012713874] 
Apr-20 − 0.05040 3,859.10 0.153986 7.678601 [− -0.000376056, 0.004126913,− 0.010150526, − 0.001144183,− 0.005941807,0.0073773,0.0032196]  

Table 3 
Forecasted results by different forecasting models (100 million kwh).   

Real 
data 

GM 
(1,1) 

GM(1,1)- 
x(1)(n) 

OICGM 
(1,1) 

NOGM 
(1,1) 

Rolling 
IMSGM 
(1,1) 

Jan- 
19 

6090.9 5934.02 6146.68 5874.64 5850.66 6065.69 

Feb- 
19 

4891 4829.83 4903.56 4905.60 4832.70 4872.36 

Mar- 
19 

5697.9 5556.93 5630.06 5570.64 5533.02 5684.85  

Table 4 
PE, MAPE and RMSE calculated for each model(%).  

Evaluation index GM 
(1,1) 

GM(1,1)- 
x(1)(n) 

OICGM 
(1,1) 

NOGM 
(1,1) 

Rolling 
IMSGM 
(1,1) 

PE of forecast 
results in Jan- 
19 

2.58 0.92 3.55 3.94 0.41 

PE of forecast 
results in Feb- 
19 

1.25 0.26 0.30 1.19 0.38 

PE of forecast 
results in Mar- 
19 

2.47 1.19 2.23 2.89 0.23 

MAPE 2.10 0.79 2.03 2.68 0.34 
RMSE 126.79 51.22 145.12 171.56 19.61  
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since January 20th and existing cases since February 6th are plotted 
above as shown in Fig. 11. As can be seen from the figure, sincethe novel 
coronavirus was confirmed in China in late January, the number of daily 
confirmed cases peaked in February. Since March, the situation in China 
leveled off which is consistent with the trend of power consumption 
differences. Owing to the pandemic, many parts of China have been 
sealed off since January, and residents are self-quarantine at home. With 
the improvement of the situation, these lockdowns are gradually lifted, 
and the emergency response levels nationwide are reduced, travels are 
no longer restricted, and the return to work and production proceed 
gradually. Data of newly confirmed COVID-19 cases is readily available, 
while it may not have a direct impact on changes in electricity con
sumption. To determine whether there is a strong relationship between 
the number of confirmed cases and the reduction in power consumption, 
Pearson correlation coefficient (PCC) is used to analyze the correlation 
of gap prediction results and the confirmed cases. PCC is a measure of 
the degree of correlation between two variables. It is a value between − 1 
and 1, while 1 means the variable is completely positive correlation, 
0 means nothing, and − 1 means completely negative correlation. This 
coefficient is widely used to measure the degree of correlation between 
two variables. Results of PCC between the number of confirmed active 

cases from January to April and the consumption gap predicted by 
Rolling IMSGM(1,1) are shown in Table 7 as below. 

The PCC value reaches 0.846, indicating a strong positive correlation 
between electricity consumption gap and the number of active COVID- 
19 cases. COVID-19 outbreak began in Wuhan, China, in mid-to-late 
January and peaked in February in nearly all provinces. With 
improved detection capabilities and better response to the outbreak, the 
epidemic has been well under control since March. As a result of the 
outbreak, many people work from home or do not work at all, making 
less use of productive capacity, office buildings and electrified public 
transport. Since the implement of lockdown policies, more people cook 

Table 5 
Historical monthly power consumption data in the first quarter of a year in China (100 million kwh).  

Month Year 

2012 2013 2014 2015 2016 2017 2018 2019 2020 

January 3485.6 4199.2 4328.1 4907 4889.7 4827.3 5897.5 6090.9 5805 
February 3701.7 3374 3833.6 3653.9 3812 4488 4557 4891 4398 
March 4109.2 4194.3 4527.7 4510.6 4778.8 5168.9 5283.4 5697.9 5493 
April 3718.2 3994.4 4250.2 4450.3 4444.5 4767.2 5107.8 5440.2 5572  

Table 6 
Prediction results of electricity consumption in the first quarter of 2020 (100 
million kwh).  

Month Forecast results of Rolling 
IMSGM(1,1) 

Consumption 
gap 

Decline proportion 
(%) 

January 6234.95 429.95 6.90 
February 5032.04 634.04 12.60 
March 5807.09 314.09 5.41 
April 6234.95 60.83 0.98  

Fig. 11. The number of daily confirmed cases of COVID-19 in China.  

Table 7 
Prediction results of electricity consumption in the first quarter 
of 2020 (100 million kwh).  

Pearson correlation coefficient 0.846 

significance (two-tailed test) 0.154 
number of cases 4  

Table 8 
The proportion of electricity consumption of different industries in the whole 
society in China in 2020.   

Primary 
industry 

Secondary 
industry 

Tertiary 
industries 

Urban and rural 
residents’ 
consumption 

January 1.05% 63.70% 18.86% 16.40% 
February 1.21% 57.37% 18.94% 22.46% 
March 0.95% 68.27% 12.78% 17.99% 
April 1.11% 70.06% 14.29% 14.54% 
May 1.16% 70.47% 15.02% 13.35%  
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or use electricity for entertainment at home. Table 8 shows a growth in 
the proportion of urban and rural residents’ electricity consumption due 
to the lockdown, and the proportions are higher from January to March. 
As the main content of electricity consumption in the secondary in
dustry, industrial electricity consumption, including the production and 
supply of light industry, heavy industry, power and heat industry, 
chemical raw material and chemical products manufacturing, petroleum 
processing and construction industry, has been greatly reduced due to 
the pandemic blockade. In line with our prediction results, there has 
been a gap in electricity consumption nationwide since January, which 

is consistent with the increasing trend of the number of COVID-19 cases 
and also reached its maximum value in February. As the outbreak was 
brought under control, the electricity shortfall steadily declined in 
March and April. 

