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Lung cancer is the leading cause of cancer death globally. An improved risk stratification strategy 

can increase efficiency of low-dose computed tomography (LDCT) screening. Here we assessed 

whether individual’s genetic background has clinical utility for risk stratification in the context of 

LDCT screening. Based on 13,119 lung cancer patients and 10,008 controls with European 

ancestry in the International Lung Cancer Consortium, we constructed a polygenic risk score 

(PRS) via 10-fold cross-validation with regularized penalized regression. The performance of risk 

model integrating PRS, including calibration and ability to discriminate, was assessed using UK 

biobank data (N=335,931). Absolute risk was estimated based on age-specific lung cancer 

incidence and all-cause mortality as competing risk. To evaluate its potential clinical utility, the 

PRS distribution was simulated in the National Lung Screening Trial (N=50,772 participants). The 

lung cancer odds ratio (ORs) for individuals at the top decile of the PRS distribution versus those 

at bottom 10% was 2.39 (95%CI=1.92–3.00, P=1.80×10−14) in the validation set (trend p-value of 

5.26 × 10−20). The OR per standard deviation of PRS increase was 1.26 (95%CI=1.20–1.32, 

P=9.69×10−23) for overall lung cancer risk in the validation set. When considering absolute risks, 

individuals at different PRS deciles showed differential trajectories of 5-year and cumulative 

absolute risk. The age reaching the LDCT screening recommendation threshold can vary by 4 to 8 

years, depending on the individual’s genetic background, smoking status and family history. 

Collectively, these results suggest that individual’s genetic background may inform the optimal 

lung cancer LDCT screening strategy.
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INTRODUCTION

Lung cancer continues to be the leading cause of cancer death globally and the reduction of 

lung cancer deaths remains to be a public health priority[1]. Since the landmark paper by the 

National Lung Screening Trial (NLST)[2], which demonstrated a 20% of mortality reduction 

by low-dose computed tomography (LDCT) screening, how to effectively conduct LDCT 

screening in high-risk populations have been a topic of debate. More recently, the long-

awaited Dutch-Belgian Lung Cancer Screening (NELSON) trial has also demonstrated a 

substantial mortality reduction up to 25–50%, depending on gender and the length of the 

follow-up time[3], which solidified the effectiveness of LDCT screening for lung cancer 

mortality reduction.

With the increasing uptake of LDCT, it is important to identify the high-risk population and 

determine the best timing to start LDCT screening. Most of current LDCT guidelines were 

derived from the NLST eligibility criteria, simply based on age (55 to 74 or 80 years old) 

and tobacco smoking history (at least 30 packyears, or quit smoking within 15 years), 

including the United States Preventive Services Task Force (USPSTF) guideline [4]. It has 

been suggested that individual risk assessment based on risk prediction models is more 

effective for selecting high-risk individuals for LDCT screening[5]. However, none of the 

previous risk models has taken individual’s genetic profiles into account at the genome-wide 

level.
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Genome-wide association studies (GWAS) uncovered multiple lung cancer susceptibility 

genes, and consortium efforts greatly increased our ability to investigate the genetic 

architecture of histological subtypes[6,7]. However the clinical utility of these genomic 

discoveries remains unclear. It is evident that the individual susceptibility genes do not 

adequately represent individuals’ background genetic risk. Whereas, polygenic risk scores 

(PRS) are considered an effective approach of quantifying individual’s inherent risk, and 

have been applied to other common complex diseases such as cardiovascular diseases and 

breast and prostate cancer with some success [8–13]. However, no studies have 

comprehensively investigated risk prediction for lung cancer incorporating polygenic risk 

scores, beyond a handful of known susceptibility genes[14,15].

To comprehensively evaluate the predictive performance of polygenic risk model in lung 

cancer beyond known loci identified by previous GWAS, we constructed the polygenic risk 

score (PRS) based on the OncoArray data of 23,127 individuals using a machine learning 

approach, and independently validated the PRS based on UK Biobank data with 335,931 

individuals. We assess the performance of the risk model integrating PRS in UK Biobank, 

including model calibration and ability to discriminate. Finally to evaluate the potential 

clinical utility of the polygenic risk model in the screening-eligible populations, we 

simulated the PRS distribution in the National Lung Screening Trial with 50,772 

participants. Our objective is to assess whether and how an individual’s inherited 

susceptibility to lung cancer would affect the optimal implementation of the LDCT in the 

high-risk population.

