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Abstract

The vast majority of human genes undergo alternative splicing, and dysregulation of alternative 

splicing contributes to tumor initiation and progression. Computational analysis of genomic and 

transcriptomic data enables the systematic characterization of alternative splicing and its 

functional role in cancer. In this review, we summarize the latest computational approaches to 

studying alternative splicing in cancer and the current limitations of the most popular tools in this 

field. Finally, we describe some of the current computational challenges in the characterization of 

the role of alternative splicing in cancer.

Keywords

alternative splicing; computational analysis; cancer; spliceosomal mutations

mRNA Splicing and Altered Regulation in Cancer

Pre-mRNA splicing is required for the maturation of almost all mammalian mRNAs. 

Alternative splicing (AS) refers to the process by which a pre-mRNA can be processed into 

different mature mRNA molecules where an exon/intron could be differentially included/

excluded by the choice of alternative specific splice sites (Box 1). Alternative splicing 

enables variable transcripts from the same DNA template, and plays an extensive role in 

generating protein complexity [1]. It has been estimated that in humans around 95% of 

genes undergo alternative splicing to produce a large variety of transcripts in a cell, tissue 

type, and condition-specific manner [2, 3], which suggests that most cellular processes are 

dependent on the splicing machinery.
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Accumulated evidence shows that aberrations in the splicing process could contribute to 

cancer initiation, progression, and treatment failure through switching isoform expression of 

key proteins involved in apoptosis, metabolism, and cell signaling [4, 5]. For instance, 

alternate isoforms of pyruvate kinase M (PKM) and epidermal growth factor receptor 

(EGFR) that are frequently expressed in glioma affect metabolism and promote tumor 

proliferation [6, 7]. The variant isoform of CD44 is well studied in many cancer types and 

associated with epithelial to mesenchymal transition [8, 9]. In melanoma, expression of 

splicing isoforms of BRAF(V600E) lacking the RAS-binding domain confers resistance to 

RAF inhibitors [10]. Similarly, in prostate cancer, expression of the androgen-receptor 

isoform encoded by splice variant 7 lacking the ligand-binding domain is associated with 

resistance to enzalutamide and abiraterone [11].

Cancer-associated AS events can occur by two main mutation mechanisms. Cis-acting 

somatic mutations can hinder splicing of individual introns or generate new splice sites. For 

instance, distinct splice-altering mutations are found in the p53 tumor suppressor gene 

(TP53), introducing novel stop codons that truncate the protein [12]. Splicing can also be 

deregulated by trans-acting mutations in splicing regulatory proteins including SR proteins, 

hnRNPs and other splicing factors (Box 1). Dysfunction of such proteins may have a larger 

impact on splicing dysregulation and even alter the entire transcription network [13]. 

Recently, large-scale genomic analysis has revealed the mutational landscape of splicing-

related genes in human cancers [14] and provided genetic evidence directly linking RNA 

splicing regulation to cancer (Box 2).

Given the high prevalence of splicing dysfunction in cancer and its pervasive effect on the 

transcriptome, significant computational efforts are needed and have been invested for the 

identification and quantification of AS events on a genome-wide scale. Computational 

analyses provide a more complete understanding of how splicing dysfunction alter splicing 

globally in cancer, and become a fundamental step before down-stream experimental 

investigation in most studies of cancer splicing. The scope of this review is the discussion of 

the latest development, possible improvement and current challenges of computational 

studies in characterization the role of alternative splicing in cancer.

Computational Deciphering of Splicing Dysregulation

The increase in read-depth and decrease in cost of high-throughput RNA-sequencing data 

(RNASeq) has enabled the systematic characterization of alternative splicing in a context-

dependent manner (Figure 1). The analysis of these data was enabled by a variety of 

computational tools developed in the last few years [15–17]. However, the output of these 

tools varies significantly, sometimes with dramatic differences, leading to conflicting 

interpretations [16].

These computational tools mainly fall into two methodological categories: AS detection on 

the 1) whole transcript level or 2) specific event level (Figure 1B). Early studies used 

transcriptome deconvolution to reconstruct full-length isoforms and quantify the relative 

expression abundances of each isoform (for instance, Cufflinks [18], DiffSplice [19] and 

MISO [20]). However, transcriptome reconstruction is overall a challenging problem and is 
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especially complicated in long genes with many transcripts [21]. It is often more convenient 

to directly focus on each AS event given the specific exon and junction information. For this 

reason, most of the extensively used and validated tools used today are event-based (for 

instance, rMATS [22], MAJIQ [23] and JuncBASE [24]). In these tools, local AS events are 

first identified in each sample using variable exon reads and junction reads (linking exons or 

cryptic intronic splice sites) between biological conditions or from a background annotation 

dataset. Next, a value is assigned to quantify the ratio of expression switch on each AS 

event. The most commonly used measure is called Percent-Spliced-In (PSI), a value in the 

interval zero to one, which provides the fraction of mRNA reads supporting each AS event. 