As the pandemic in China has gradually become under control, in
dustrial enterprises have speeded up the resumption of work and pro
duction. Residents are now allowed to return to their work as the 
lockdown policies eased, thus weakened its impact on electricity con
sumption. Compared with February, the worst period of the pandemic, 
electricity consumption in March fell by 5.41%, which is 7.19 

Fig. 12. Power consumption gap caused by the COVID-19 and the number of confirmed cases in provinces of China Mainland.  
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percentage points less than that in February. The gap fell 4.43% in April 
from March. It is expected that the growth rate of electricity consump
tion in the whole society in the second quarter will pick up further than 
the first quarter. 

Based on the historical data of electric power production and the 
existing gap analysis model, this paper analyzes the influence of electric 
power production capacity by provinces. As shown in Fig. 12, the in
fluence of COVID-19 on power industry is not exactly the same in 
different areas in China, but the overall trend turns out to be the same as 
mentioned in the disease severity in timeline. For instance, in the in the 
northeastern region, provinces like Jilin, Liaoning and Heilongjiang, 
where a large number of imported cases have been reported, March 
becomes the period with the largest proportion of electricity production 
gap values. 

For most provinces in China, January and February are the worst 
months of the pandemic. For example, the number of confirmed cases in 
Zhejiang province in these two months is 1205, resulting in a gap of 1.4 
× 108 kwh in electricity consumption. In March, there were 13 new local 
cases in Zhejiang province, including 39 imported cases from abroad. 
The gap value of electricity consumption was 4.89 × 107 kwh. In April, 
there were 0 new local cases and 11 imported cases in Zhejiang prov
ince, and the gap value of electricity consumption was 2.77 × 107 kwh. 

In Northeast China’s Heilongjiang Province, a total of 480 cases were 
confirmed in January and February, resulting in a decrease in electricity 
consumption of 1.62 × 107 kwh. In March, there were 4 confirmed cases 
and 2 imported cases. In April, 74 local cases were confirmed in Hei
longjiang province, and 118 imported cases were confirmed, resulting in 
a reduction in power consumption of 0.934 × 107 kwh. As the province 
rich in tourism resources, Yunnan suffered from a large drop in the 
volume of passengers due to the blockade policy, resulted in a large 
consumption gap. As the number of confirmed cases in Hubei province is 
relatively large compared with other provinces, it is not listed in the 
figure, and its trend is roughly similar to that of other provinces: in the 
first two months of 2020, 66,907 cases were confirmed accumulatively, 
resulting in 9.25 × 107 kwh consumption gap, while in March, 895 cases 
were confirmed, and the consumption gap was 4.70 × 107 kwh; in April, 
326 patients were diagnosed with the power consumption gap of 8.08 ×
106 kwh. 

From the figure above, it can be concluded that the power system in 
China is gradually being restored, and the power production capacity in 
some areas has exceeded the expected level by 2020. In order to ensure 
the safe and stable supply of energy and power, it is necessary to 
accelerate the establishment and improvement of auxiliary services such 
as peak-regulating and frequency modulation, continuously improve the 
peak-regulating capacity of the power system, and ensure the power 
infrastructure supply chain. 

6. Conclusion 

In the current situation, forecasts of power consumption gap have 
obtained new significance, revealing the process of resumption and 
analyzing the severity of the epidemic in different periods. Unlike other 
natural disasters such as earthquake and tsunami, the outbreak of 
COVID-19 has little impact on power infrastructure, so it remains to be 
seen whether electricity consumption will recover to pre-pandemic 
levels. 

This paper proposes a new type of forecast model for evaluating the 
impact on electricity consumption due to lockdown measures under the 
COVID-19 epidemic. According to the principle of new initial condition 
that can be expanded into the Maclaurin series, GM(1,1) has been 
improved by using weight coefficients to all elements in 1-AGO sequence 
to illustrate the influential level of each element to the predictive result. 
Parameters in the new model are preliminarily evaluated by PSO algo
rithm, which is expanded through Maclaurin series to obtain a high- 
order polynomial in the following step. The optimized model over
comes the deficiency in previous works by substituting for the fixed 

initial condition, uses more precise fitted curve to grasp the growth 
trend and outputs the electricity consumption gap generated from the 
pandemic. 

Results show that in China, the largest consumption gap occurs in 
January and February. As the number of confirmed cases stabilizes and 
active cases reduced to less than 1000, electricity consumption in April 
2020 has exceeded the number in 2019, while the consumption level in 
April is still affected by the pandemic as there is certain gap according to 
our research results. It can be concluded that the deviation of the overall 
electricity consumption depends on the severity of the pandemic and the 
degree of lockdown policies. The increase in the number of diagnoses 
and the implement of hard lockdown policies have led to a large decline 
in consumption data. Model proposed in this study reflects the stage of 
the pandemic in China by predicting the consumption gap, so that 
preparations for the design of new strategies to help reduce the impact of 
COVID-19 can be carried out appropriately. 

At the same time, for future emergencies or other severe public 
health threats, model established in this paper can also be used for 
impact analysis. Although this paper is discussing the scenario of 
COVID-19 pandemic in China, model proposed in this paper can also be 
extended to analyze the impact in other countries. Moreover, power 
consumption habits and the attitudes of the public toward energy usage 
may have changed due to the long lockdown period. Factors like that 
haven’t been taken into account in this paper. Potential changes in the 
user behavior concerning power consumption caused by COVID-19 can 
be explored further in future studies. 
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