MATERIALS AND METHODS

Lung cancer OncoArray project of the International Lung Cancer Consortium (ILCCO) 
has been previously published[6]. A total of 18,316 histologically confirmed lung cancer 

cases and 14,025 controls from 26 studies were used for PRS construction[16,17]. A total of 

13,119 cases and 10,008 controls had epidemiological data was used for the downstream 

analysis combining genetic and epidemiological data (Supplementary Figure 1a). UK 
Biobank is a population-based cohort study of over 500,000 participants aged 40–69 at 

entry, recruited throughout the United Kingdom between 2006 to 2010 [18,19]. For risk 

prediction modeling, 1,768 incident lung cancer cases, defined as those who were diagnosed 

after baseline enrollment, and 334,163 unrelated controls were included (Supplementary 

Figure 1b). Additional details of ILCCO OncoArray Project and UK Biobank are included 

in the Supplementary Materials. The protocol of the pooled analysis was approved by the 

Research Ethics Review Board at the Sinai Health System. The recruitment and data 

collection of all participating research institutes was approved by the local ethics review 

committees.

Statistical Analysis

Construction of Polygenic Risk Score (PRS)—PRS is constructed as the sum of the 

number of minor alleles one carries, weighted by effect coefficients as the per allele log-

odds ratio, including two components: (i) the known susceptibility loci of lung cancer and 

conditions related to lung cancer (such as lung function impairment) previously identified 
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through literature curation and NHGRI-EBI GWAS Catalog[6,7,14,20–23], and (ii) 

additional loci that passed the suggestive significance-level (p<5×10−6), and were identified 

in this analysis through penalized regression using lasso after 10-fold cross validations. 

When correlation exists, variants representing independent loci with the strongest statistical 

significance were retained. The final component of known lung cancer-related loci included 

35 variants (PRS-35), and the best performing lasso model selected 93 variants after 

accounting for linkage disequilibrium (PRS-93). The final PRS (PRS-128) was constructed 

by combining both components (Supplementary Table 1). The detailed process of PRS 

construction is included in the Supplementary Materials.

Odds ratio (OR) and 95% confidence interval (CI) were used to evaluate the association 

between PRS and lung cancer risk based on logistic regressions, adjusting for age, sex and 

top five principal components. We compared effect sizes of PRS for lung cancer risk based 

on PRS deciles by histological type, smoking status and family history of lung cancer in first 

degree relatives.

Validation of Polygenic Risk Score—The PRS in the UK Biobank was computed 

based on the same weights derived and applied in the OncoArray dataset to avoid model 

overfitting. Fourteen (2 from PRS-35) variants were not genotyped or imputed based on 

Haplotype Reference Consortium (HRC) panel, which resulted in PRS-114 for the analysis 

in UK Biobank. PRS-114 and PRS-128 is highly comparable with Pearson’s correlation 

coefficient of 0.984. All of the variants in the PRS passed imputation quality threshold 

(INFO>0.3). To validate the risk model built in the OncoArray, we used the same effect 

coefficients for the parameters included in the model (Supplementary Table 2).

Baseline Risk Model for Overall Population and Never Smokers—For overall 

population, we built upon the PLCOall2014 model previously developed based on the 

Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial[24]. The predictors 

included age, race, education level, body mass index, chronic obstructive pulmonary disease 

(COPD), personal history of cancer, family history of lung cancer in first degree relatives, 

smoking status, smoking intensity, smoking duration, and smoking quit time. To address the 

issue of potential over- or under-estimation of the absolute risk when importing the 

coefficients of a risk model previous developed in a different population, and to integrate 

PRS into the risk model, we re-calibrated and re-parametrized the risk model using 50% of 

the UK Biobank cohort. Re-calibration is a statistical approach commonly used to adapt a 

risk model developed in a different population[25]. The remaining 50% of UK Biobank 

cohort is kept as the strict hold-out validation set for prospective evaluation (Supplementary 

Material). The analysis flow is depicted in Supplementary Figure 2. Multiplicative 

interactions assumption between PRS and the epidemiologic risk factors were assessed 

(Supplementary Materials).