Adjustments of PSI evaluation can be found across different tools, including normalization 

to junction and read length (rMATS), correcting for GC content (MAJIQ), and batch 

difference between samples (JUM [21]). After quantification and correction, one can 

identify significant alternatively spliced events using proper statistical evaluation across 

experimental conditions.

While many tools limit their detection power to currently well-annotated references, 

detecting unannotated events with novel splice sites requires different strategies. For 

instance, SF3B1 hotspot mutations induce novel 3’ss usages, many of which are not reported 

in the latest annotation of functional isoforms [25]. One conventional solution is to enlarge 

the feed-in reference by generating a dataset-specific .gtf file, by using tools (e.g. Cufflinks) 

to conduct the de novo isoform reconstruction. Most of the leading tools have been updated 

in recent years to include the feature of novel AS detection, which is more computationally 

intensive and often requires additional experimental validation.

These computational tools mainly report five common patterns of AS: skipping or inclusion 

of a cassette exon, alternative 5′ or 3′ splice site choice, intron retention, and mutually 

exclusive exons (Figure 1B), although certain complex or mixed pattern of AS can occur 

[21]. Many of these tools (e.g. rMATS, MISO, JuncBASE) preferentially report exon-

inclusion/skipping events, which are the most frequent AS pattern in animals. However, 

intron-related AS events have drawn increasing attention for their role in understanding 

tumorigenesis [26] and treatment design [27]. Identifying true-positive intron retention 

events is a difficult task, as it requires manual review of putative events in IGV due to the 

repetitive nature of intronic sequences (inaccurate read mapping) or un-annotated small/non-

coding transcripts from the antisense strand. Recently, an annotation-free tool, JUM, has 

been specifically designed for quantifying intron retention by requiring approximately 

uniformly distribution of reads across the entire intronic region to reduce false positive calls 

[21].

Some studies are not designed with distinct conditions affecting splicing, for instance, 

investigating any potential effects of splicing in a specific tumor cohort without prior 

knowledge of any splicing changes. These studies proceed first by the description and 

characterization of all AS events and then by the identification of potential regulators of 

these AS events. The most straightforward way is to directly correlate the inclusion level of 

each AS with different RBP status (e.g. genetic alterations or transcriptomic expression). 

This approach was used in a trans-splicing quantitative trait loci (sQTL) analysis that linked 

somatic single nucleotide variant (SNV) positions with alternative splicing changes in 8,255 
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samples [28]. In another example, all known binding motifs of each RBP were screened for 

a significant enrichment for matching nucleotide sequences in alternative splicing regions 

[29]. Such analyses are limited, because not all key splicing-related proteins directly bind to 

RNA, and not all RBPs have been confirmed with high confidence motifs.

A systematic evaluation of differential splicing tools applied to four datasets, using PCR-

validated splicing events as the background truth, found that MAJIQ and rMATS out-

performed other tools overall [16]. However, it is still highly recommended to use more than 

one tool due to the relatively large variability of the results reported by the different 

approaches [16]. Besides direct employment of publicly available tools, uniquely designed/

modified algorithms with enhanced sensitivity and specificity will no doubt be more 

powerful when applied to specific datasets by incorporating prior knowledge of the context-

dependent scientific question.

Notably, the computational workflow described above is built on second-generation short-

read RNA-seq technique. Natural limitations of short-read sequencing do exist to have an 

impact on AS detection, such as low unique-mapping rate, especially at complex loci. 

However, short-read RNA-seq still represents the standard and widely used method in cancer 

splicing analysis, not merely because the extensive computational efforts (as summarized 

above) but the low cost to produce high throughput reads. Intriguingly, a few studies 

estimate the effect of sequencing depth and length of short read RNA-seq on splicing 

analysis [16, 30, 31]. Overall, these studies suggest a minimum of 50 million reads per 

sample and length of 100 bp serving as a baseline for accurate splicing quantification.

