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Abstract

Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs characterized by a
covalently closed-loop structure generated through a special type of alternative splicing termed
back-splicing. Currently, an increasing body of evidence has demonstrated that Z) majority of
circRNAs are evolutionarily conserved across species, stable, and resistant to RNase R
degradation, and often exhibit cell-specific, and tissue-specific/developmental-stage-specific
expression and can be largely independent of the expression levels of the linear host gene-encoded
linear RNAS; 2) the biogenesis of circRNAs via back-splicing is different from the canonical
splicing of linear RNAs; 3) circRNA biogenesis is regulated by specific cis-acting elements and
trans-acting factors; 4) circRNAs regulate biological and pathological processes by sponging
miRNAs, binding to RNA-binding protein (RBP), regulators of splicing and transcription,
modifiers of parental gene expression, and regulators of protein translation or being translated into
peptides in various diseases; 5) circRNAs have been identified for their enrichment and stability in
exosomes and detected in body fluids such as human blood, saliva, and cerebrospinal fluids,
suggesting that these exo-circRNAs have potential applications as disease biomarkers and novel
therapeutic targets; 6) several circRNASs are regulated by oxidative stress and mediate reactive
oxygen species (ROS) production as well as promote ROS-induced cellular death, cell apoptosis,
and inflammation; 7) circRNAs have also emerged as important regulators in atherosclerotic
cardiovascular disease, metabolic disease, and cancers; 8) the potential mechanisms of several
circRNAs have been described in diseases, hinting at their potential applications as novel
therapeutic targets. In this highlight, we summarized the current understandings of the biogenesis
and functions of circRNAs and their roles in ROS regulation and vascular inflammation-associated
with cardiovascular and metabolic disease.
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1. Introduction

Cellular ribonucleic acids (RNAs) can be divided into two categories: coding and non-
coding RNAs. Non-coding RNAs (ncRNAs) are functional RNAs that are transcribed from
DNA, but are incapable of being translated into proteins. These ncRNAs can be classified
into two groups based on their sizes, NCRNAs greater than 200 nucleotides are classified as
long non-coding RNAS (IncRNAs), and ncRNAs less than 200 nucleotides are grouped as
small ncRNAs. Small ncRNAs can be further classified into: microRNAs (miRNAs), small
interfering RNAs (siRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs
(snoRNAS), piwi-interacting RNAs (piRNAS), transfer RNAs (tRNAs) and ribosomal RNAs
(rRNAS) (Esteller, 2011; Hombach & Kretz, 2016; Mattick & Makunin, 2006) (Fig. 1). In
recent years, a large number of studies have shown that ncRNAs play fundamental
regulatory roles in biological processes (Wei, Huang, Yang, & Kang, 2017). One of the
significant examples in demonstrating the master gene functions of these ncRNAs is that we
established the first mouse model of metabolically healthy obesity with miR155 deficiency
in atherogenic apolipoprotein E deficient (ApoE~") background (Johnson et al., 2018;
Virtue et al., 2017; Virtue, Wang, & Yang, 2012).

In addition to IncRNAs and small ncRNAs, circular RNAs (circRNAS) represent a novel and
large family of non-coding endogenous RNAs recently discovered in all eukaryotic cells.
These ncRNAs arise from a particular alternative splicing (back-splicing) mechanism of
precursor mMRNAs (pre-mRNASs) (Chen, Huang, Wang, & Shan, 2015a). This back-splicing
mechanism results in a covalently closed circular loop molecule that lack 5° — 3" ends and
poly-adenylated tails (Salzman, 2016). Compared to the other types of ncRNAS, circRNAS
are evolutionarily conserved among species, highly stable, and resistant to RNase R
degradation (Table 1). These features provide circRNAs with many potential functions, such
as (a) acting as miRNA sponges, (b) regulating the expression of parental genes, (c)
regulating alternative splicing or translation, (d) acting as RNA-binding protein (RBP)
sponges, and (e) being translated into peptides/proteins.