It was well-recognized that lung cancer risk profiles are markedly different for never 

smokers, but there is currently no established risk model for never smokers. Taking 

advantage of the risk data available in UK Biobank, we adapted the split 80% training- 20% 

testing design using the UK Biobank cohort data, to investigate the predictive performance 

of additional risk factors that might be particularly relevant for never smokers, such as 
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impaired lung function, ambient air pollution and second hand smoke. The latter two did not 

improve the model performance, therefore the risk factors included in the parsimonious 

model for never smokers are age, sex, education, family history, personal history of cancer 

and impaired lung function (Supplementary Materials).

Risk Model Evaluation based on the Hold-Out Validation Set in the UK 
Biobank Cohort—Evaluation of the model performance in the prospective study, 

including calibration and discrimination, was conducted based on the 50% hold-out set for 

the overall model and 20% hold-out set for the never-smoker model in UKB. Model 

calibration was assessed by evaluating how much the slope of the calibration line (plotting 

the predicted vs the observed probabilities) deviates from the ideal of 1. The 95% confidence 

intervals of the predicted risk were computed with the percentile-based bootstrap. 

Calibration was formally tested using Spiegelhalter’s z statistic and p-values are 

reported[26,27]. The model’s ability to discriminate was assessed by the area under the 

receiver operator characteristic curves (AUC). Risk discrimination improvement of the 

developed PRS was evaluated by comparing a base model with epidemiologic risk factors 

and a model that includes epidemiologic risk factors and PRS.

Absolute Risk Estimation—The five-year and cumulative absolute risk of developing 

lung cancer was estimated based on Cox proportional hazards model, accounting for the 

competing risk of all causes of death other than lung cancer[28]. The absolute risk was 

estimated in a given time interval by integrating 3 components: (i) a model of relative risks, 

(ii) age-specific lung cancer incidence rates, and (iii) distributions of risk factors of the 

population of interest[9,28,29]. To estimate the absolute risk trajectories for the overall 

population in the United Kingdom, we applied the re-calibrated PLCOall2014 model 

(Supplementary Table 2) with PRS and the age-specific incidence rate and competing rates 

for mortality rates obtained from Cancer Research UK, 2012[29]. For never smokers, we 

applied our never-smoker risk model as reported in the Supplementary Table 2, and the age-

specific lung cancer rates specifically for never smokers that were derived from the UK 

Million Women Cohort[30] and the average male to female incidence ratio of lung cancer in 

never smokers previously reported in population cohorts[31]. The detailed estimation 

process is outlined in the Supplementary Materials.

Projection in the National Lung Screening Trial (NLST)—To assess how the risk 

model would work in a population that would be eligible for LDCT screening, we projected 

the absolute risks to the NLST population. There are 1,986 incident lung cancer and 48,786 

controls in NLST with variables needed for the risk modeling available for our analysis. 

Because this population is comprised of ever-smokers only, we used PLCOm2012 (designed 

for ever-smokers only) as the baseline model here. Genotype information was not available 

for the NLST participants, so PRS profiles were simulated conditional on lung cancer status 

and family-history of lung cancer based on the methods previously described[9,28]. The 

weights of the PRS were based on the coefficient estimated from the independent PRS 

validation set (UK Biobank) to reduce over-fitting. The details parameter settings and 

reference rates are specified in Supplementary Materials. All tests of statistical significance 

were two-sided. All analyses were performed in R v.3.5.1.
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RESULTS

The study characteristics of OncoArray (model training), UK Biobank (validation) and 

NLST (projection) are summarized in Table 1. In the OncoArray project, age and gender are 

well matched as most studies have applied frequency matching for these factors. As 

expected, there are more smokers, more individuals with family history of lung cancer or 

previous COPD history among lung cancer patients compared to controls. In the UK 

Biobank, being a general population cohort, the majority of the populations are never or 

former smokers. The NLST study is a smoker only population, as all individuals in this 

population have met the NLST screening criteria.