The increasing use of long-read Nanopore or PacBio sequencing (see Glossary) have 

provided improved reconstruction of full spectrum of isoform profiles and solutions to many 

of the drawbacks of using short-reads in splicing (for instance, identification of full-length 

transcripts with retained intron). To date, growing interests and requirements accelerate the 

fast-pace development of computational tools (nicely archived at “https://long-read-

tools.org/”) for long-read sequencing in the last decade [32]. A part of these tools, for 

instance Iso-Con [33], SQANTI [34] and FLAIR [35], enable the full-length detection of 

alternative spliced transcripts. Typically, key steps of such detection pipelines include reads 

error-correction, subgroup clustering, reads collapsing and isoform annotation. Currently, 

the study of AS analysis using long-read technique is still at its early stage, and continuous 

efforts are needed to reduce the high false-positive rate of detected isoforms. And high-

quality isoform annotation tools and databases are required to keep pace with the novel 

transcript identification. Meanwhile, accurate quantification of isoform expression is still 

challenging, due to the relative low reads counts and sequencing coverage biases [32]. 

Meanwhile, sort-read techniques provide an excellent option to improve these limitations, 

because it has a larger throughput, lower error rates, and are widely used for many other 

analyses beyond splicing. Future best practices may involve coupled analysis using both 

techniques [36].
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Computational Refinement of Cancer-associated Aberrant Splicing

The next challenge after a successful characterization of AS events is the functional 

interpretation of their effects, i.e. how specific events may contribute to the diverse 

phenotypes expected in cancer cells (Figure 1B). The goal of this part of the workflow is to 

determine which of AS events are functionally relevant to cancer out of the full list of 

identified events. The first step is to extract significant changes between conditions, focusing 

on recurrent and robust/reproducible AS changes. One may apply different thresholds to the 

output of the computational splicing analysis, including thresholding the statistical q-value, 

the absolute changes in PSI, and the median read counts across replicates. For instance, 

when identifying cryptic 3’ss induced by SF3B1 mutations, a minimum PSI change of 0.2 is 

recommended (Low-abundance isoforms that confer gain-of-function or dominant-negative 

effect do exist, but are in general rare.) Ideally, we wish no cryptic reads (PSI=0) from wide 

type samples, under the assumption that an AS event will act as a perfect switch to turn on 

or off the carcinogenic 3’ss selection. However, after investigating the splicing patterns in 

more than 10,000 TCGA (The Cancer Genome Atlas) samples, one recent study found that 

this assumption does not reflect the biological reality. Widespread occurrence of weak 

cryptic 3′ss usage by many well-known targets of mutant SF3B1 (e.g. MAP3K7, PPP2R5A) 

was detected in samples without SF3B1 lesions and even in normal cells [37]. This result 

indicates that these cryptic 3′ss are inherently active and very faintly present in normal 

conditions, but are dramatically elevated in cases with SF3B1 hotspot mutations.

Another way to determine relevant AS events is by overlapping the identified events from 

different biological systems including patient data, CRISPR-based cell lines, and transgenic 

mouse models [38, 39]. Although animal models are becoming the top choice for 

mechanistic studies, genetic engineering usually requires an extensive amount of 

experimental effort and time, and the consistency of the splicing pattern between different 

species must be confirmed before a comparison can be made.

Functional AS events usually cause expression changes on gene or protein level. Most 

instances of intron retention or poison exon result in the introduction of premature stop 

codons upstream of the normal stop codon. Subsequently, there is nonsense-mediated 
decay (NMD) of the mRNA or production of a truncated protein. Thus, significant 

alternative splicing changes are expected to alter the expression of target genes. This 

information could be integrated into the identification of a shorter list of functional AS 

events (due to the poor overlap between AS targets and differential expressed genes). It is 

also expected that dysfunction of trans-acting splicing factors may alter the global regulatory 

network as a result of aberrant splicing events in key genes. Recent work [39] showed the 

impact of mutant SF3B1 on gene-regulatory networks by elucidating the effect of SF3B1 
mutations on post-translational regulation of multiple proteins with well-established roles in 

tumorigenesis.

Besides regulatory network analysis, previously curated cancer-associated gene sets can also 

be used to inform the functional effect of splicing events. A routine practice is to directly 

pool top-ranked AS target genes into functional enrichment analysis. Typically, the top terms 

involve splicing processes, like ‘mRNA splicing’, ‘mRNA processing’, ‘translation’ on the 
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top of the output list. But there would be very few disease-relevant terms with significant q-

values, because sometimes only one or two key splicing perturbations would be to enough to 

change the activity of particular pathways. Thus, how to effectively use pathway-based 

information in identifying cancer-associated AS events, are need to be better defined. A 

recent study developed a pathway enrichment-guided study of alternative splicing by 

correlating transcriptional signatures of cancer driver pathways with the identified AS events 

and established a role for MYC in regulating RNA splicing by controlling the incorporation 

of NMD-determinant exons in genes encoding RBP [40]. MYC is frequently altered in 

cancer cells and has long been recognized to have a genetic dependency on the splicing 

machinery [6, 41]. Targeting the spliceosome is a therapeutic vulnerability in MYC-driven 

cancers [42]. Interestingly, one recent study found that besides being a splicing regulator, 

MYC is also regulated by splicing errors in SF3B1-mutant cells [39].