CircRNAs were discovered more than four decades ago and were first identified in plant-
based viruses via electron microscope in 1976 (Sanger, Klotz, Riesner, Gross, &
Kleinschmidt, 1976). In 1979, circRNAs were identified in eukaryotic cells as endogenous
RNA splicing products (Hsu & Coca-Prados, 1979). Then in 1986, circRNAs were identified
in humans following hepatitis delta virus infection (Kos, Dijkema, Arnberg, van der Meide,
& Schellekens, 1986). Therefore, circRNAs were typically considered as a functionless
byproducts of aberrant RNA splicing and thus have not gained sufficient scientific attention.
Two reports significantly transformed the field: the first study showed that RNA transcripts
from many human genes were arranged in a non-canonical order, resulting in a type of
circRNAs isoform (Salzman, Gawad, Wang, Lacayo, & Brown, 2012). The second study
reported that circular transcripts of cerebellar degeneration-related protein 1 antisense RNA
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(CDR1as, ciRS7) could act as miRNA sponges for miR-7 (Memczak et al., 2013). These
significant findings changed circRNAs into a new focal point of scientific research and
rising stars in the ncRNA field. An excellent RNA database, exoRBase (http://
www.exorbase.org/), has collected as many as 58,330 circRNAs, 15,501 IncRNAs, and
18,333mRNAs (Li et al., 2018a), suggesting that the numbers of circRNAs are even higher
than that of mRNAs.

In recent years, the development and application of microarray techniques, high-throughput
deep RNA sequencing (RNA-seq), and novel bioinformatics approaches have led to the
discovery of many circRNAs (Broadbent et al., 2015; Danan, Schwartz, Edelheit, & Sorek,
2012; Fan et al., 2015; Lu et al., 2015; Yang, Duff, Graveley, Carmichael, & Chen, 2011)
with some studies suggesting they may outnumber mRNAs (Li, Li, et al., 2018a). These
recent advancements have demonstrated that circRNAs are incredibly abundant, relatively
stable, diverse and conserved, and broadly expressed in eukaryotic cells (Jeck et al., 2013).
Additionally, circRNAs exhibit cell-type, tissue-type or developmental stage-specific
expression (Conn et al., 2015; Guo, Agarwal, Guo, & Bartel, 2014; Salzman et al., 2012;
Salzman, Chen, Olsen, Wang, & Brown, 2013). Emerging evidence suggests that circRNAs
are responsible for regulating complicated biological functions. For example, studies have
shown a role for circRNAs as endogenous microRNA (miRNA) sponges (Hansen et al.,
2013; Memczak et al., 2013; Wang et al., 2016a), transcriptional regulators of their encoding
parental gene expressions (Li et al., 2017a; Zhang et al., 2013), and modulating alternative
splicing (Ebbesen, Hansen, & Kjems, 2017). Furthermore, circRNAs can interact with
RBPs, and act as scaffolds in the assembly of protein complexes (Du et al., 2016; Zhang et
al., 2017; Zhang & Xin, 2018).

Recent studies have implicated circRNAs in physiological processes such as aging
(Westholm et al., 2014) and insulin secretion (Xu, Guo, Li, & Yu, 2015). Additionally,
circRNAs have been demonstrated to play a critical role in the pathogenesis of various
human diseases, including atherosclerotic cardiovascular disorders (Burd et al., 2010; Holdt
et al., 2016), diabetes (Zhao et al., 2017a), cancers (Bachmayr-Heyda et al., 2015; Chen et
al., 2017a; Geng, Jiang, & Wu, 2018; Qin et al., 2016), Alzheimer’s disease (Lukiw, 2013;
Zhao, Alexandrov, Jaber, & Lukiw, 2016), nervous system disorders (Bai et al., 2018), and
osteoarthritis (Liu et al., 2016). In particular, we (Li et al., 2019a) and others reported that
circRNAs are associated with cardiovascular and metabolic diseases; however, little is
known about the exact role of circRNAs in vascular inflammation associated with
cardiovascular and metabolic diseases.

Several studies reported that circRNAs can perform their biological functions inside the cell
or exported by exosomes and taken up by neighboring (paracrine) or distant cells
(endocrine) and affect many aspects of physiological and pathological conditions of the
recipient cells (Bai, Lei, Huang, Jiang, & Zhou, 2019; Li et al., 2015a). Paracrine signaling
has been proposed to promote cell-cell communication in various human cancers (Dou et al.,
2016; Hon, Ab-Mutalib, Abdullah, Jamal, & Abu, 2019; Li, Zheng, et al., 2015a; Louis,
Desoteux, & Coulouarn, 2019). However, the roles of exosomal circRNAs in propagating
cardiovascular and metabolic inflammation have not been studied. Furthermore, the
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development of novel therapeutics targeting circRNAs may help mitigate vascular
inflammation associated with cardiovascular and metabolic diseases.