The list of the variants included in PRS-128 is shown in Supplementary Table 1. The 

distribution of the PRS in OncoArray and UK Biobank is shown in the Supplementary 

Figure 3 (panel a and b), where we observed a shift of the PRS distribution toward the right 

(i.e. higher PRS) for the lung cancer cases. The association between PRS and lung cancer 

risk based on OncoArray data and UK Biobank is shown in Table 2. There was an increasing 

risk of lung cancer by decile, with approximately 3.5 folds of relative risk when comparing 

individuals in the lowest versus the highest decile in the PRS distribution in the OncoArray 

dataset with OR of 3.52(95%CI=3.11–3.98, p=7.34×10−88 ). A strong association was also 

observed in the independent validation set, UK Biobank, with increasing risk by PRS decile, 

and the OR of lung cancer for those in the top PRS decile is 2.39 (95%CI=1.92–3.00, 

p=1.80×10−14). The statistical significance diminished in the UK Biobank dataset given 

much smaller number of lung cancer patients available in this analysis. Nonetheless, the 

dose-response relationships between PRS and lung cancer risk remained prominent in both 

OncoArray (p-trend=1.77×10−127) and UK Biobank (p-trend=5.26×10−20).

The association between PRS and lung cancer risk per standard deviation (SD) in major risk 

strata by smoking, family history of lung cancer and histology is shown in Table 3. The 

effect estimates were slightly higher in the OncoArray dataset, which was expected as the 

model building set. Albeit slightly reduced statistical significance, PRS conferred robust 

associations in the UK Biobank population across all major risk strata, as the independent 

validation.

In UK Biobank prospective cohort, the risk model for overall population was reasonably 

calibrated (Supplementary Figure 4a) in the 50% hold-out validation set. For never smokers, 

while the observed risk was in general consistent with the predicted risk in the training set, it 

was less well-calibrated and appeared to fluctuate around the calibration slope given the 

limited sample size in the hold-out testing set, although the p-value based on the 

Spiegelhalter’s z test was not significant (Supplementary Figure 4b). The overall AUC did 

not substantially change when adding PRS for overall population with AUC of 0.832 (from 

AUC of 0.828 without PRS), but a modest increase in AUC among never smokers was 

observed from AUC of 0.670 to 0.687 (Supplementary Table 3). When estimating the AUC 

separately by age of onset, it appeared that the PRS contributed to the risk model in those 

with younger age of onset (<50), albeit modest added value: The AUC for those with young 

onset was 0.798 (95%CI=0.680–0.917) and 0.811(95%CI=0.701–0.902) without and with 

PRS terms, respectively (Supplementary Table 3).
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To evaluate how PRS would affect individual’s absolute risk with increasing age, we 

estimated the absolute risk of lung cancer by the PRS decile. The average risk of the 

population was estimated based on the final model including all aforementioned risk factors 

and PRS. We observed a divergence of absolute risk trajectories that are due to individual’s 

genetic risk background, as encapsulated by PRS decile (Figure 1a and 1b). The span of 

absolute risk trajectory due to individual’s PRS was increasingly notable with older age. To 

understand the implication for LDCT screening in populations with different background 

risks, Figure 2 shows the 5-year absolute risk estimation stratified by smoking status and 

family history of lung cancer. For example, in the UK Biobank among current smokers with 

family history of lung cancer, the average risk of lung cancer in the next 5 years at 60 years 

old was approximately 4.29%, whereas the risk was 7.64% for those at top 10% PRS decile 

(p-value top 10% PRS vs 40–60% PRS = 8.80 × 10−15). As the absolute risk increases as the 

function of age, the direct consequence is when individuals would reach the threshold for 

LDCT screening.

Assuming 1.5% lung cancer absolute risk within the next 5 years as the threshold to be 

recommended for LDCT screening, never smokers did not reach sufficient risk threshold to 

be recommended for LDCT screening regardless their PRS deciles. Therefore the PRS 

distribution does not appear to have implications among the never smoker group in general. 

On the other hand, among ever-smokers, the PRS distribution can affect when the 

individuals reach the absolute risk threshold for LDCT screening. For example, on average, 

individuals who smoked but without family history reach the 1.5% of 5-year absolute risk at 

age 61, whereas those who are at the top 1% of PRS distribution would reach the threshold 

at age 53 (Figure 2, Supplementary Table 4). Among those who smoked and with positive 

family history of lung cancer, the average age to reach the LDCT screening recommendation 

threshold would be 56, but those who are at top 5% PRS would reach the threshold at age 

52, earlier than the previous LDCT screening guideline (Figure 2, Supplementary Table 4)

[4]. Among current smokers, those with family history of lung cancer and at the top 10% of 

the PRS distribution would reach 1.5% of 5-year risk before they turn 50.