In summary, identification of cancer-associated mis-splicing effects involves rigorous quality 

control of the raw AS calls to filter technical artifacts, cross validation using independent 

datasets or biological systems, and integration of alternative transcriptomic information, 

such as changes in regulatory network activity and dysregulated signaling pathways (Figure 

1B).

Computational challenges in cancer splicing

In the next four sub-sections, we discuss some interesting and challenging topics in cancer 

splicing, that can be addressed through computational approaches (Figure 2A–D).

Pan-Cancer Splicing Analysis

In the year 2012, TCGA launched a pan-cancer analysis project to compare to examine the 

similarities and differences among the genomic and cellular alterations across 12 tumor 

types [43, 44]. Investigating alternative splicing in a pan-cancer cohort is a standard 

computationally-driven task in disclosing commonly-shared and lineage-independent 

splicing landscapes (Figure 2A). A different analysis characterized alternative splicing 

across 32 TCGA cancer types from 8,705 patients and identified increased neojunctions in 

tumors versus normal tissue, and trans-acting variants associated with AS events [28]. 

Another pan-cancer study reported a high frequency of common somatic alterations in 

splicing factor genes, suggesting that altered splicing may represent an underappreciated 

hallmark of tumorigenesis [14]. However, there are still many fundamental questions need to 

be better elucidated (see Outstanding Questions). For instance, given the low overlap of 

splicing defects and mutually exclusive pattern of key spliceosomal mutations, what are the 

convergent effects of such mutations in a single tumor type (e.g. MDS-RARS) or across 

distinct histological cancer types. Recurrent spliceosomal mutations only happen in some 

specific tumor types, while very rare in others. So, is there and what is the common process 

across the diverse tumor types with frequent mutations in splicing factors? Given the high 

number of proteins and genes involved in the splicing process, why are only a small subset 

of splicing factors (SF3B1, SRSF2, U2AF1 and ZRSR2) found recurrently mutated in 

cancer? Some genes, e.g. SF3B1, show different hotspot mutations in different cancers, for 

instance, the K700 amino acid is frequently mutated in chronic lymphocytic leukemia, but 
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the 625 amino acid is frequently mutated in uveal melanoma; why are there cell type 

specific mutations, and what are their functions?

One benefit of pan-cancer analyses is that they can increase the statistical power to identify 

very rare mutations associated with specific splicing effects. For instance, one recent study 

utilized an unbiased pan-cancer analysis to identify mutations in another spliceosomal gene, 

SURP and G-patch domain containing 1 (SUGP1) that recapitulate the usage of cryptic 3′ss 

known to be found in mutant SF3B1 expressing cells [37]. This also recapitulates previous 

biochemical studies indicating that the loss of SF3B1 interaction with SUGP1 mimics the 

effects of SF3B1 mutations on splicing [45]. This work on SUGP1 was also supported by a 

recent study from another research group [46]. Such computational strategies could be 

applied to many other recurrent spliceosomal mutations in human cancer.

Deep Learning-based Splicing Analysis

By taking advantage of an ever-increasing amount of available genomics data, deep learning 

techniques have been proposed to enhance the characterization of molecular alterations 

improving the state-of-the-art performance for many genomics tasks, including alternative 

splicing analysis [47]. Improvements are quickly coming from new input data and better 

refinement of the biological questions, making these models increasingly accurate (Figure 

2C). Recent work in this area includes deep neural network studies of alternative splicing 

using cis-sequence information [48, 49]. The mRNA expression levels of trans RBPs have 

also been incorporated as useful features to achieve a better characterization of alternative 

splicing in low expression target genes or when analyzing RNA-seq data with modest 

coverage [50]. In this study, the RBP expression profiles are from knocking-down 

experiments by the ENCODE consortium. However, most recurrent spliceosomal mutations 

in cancer are results in change-of-function, rather than lost-of-function. Therefore, a better 

fitting of such model to specific cancers, is to enlarge the training set by adding available 

datasets with change-of-function mutations in splicing factors. Most deep learning 

application rely on black-box frameworks and involve multiple layers of non-linear 

combination of raw inputs. This, as in other deep learning applications, hinders 

interpretability, with little or no information provided on the splicing machinery alterations 

associated to changes in AS. The development of interpretable deep networks will be 

paramount in the discovery of causal links between actions and effects in cancer splicing 

[51].