2. CircRNA biogenesis

CircRNA biogenesis adds a modification step to the conventional generation of mMRNAs.
The precursor mRNA (pre-mRNA) splicing is catalyzed by the canonical spliceosome
machinery to remove introns from the transcript and join exons leading to the formation of a
linear mMRNA with 5'=3” polarity. However, circRNAs are generated from pre-mRNA by the
action of RNA polymerase 11 (Chen, 2016). Most circRNAs do not follow the canonical 5’
3’ order, and are produced during back-splicing (Vicens & Westhof, 2014). These circRNAs
are distinct from their linear RNA counterparts because they lack the 5" — 3" ends and poly-
adenylated tail due to their closed covalent structure, which usually decides the fate of many
RNA transcripts (Memczak et al., 2013). In general, circRNAS originated from exonic
sequences, producing exonic circRNAs (ecircRNAS) (Jeck et al., 2013); or from intronic
sequences, producing intronic circRNAs (CiRNAs) (Zhang et al., 2013). However, the exon-
intron circRNAs (EICiRNAS) can be generated from intron-containing exons (Jeck &
Sharpless, 2014). Exonic circRNAs are formed as a result of pre-mRNA splicing where the
3’ splice donor attaches to the 5” splice acceptor forming an exonic circRNA (Jeck et al.,
2013; Jeck & Sharpless, 2014). This type of splicing might occur with a single exon, but
sometimes happens with multiple exons. However, if the introns between the exons are
retained, the resulting circRNAs are referred to as exon-intron circRNAs (Li et al., 2015b).
The intronic circRNAs are produced from intron lariat (Jeck et al., 2013; Li, Huang, et al.,
2015b). The process of intronic circRNAs formation depends on GU-rich sequences near the
57 splice site and C-rich sequences near the branch point. Finally, the lariat undergoes
debranching and easily degraded while the mature intronic circRNA is generated (Barrett,
Parker, Horn, Mata, & Salzman, 2017). These circRNAs are formed in the nucleus, and
some of them are transported to the cytoplasm. The exonic circRNAs typically reside in the
cytoplasm, but the intronic and exon intronic circRNAs remain in the nuclei (Li, Huang, et
al., 2015b) (Fig. 2A).

To date, four different hypothetical models of circRNA biogenesis have been proposed (Fig.
2B) including (i) intron-pairing-driven circularization; (ii) RNA binding protein (RBP)-
driven circularization; (iii) exon-skipping; and (iv) intron lariat circularization (Barrett,
Wang, & Salzman, 2015). The first model of circRNA biogenesis is intron pairing-driven
circularization (Fig. 2Bi). In this model, two introns flanking the exon/exons of a pre-
mRNAhave a structure capable of joining each other. The flanking introns approach each
other creating a secondary conformation that makes the splice sites possible to carry on
back-splicing and generate exonic circRNA. Adenosine deaminase 1 acting on RNA
(ADAR1) is involved in the intron-pairing process of circRNA formation (Athanasiadis,
Rich, & Maas, 2004). The second proposed model is the RBPs-driven circularization (Fig.
2Bii). In this model, RBPs bind to pre-mRNAs to connect the flanking introns. This process
is induced by protein dimerization, which forms an RNA loop. Muscleblind like splicing
regulator 1 (MBNLZ1) protein, is the most popular RBPs responsible for circRNA biogenesis
(Chen & Yang, 2015). The third circRNA biogenesis model that can give rise to back-
splicing is exon skipping (Fig. 2Biii). In this model, one or multiple exons of the mature
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mMRNA will be missing. The lariat-driven circularization proceeds as the non-adjacent exons
join producing linear mRNA and exon-intron or multiple exon circRNA transcript with lariat
structure. Finally, the fourth proposed mechanism is the intron lariats (Fig. 2Biv) which can
form intronic circRNAs (ciRNAS) (Kristensen et al., 2019). These three major subclasses of
generated circRNAs are different in their location, formation, and biological function (Fig.
3).

3. Regulation of circRNA biogenesis

In general, the levels of steady-state circRNA expression in cells can be regulated by
transcription regulation of circRNA-producing pre-mRNA or by circRNAs degradation.
Emerging lines of evidence show that the transcriptional regulation of circRNAs involves
both cis-regulatory elements and trans-acting factors that control the back-splicing
machinery required for circRNA biogenesis. These factors include core spliceosome
components, intronic complementary sequences (ICSs) flanking circle formation exons, and
other regulatory RBPs. Both cis-elements and trans-factors are required to bring the
downstream donor and upstream acceptor sites close together to promote back-splicing
(Starke et al., 2015; Zhang et al., 2014a).