To show the impact of smoking status and PRS, Supplementary Figure 5 illustrates the 

absolute risk trajectory based on the combination of both smoking status and PRS. It is clear 

that smoking cessation reduces the lung cancer absolute risk regardless which PRS category 

one belongs to, with an relative reduction of approximately 45% of lung cancer risk by age 

70, which is consistent with previous reports [32,33]. For example, among those at the top 

10% of PRS, smoking cessation reduced the 5-year absolute risk from 10.5% to 5.6% by age 

70 representing an absolute risk reduction of 4.9%; and among those with intermediate PRS, 

smoking cessation reduced the 5-year absolute risk from 5.5% to 3.0%, representing an 

absolute risk reduction of 2.5%.

To evaluate extent of the absolute risks could be modified by PRS in a LDCT eligible 

population (heavy smokers and older), we show the 5-year absolute risks and cumulative 

risk by age 85 for the NLST population in Figure 3 (panel a and b), with PRS simulated per 

methods described. The absolute risk of lung cancer differed by individual’s genetic 

background in this high-risk population, and the risk differences between different PRS 

decile increased along with increasing age.
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DISCUSSION

In this study, we evaluated whether individual’s genetic background can be used to stratify 

their lung cancer absolute risk, incorporated within the well-known lung cancer risk models. 

Our analysis showed PRS is associated with individual’s lung cancer risk with a dose-

response relationship. Furthermore, individual’s genetic background, as encapsulated by 

PRS, can further stratify individual’s lung cancer absolute risk in the next 5 years, or 

cumulatively in their life time. The risk model was developed and validated in two large 

independent datasets.

The key observation of this analysis is that individual’s genetic background has limited 

impact on the risk model’s ability to discriminate whether individuals eventually develop 

lung cancer. However, the genetic background is informative regarding individual’s age for 

reaching the LDCT screening-eligible threshold, as the absolute risk trajectories diverge by 

PRS decile and increasing age. This is clinically relevant, as it could potentially affect when 
LDCT screening should be recommended to the individuals. The absolute risk stratified by 

smoking and family history of lung cancer showed that ever smokers would reach the LDCT 

screening threshold at a very different age depending on their family history of lung cancer 

and their genetic makeup, with the difference to be as large as 4 years compared to the 

average age among those with family history and 8 years among those without family 

history. These differences are clinically meaningful as they would represent much more 

timely detection for those who are at top 10% of PRS and can start screening before the 

previous official USPSTF recommended age of 55[4], and also identify those who do not 

need to be screened until past age 60, which would reduce healthcare burden and radiation 

exposures. Most recently, USPSTF task force presented the draft recommendation updated 

in July 2020, expanding the eligibility to an earlier starting age of 50 

(uspreventiveservicestaskforce.org), which would help to include some of those with higher 

genetic risk. On the other hand, it also showed that the vast majority of the never smokers 

would never reach the LDCT screening threshold despite their genetic background.

One of the potential hindrances of implementing the genetic testing among potentially 

eligible population for more precise LDCT screening recommendation would be the cost 

and feasibility associated with the genotyping. With the reduction of the genotyping cost, we 

expect that the genotyping cost can be offset by the reduction of unnecessary LDCT scans 

and quality-adjusted life year saved when the lung cancer is detected before the 

recommended LDCT starting age. However, an systematic assessment of feasibility and a 

formal cost-effective analysis with detailed sensitivity analysis with varying parameter will 

be required to provide a in depth comparison of the different approaches, which is beyond 

the scope of this study.

The variants that were selected into the model, either through previous work (PRS-35) or the 

penalized regression applied in this study (PRS-93), were located in several different 

regions. The 35 variants were predominately from previously known lung cancer loci (such 

as TERT, HLA, CHEK2), and the biology implications have been previously reported. The 

variants selected by the lasso penalized regression includes additional variants from 

previously known regions but not sufficiently tagged by those in PRS-35, as well as from 
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other genetic regions from pathways related to cytokines and chemokines(e.g. TRIM31, 

TRIM15, XCL2, IRF4, ILC33, VSTM1, etc) and signaling pathways (MAP3K20, NUMBL)

(Supplementary Table 1)

There are several potential limitations of this study. First, the PRS assumes multiplicativity 

among genetic variants. While we have assessed the pair-wise interactions and did not 

observe any interactions between the variants, we did not assess higher order of interactions. 