Modelling the effect of epigenetic features on AS

It has been widely accepted that epigenetic modifications regulate alternative splicing by 

either influencing the transcription elongation rate of RNA polymerase II (Figure 2B) or 

direct interactions with proteins that mark exon-intron junction of pre-mRNA [52]. Genome-

wide mapping has revealed enrichment of histone modifications (for instance, H3K36me3) 

on exons relative to introns, which have been implicated in the regulation of alternative 

splicing [53] (Figure 2B). On the other hand, spliceosomal proteins can likewise influence 

chromatin structure and histone modifications, which imply a complex feedback loop of 

regulation [54]. Interestingly, one recent study identified frequent overlap of mutations in 

IDH2 and SRSF2 in human AML that together promote aberrant splicing and increased 
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DNA methylation of reduced expression of INTS3, which contributes to leukemogenesis 

[55]. Besides modification of DNA, RNA modifications have also been found to regulate 

AS. For example, perturbation of the dynamic status of N6-methyladenosine (m6A) 
modification could affect the interaction with SR proteins that may be involved in 

modulating AS [56]. However, integrating genome-wide epigenetic data with AS modelling 

to get a regulatory landscape between epigenetics, splicing, and cancer remains a 

computational challenge. Selecting appropriate datasets and methodologies (for instance, 

deep learning-based methods discussed above) will provide a means to model the effects of 

epigenetics on splicing [57].

Calculating alternative splicing derived neoantigens

Finally, after accurate depiction and understanding of alternative splicing in cancer biology, 

the last important task is to develop pharmacological modulation of splicing for therapeutic 

strategy (Figure 2D). Direct disruption of splicing efficiency increased sensitivity of cancer 

cells with spliceosomal mutations in vivo, however, some patients unfortunately exhibited 

unexpected side effects [58]. Immunotherapies have improved objective responses in many 

tumors with high burden of protein changes [59]. T cell recognition of cancers relies upon 

presentation of tumor-specific antigens generated by nonsynonymous mutations by MHC 

molecules [60] (Figure 2D). Interestingly, a recent study suggested that tumor-specific 

alternative splicing events are far more abundant than somatic single-nucleotide variants 

[28]. A recent publication presented a computational approach to identifying neoepitopes 

derived from intron retention events in tumor transcriptomes, which was confirmed by mass 

spectrometry presented on MHC class I [27]. After the identification of high-confidence AS 

events, genome annotations were used to extract intronic nucleotide sequences and open 

reading frame orientation, and sample-specific HLA alleles were computed and examined 

for putative peptide-MHC I binding affinity (e.g. POLYSOLVER [61]). Expanding such 

analysis to full types (besides intron retention) of AS events are of great interest in able to be 

coupled as downstream optional analysis for current available AS detection tools. Such 

method will be of particular interest in tumors with functional splicing changes (MDS, uveal 

melanoma, etc.). These observations also suggest a potential approach to activate host anti-

tumor immune response by coupling spliceosome inhibition (to increase the 

immunogenicity) with immunotherapies. Nonetheless, experimental validation of the 

immunogenicity of such splicing-derived neoantigens will need to be seriously assessed.

Concluding Remarks

RNA splicing is a critical mediator of gene expression and regulator of proteome diversity. 

Alterations in splicing, including common change-of-function mutations in spliceosome 

genes, have been suggested to promote tumorigenesis. By utilizing quantitative cancer 

biology analyses, a number of computational methods have been developed and proven to 

play an important role in systematically identifying high-confidence AS events in a context-

dependent manner. However, more efforts will be required to customize downstream 

computational analysis to decode the mechanistic consequences of splicing alterations in 

cancer pathogenesis. We suggest that coupled analysis of the impact of splicing dysfunction 
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on the activity of gene-regulatory networks or cancer signaling pathways may help to 

discover key functional events and guide further experimental studies.

In this review, we have highlighted several research directions in cancer splicing related to or 

driven by computational analysis. First, we underscored that advances in cancer genomics 

projects (e.g. TCGA) have enabled high resolution detection and comparison of AS across a 

wide-range of tissues in a pan-cancer manner. Second, we suggested the importance of 

incorporating epigenetic features into AS analyses. The large availability of data is enabling 

the development and application of in-silico approaches in artificial intelligence science to 

increase the sensitivity and specificity of AS detection. Lastly, we suggested that the 

characterization of potential splicing-derived neoantigens may be leveraged with recent 

advances in immunotherapy to open new therapeutic avenues for AS-related tumors.
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Glossary

Branchpoint
An important sequence (adenine) for mRNA splicing, which often located between 18 to 40 

nucleotides upstream from the 3′ splice site. During splicing process, the branchpoint attack 

on the 5′ splice site to form the intron lariat.