Nevertheless, this is a method that is considered efficient and reasonable for representing 

individual’s genetic background[13,34]. We have assessed the potential interactions between 

risk factors and PRS, although nominal interactions were detected between age and smoking 

status, including interaction terms did not lead to material change of the results. We 

therefore consider our parsimonious model (less variables with same predictive accuracy) to 

be the reasonable to use in the clinical setting. Second, the present analysis was done on the 

population with European ancestry, thus likely cannot be readily generalized to other racial 

groups. Additional analysis in other ethnicities will be needed, in particular Asians and 

African ancestry population. A separate effort for establishing a PRS model based on the 

China Kadoorie Biobank, which contains genetic data on approximately 95,000 individuals, 

is currently underway. The cohort study we used to evaluate the model prospectively, UK 

Biobank, is a general population cohort, although the social economic status is skewed 

toward the higher levels similar to other population cohorts, thus the prevalence of some 

related risk factors (such as smoking prevalence) might be under-represented, which can 

affect the absolute risk estimation. However, this would not affect model’s ability to 

discriminate. In addition, we addressed this issue by recalibrating the model using 50% of 

the UKB data and applied the re-calibrated coefficients into the absolute risk estimation and 

by estimating the absolute risks in never smokers separately. Finally, even though that we 

have built a de novo model for never smokers, the model’s ability to discriminate remains 

modest. However, we were able to investigate additional risk factor that can be relevant for 

never smokers, such as second-hand smoke, ambient air pollution and impaired lung 

function, albeit the sample size of non-smoking lung cancer cases in UK Biobank is limited. 

With increasing availability of data on these data elements, it is possible for the model 

performance to improve, and if so, risk of never smokers may reach sufficient threshold to 

warrant CT screening with vastly improved predictive performance.

Our study has several important strengths: We have constructed and validated PRS based on 

the largest lung cancer germline genomic data to date, which provide the most robust 

estimates currently available. In addition, we have conducted the multi-stage model building 

and validation with large population cohort dataset with a total over 350,000 participants 

with both stages. This ensures the validity of the model and minimizes the potential over-

optimism. Finally, we applied novel methodology to simulate PRS distribution in the NLST 

population to assess the potential clinical utility of PRS in a screening-eligible population.

In summary, our study showed that individual’s genetic background can potentially affect 

the optimal timing of starting LDCT screening. It is possible to continue to refine the risk 

prediction algorithm if the sample sizes increase substantially. This is the first study that 

reported the potential clinical utility of PRS in the European descendent population with 

comprehensive assessment.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance

Three large-scale datasets reveal that, after accounting for risk factors, an individual’s 

genetics can affect their lung cancer risk trajectory, thus may inform the optimal timing 

for LDCT screening.
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Figure 1. Absolute risk estimates of lung cancer by PRS-114 deciles based on the UK Biobank 
study.
(a) Five-year absolute risk (b) Cumulative risk until age 80. The risk factors included are 

sex, race, education, BMI, tobacco smoking, COPD history and family history of cancer. 

The X-axis is the age of cohort entry. The curves depict average risk of individuals in 

different PRS deciles as specified by the legends. The dashed curve represents the average 

risk of the overall population in different ages based on the final model which include all 

risk factors and PRS. The divergence of the risk curves represents the contribution of PRS 

and increasing age.
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Figure 2. Absolute risk estimates of lung cancer by smoking status and family history of lung 
cancer based on the UK Biobank study.
The risk factors included in the model are sex, race, education, BMI, tobacco smoking, 

COPD history and family history of lung cancer. The X-axis is the age of cohort entry. The 

curves depict average risk of individuals in different PRS deciles as specified by the legends. 