N6-methyladenosine (m6A) modification
The addition of a methyl group at position N6 of adenosine, which is the most common 

mRNA modification in mammalian cells.

Nanopore or PacBio sequencing
Two widely-used long-read sequencing providers. Long-read sequencing, also called third-

generation sequencing, have the capability to produce substantially long sequences of DNA. 

The common sequencing length is between 10,000 and 100,000 base pairs.

Nonsense-mediated decay
An mRNA quality-control mechanism that selectively degrades mRNA transcripts with 

premature termination codons.

Poison exon
One type of cassette exon, which contains a premature termination codon. When being 

included, this exon will lead to premature truncation of the transcript.

Polypyrimidine tract
One important cis-acting sequence elements in pre-mRNA splicing. Polypyrimidine tract is 

rich with pyrimidine nucleotides, and is usually 15–20 base pairs long, located about 5–40 

base pairs before the 3’ splice site. The polypyrimidine tract can affect 3’ splicing by 

selecting alternative branchpoint.
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Spliceosome
A large and complex molecular which is assembled by small nuclear RNAs and protein 

complexes. Spliceosome play key functions in the removal of introns from pre-mRNAs.
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Box 1.

Mechanism of mRNA splicing

Splicing is a co-transcriptional process in which non-coding introns are removed and 

adjacent exons are joined together to form a single mRNA strand. This process is 

orchestrated by the large macromolecular complex known as spliceosome (see Glossary), 

which recognizes major introns through specific sequence motifs at the exon-intron 

boundaries (splice sites), branchpoint sites, and the polypyrimidine tract upstream of 

the AG splice site [62] (Figure I). Interestingly, one recent study demonstrated that 

pyrimidines downstream the AG site may also play a role in the aberrant branchpoint 

recognition [38]. Small nuclear ribonucleoproteins (snRNPs) are complexes of RNA and 

proteins that interact with the pre-mRNA, mediating the splicing process [62]. The major 

U2-type spliceosome consists of five snRNP complexes, U1, U2, U4, U5, and U6, which 

get dynamically altered composition and structure during the splicing process [62]. In 

addition to the major spliceosome, there is a functionally analogous ribonucleoprotein 

complex, the minor spliceosome, that catalyzes the splicing of U12-type introns [63].

The entire splicing process may be simplified as a two-step transesterification reaction. 

Initially, the U1 snRNP binds the 5′ splice site of the intron. The U2 auxiliary factor 

(U2AF) complex binds to the 3′ of the intron and recruits the U2 snRNP, which binds to 

the branchpoint and replaces splicing factor 1 (SF1). After recruitment of U5.U4/U6 tri-

snRNP, the first transesterification reaction occurs and forms an intron lariat at the 3′ part 

of the exon. Next, the second transesterification reaction at the 3′ splice site releases the 

3′ exon, which leads to exon ligation and excision of the intron lariat [64].

Besides the spliceosome complex, additional action of trans-acting RNA-binding proteins 

(RBPs) is required to further regulate the splicing process [65]. RBPs bind to sequence 

motifs located in exonic or intronic regions that can mediate the promotion or repression 

of particular splicing products [66]. The classic trans-acting RBPs are the serine/arginine-

rich (SR) proteins, heterogenous nuclear ribonucleoproteins (hnRNPs), and other 

hnRNP-like proteins [67–69] (Figure I). SR proteins are characterized by containing one 

or two copies of an RNA recognition motif (RRM) domain as well as a domain rich in 

serine-arginine (SR) dipeptides that make protein-protein interactions [70]. In contrast, 

hnRNPs are more structurally diverse, containing different types of RNA-binding 

domains and relatively unstructured domains that likely contribute to protein-protein 

interactions [68]. Overall, there are over hundreds of proteins with potential roles in 

splicing regulation [71], and somatic alternations or dysregulation of these RBPs could 

potentially be linked to human diseases, such as cancer.
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Figure I in Box 1. Splicing regulation mechanism (major introns).
Key sequence features that govern splicing include consensus sequences of the 5′ and 3′ 
splice sites, branchpoint (BP) sites, and the polypyrimidine tract upstream of the AG 

splice site. At the beginning of splicing, U2 auxiliary factor (U2AF) complex binds to the 

3′ of the intron and recruits the U2 snRNP to interact with the branchpoint. SF3B1 is a 

key component of the U2 snRNP that makes direct contact with the substrate. Alternative 

splicing is regulated by trans-acting splicing factors including SR proteins, and hnRNPs. 