The dashed curve represents the average risk of the overall population in different ages 

based on the final model which include all risk factors and PRS-114. The divergence of the 

risk curves represents the contribution of PRS and increasing age. The blue horizontal dotted 

line represents 1.5% of 5-year absolute risks of lung cancer.
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Figure 3. Absolute risk estimates of lung cancer based on the projection in the NLST.
(a) Five-year absolute risk (b) Cumulative risk until age 80. The risk factors included in the 

model are race, BMI, education, smoking history, personal history of cancer and COPD, 

family history of lung cancer. The X-axis is the age of cohort entry. The curves depict the 

average risk of individuals in different PRS-114 deciles as specified by the legends. The 

dashed curve represents the average risk of the overall population in the corresponding age 

based on the final model including all risk factors and PRS-114. The divergence of the risk 

curves represents the contribution of PRS and increasing age.
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Table 2:

The odds ratio and 95% confidence intervals of the PRS and lung cancer risk by decile in OncoArray and UK 

Biobank

PRS decile Model building (OncoArray) Validation (UK Biobank)

OR (95%CI)
a P-value OR (95%CI)

b P-value

0–10% 1(Referent) 1 (Referent)

10–20% 1.30 (1.15,1.46) 1.39 ×10−5 1.31 (1.02, 1.68) 3.54 ×10−2

20–30% 1.62 (1.44, 1.82) 1.34 ×10−15 1.16 (0.90, 1.50) 2.46 ×10−1

30–40% 1.58 (1.41, 1.78) 1.94 ×10−14 1.57 (1.24, 2.00) 2.07 ×10−4

40–50% 1.77 (1.57, 1.99) 3.18 ×10−21 1.67 (1.32, 2.12) 2.25 ×10−5

50–60% 2.01 (1.78, 2.26) 1.12 ×10−30 1.56 (1.23, 1.98) 2.92 ×10−4

60–70% 2.19 (1.94, 2.46) 7.91 ×10−38 1.67 (1.32, 2.13) 1.89 ×10−5

70–80% 2.38 (2.11, 2.69) 1.07 ×10−45 1.69 (1.34, 2.15) 1.27 ×10−5

80–90% 2.70 (2.39, 3.04) 4.23 ×10−58 2.00 (1.60, 2.53) 2.58 ×10−9

90–100% 3.52 (3.11, 3.98) 7.34 ×10−88 2.39 (1.92, 3.00) 1.80 ×10−14

Trend p-value 1.77 × 10−127 5.26 ×10−20

a,
adjusted for age, sex and top 5 principal components

b,
adjusted for age, sex and top 5 principal components
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Table 3:

The odds ratio and 95% confidence intervals of the PRS and lung cancer risk by smoking status, family 

history, COPD history and histology in OncoArray and UK Biobank

Risk Strata PRS Building (OncoArray) PRS Validation (UK Biobank)

OR
a
 per SD (95%CI) p-value OR

b
 per SD (95%CI) p-value

Overall 1.43 (1.39,1.47) 7.77 × 10−138 1.26 (1.20,1.32) 9.69 × 10−23

Histology Adenocarcinoma 1.44 (1.39,1.49) 1.22 × 10−86 1.30 (1.23,1.37) 6.59 ×10−23

Squamous cell 1.42 (1.36,1.48) 1.75 × 10−61 1.23 (1.16,1.30) 9.58 ×10−13

Small cell 1.32 (1.24,1.41) 1.14 × 10−18 1.25 (1.18,1.32) 4.23 ×10−14

Smoking Never 1.29 (1.20,1.38) 1.57 ×10−12 1.28 (1.13,1.46) 8.86 × 10−5

Former 1.42 (1.35,1.49) 3.81 × 10−47 1.25 (1.17,1.34) 1.44 × 10−10

Current 1.46 (1.39,1.53) 2.42 × 10−60 1.28 (1.19,1.38) 3.87 × 10−11

Family history Yes 1.38 (1.27,1.49) 8.94 ×10−16 1.16 (1.05,1.27) 4.03 × 10−3

No 1.43 (1.39,1.48) 7.92 × 10−116 1.29 (1.22,1.36) 5.95 × 10−21

COPD diagnosis Yes 1.37 (1.28,1.46) 1.22 × 10−20 1.26 (1.09,1.46) 1.58 × 10−3

No 1.41 (1.36,1.46) 8.03 × 10−81 1.26 (1.20,1.32) 1.86 × 10−20

a,
odds ratio adjusted for age, sex and top 5 principal components

b,
odds ratio adjusted for age, sex and top 5 principal components

SD, standard deviation. OncoArray SD=0.54; UK Biobank SD=0.50
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