Enhancer auxiliary elements are denoted in black for exonic (ESE) or intronic (ISE) 

splicing enhancers. Silencer auxiliary elements are denoted in yellow for exonic (ESS) or 

intronic (ISS) splicing silencers. The most commonly mutated splicing factors in human 

cancer include SF3B1 (hotspot: K700 and R625), U2AF1 (S34 and Q157) and SRSF2 
(P95).
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Box 2.

Commonly mutated splicing factors in human cancer

Several splicing factors are recurrently mutated in cancer, including splicing factor 3B, 

subunit 1 (SF3B1), serine/arginine-rich splicing factor 2 (SRSF2), U2 small nuclear RNA 

auxiliary factor 1 (U2AF1) and zinc finger, RNA-binding motif and serine/arginine-rich 2 

(ZRSR2) [72–74]. These spliceosomal mutations have been discovered across a broad 

range of tumor types, including myelodysplastic syndromes (MDS) [72], chronic 

lymphocytic leukemia (CLL) [75], uveal melanoma (UVM) [76], lung adenocarcinoma 

(LUAD) [77], breast invasive carcinoma (BRCA) [78] and others [79]. We briefly 

recapitulate the latest findings of the most commonly mutated splicing factor, SF3B1, in 

human cancers (for other splicing factors, see recent comprehensive reviews [80, 81]).

SF3B1 frequently contains heterozygous mutations at very specific residues (known as 

“hotspots”). These mutations promote the usage of upstream branchpoints during the 

splicing reaction, resulting in the use of cryptic upstream 3′ splice sites (3′ss) [25, 82]. 

Recent work has uncovered 3’ splicing patterns specific to SF3B1 mutational hotspots. 

SF3B1K700E mutations alter splicing of a specific subunit (PPP2R5A) of the PP2A 

serine/threonine phosphatase complex to confer post-translational MYC and BCL2 

activation, which is therapeutically intervenable using an FDA-approved drug [39]. In 

addition to PPP2R5A, other key mis-spliced targets have also been extensively studied 

and proven to promote tumorigenesis or contribute to disease phenotype. A universally 

mis-spliced gene in SF3B1-mutated tumors, MAP3K7, was recently associated with 

activation of the NF-kB pathway in mammary epithelial tumors with SF3B1 mutations 

[38]. MAP3K7 mis-splicing has also been associated with accelerated erythroid 

differentiation and apoptosis, potentially explaining the origin of anemia in MDS patients 

harboring SF3B1 mutations [83]. Mis-splicing and subsequent loss of BRD9, a 

noncanonical BAF complex subunit, led to enhanced tumor growth and transformation in 

tumors harboring SF3B1 mutations [84]. Other interesting mis-spliced target genes of 

SF3B1 mutations include DLV2, which modulates Notch signaling in CLL [85], and 

ABCB7, which is associated with the increased mitochondrial iron accumulation found in 

MDS patients [86]. These studies and others demonstrate the role of SF3B1 as an 

oncogenic driver implementing tumorigenesis through diverse cellular processes.
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Box 3.

Single-cell splicing studies

Alternative splicing events detected from bulk RNASeq are mixed signals averaged over 

cell populations, that have limited power to delineate the splicing heterogeneity in 

different tumor clones. In contrast, splicing analysis on single-cell resolution draw huge 

interests recently by demonstrating the power to unravel isoform expression dynamics in 

different cellular types [87–89]. Moreover, identification of tumor heterogeneity driven 

by distinct single-cell splicing events may guide the development of targeted treatment 

[89]. Limited by the coverage biases on 3’/5’ sites of UMI (unique molecular identifier) 

type sequencing, early single-cell splicing studies focus on the detection of the alternative 

polyadenylation sites or transcription start sites [90, 91]. More recently, the development 

of full-length capture techniques, e.g. Smart-seq [92] and single-molecule sequencing, 

significantly improved reads coverage across entire transcript, showing great advantages 

in the detection of alternative splicing and isoform usage on single-cell level.

Currently, a few computational approaches for single-cell splicing have been developed, 

for instance, SingleSplice [93], BRIE [94], and Expedition [95]. Specifically, 

SingleSplice defines a concept of ‘alternative splicing modules’ and utilizes a statistical 

model to detect local isoform usage, rather than full-length transcript [93]. BRIE 

incorporates a Bayesian regression module for differential isoform quantification, by 

finding a balance between the sequencing depth/quality and an informative prior 

distribution trained from GENCODE database [94]. In contrast, Expedition suite only 

uses well aligned-reads to define a custom alternative splicing index, and have advantage 

in describing a distribution of exon inclusion in a population of single cells [95]. By 

applying these tools and others, recent studies have successfully uncovered significant 

isoform switching events on single-cell resolution in human cancers, which is invisible 

from standard gene expression analysis [92, 96]. However, study of cancer splicing on 

single-cell level is still in its infancy. Currently, rather than urgent requirement of more 

elegant methodological design, major barriers of this area of research come from the 

technical limitations of single-cell library preparation and sequencing protocols, for 

instance, low reads coverage, high dropout rate, high sequencing errors and inevitable 

technical noise [87–89].
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Outstanding Questions

How can splicing events functionally relevant to cancer be extracted from the long lists of 

AS generated by standard computational tools?

Given the low overlap of splicing defects and mutually exclusive pattern of key 

spliceosomal mutations, what are the convergent effects of these mutations in a single 

tumor type (e.g. MDS-RARS) or across distinct tumor types?

Why do recurrent spliceosomal mutations only occur in particular tumor types (MDS, 

uveal melanoma, etc). What are the common characteristics of these tumors?

Why are only a small subset of splicing factors (SF3B1, SRSF2, U2AF1 and ZRSR2) 

mutated among the hundreds of proteins involved in splicing?

What is the reason for the selection of specific mutational hotspots in a specific tumor 

type (e.g. SF3B1 K700 in CLL, R625 in UVM), and why are the hotspots different in 

other tumors?

What is the full spectrum of genetic/transcriptomic changes that could generate the same 

splicing pattern induced by well-studied spliceosomal mutations?

How to develop interpretable deep learning-based approaches to discover causal links 

between actions and effects in cancer splicing?

How can genome-wide epigenetic features be integrated with AS modelling to obtain the 

landscape of epigenetic effects in splicing and cancer? What are the most appropriate 

datasets and methodologies?

How can the methodology used for bulk RNA-sequencing be extended to single-cell 

RNA-sequencing (Box 3)?
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Highlights

Accumulating evidence indicates that recurrent spliceosomal mutations contribute to the 

initiation and progression of several cancers through diverse fundamental cellular 

processes.

A number of computational tools are used to characterize splicing effects in cancer. 

These tools present limitations that can be overcome by running alternative splicing 

analysis with multiple tools and integrating the results.

Extracting splicing events functionally relevant to cancer requires rigorous quality control 

to filter technical artifacts, cross validate the events using independent datasets, and 

integrate alternative approaches including regulatory network characterization and cancer 

signaling pathway analyses.

By taking advantage of the increasing amount of genomic data, deep learning-based 

methods have dramatically improved the state-of-the-art performance of alternative 

splicing analysis.
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Figure 1. General summary of computational workflow for alternative splicing analysis.
A computational pipeline for the study of alternative splicing events includes: 1) 

Computational detection of AS events from RNASeq data in a context-dependent manner. 

There are two main categories of methods: whole transcript-based or events-based. 2) 

Computational refinement to identify cancer-associated mis-splicing effects for downstream 

experiments. This step involves rigorous quality control on the raw AS calls to filter 

technical artifacts, cross validation using independent datasets or biological systems, and 

integration of alternative transcriptomic information, such as changes in regulatory network 

activity and dysregulated signaling pathways.
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Figure 2. Current computational challenges in the characterization of the role of alternative 
splicing in cancer.
(A) Pan-cancer analysis of alternative splicing to uncover commonly-shared and lineage-

independent splicing landscapes. SF: Splicing factor. (B) Epigenetic modifications regulate 

alternative splicing by influencing the transcription elongation rate of RNA polymerase II or 

binding an adaptor protein that reads specific histone marks and in turn recruits splicing 

factors. Trimethylated histone 3 lysine 36 (H3K36me3) attracts the chromatin-binding factor 

MRG15 that acts as an adaptor protein and by protein-protein interaction helps to recruit 

splicing factors. (C) Deep learning techniques have been proposed to improve the state-of-

the-art performance for alternative splicing analysis. (D) Characterization of potential 

splicing-derived neoantigens may be leveraged with recent advances in immunotherapy to 

open new therapeutic avenues for AS-related tumors. Part of aberrantly spliced transcripts 
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are translated into protein, which is processed into short residue peptides by the proteasome 

and then shuttled into the endoplasmic reticulum via the transporter associated with antigen 

processing. Finally, splicing-derived peptides are loaded onto major histocompatibility 

complex class I (MHC I), and the peptide–MHC complexes can be potentially recognized by 

T cells. PTC: premature termination codon.
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