Previous studies reported that both canonical splice signals and spliceosome machinery are
required for back-spliced circularization; and that back-splicing is usually coupled with
canonical splicing (Ashwal-Fluss et al., 2014; Starke et al., 2015). It has been reported that
the processing of circRNASs can be facilitated by either RNA pairing of reversely
complementary sequences across their flanking introns or protein factors binding to pre-
mRNAs to bridge flanking introns together (Ashwal-Fluss et al., 2014; Starke et al., 2015;
Zhang, Wang, et al., 2014a). RNA pairing across flanking introns promotes exon
circularization; and strong pairing capacity could dramatically increase the production of
circRNAs. Two known RNA binding proteins, MBNL1 and ADARL, are reported to play a
significant role in circRNA biogenesis, where they bind to its own pre-mRNA and bridge
two flanking introns close together leading to increased circRNA formation (Ashwal-Fluss
etal., 2014; Ivanov et al., 2015). Notably, ADAR1 knockdown increased expression levels
of some circRNAs, indicating a role of ADARL1 in the suppression of circRNA biogenesis
(Chen et al., 2015b).

4. Properties of circRNAs

CircRNAs have several important properties including: Z) circRNAs are exist as endogenous
ncRNA (Salzman et al., 2012); 2) circRNAs are widely expressed in eukaryotic cells (Jeck et
al., 2013), and exhibit cell-specific and tissue-specific/developmental-stage-specific
expression (Memczak et al., 2013; Xu,Wu, Han, Zhao, & Song, 2017). Despite the low
levels of most circRNA expression, some are highly expressed than their corresponding
linear MRNAS (Jeck et al., 2013; Memczak et al., 2013; Salzman et al., 2012). Previous
studies reported that the expression of some circRNAs is more than 10-fold higher than the
linear mMRNA counterparts (Jeck et al., 2013). Also, other studies demonstrated that the
expression of circRNA is not correlated with the expression of its linear mRNA as some
circRNA is not detected even though the mMRNA expression levels is too high (Nigro et al.,
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1991). Others demonstrated that circRNAs are highly expressed in the brain tissue (Rybak-
Wolf et al., 2015). Different biological processes including epithelial-mesenchymal
transition (EMT) (Conn et al., 2015), aging, and stress significantly changes the expression
profile of circRNAs (Cortés-Lopez et al., 2018; Fischer & Leung, 2017). Furthermore,
RNA-seq analysis of human fetal and adult tissues including liver, kidney, heart, lung,
stomach, and colon reported that up to 50% of circRNAs are tissue specific and their
expression level is higher in fetal tissues than in adult tissues (Xu et al., 2017). Additionally,
circRNAs are expressed at very low levels in human cancer cells (Bachmayr-Heyda et al.,
2015). These studies strongly suggest that the expression levels of circRNA is a highly
regulated process; 3) compared to linear RNAs, circRNAs form covalently closed-loop
structures with neither 5"-3” polarities nor poly-adenylated tails, resulting in reduced
degradation by RNA exonuclease or RNase R, which makes them more stable than linear
RNASs (Suzuki et al., 2006; Suzuki & Tsukahara, 2014); 4) The majority of the circRNAs
including exonic circRNA are predominantly found in the cytoplasm (Jeck et al., 2013; Jeck
& Sharpless, 2014; Memczak et al., 2013), however, few of them including the intron
retained circRNAs such as intronic circRNA and exon-intron circRNA are exclusively
located in the nucleus (Ebbesen et al., 2017; Zhang et al., 2013; Zhang, Wang, et al., 2014a).
It was reported previously that some exonic circRNAs are also found in the nucleus
(Errichelli et al., 2017) then exported to the cytoplasm. However, the mechanism by which
circRNAs are exported from the nucleus to the cytoplasm remains unknown. As in the
aforementioned, there are several models of circRNA biogenesis were hypothesized
including lariat-driven circularization or exon skipping that generate intronic or exonic-
intronic circRNAs and intron-pairing-driven circularization or direct back-splicing that
generate exonic circRNA. Of note, previous studies demonstrated that intron-pairing driven
circularization may occur more frequently than lariat-driven circularization (Jeck &
Sharpless, 2014). Therefore, these studies indicates that exonic circRNAs represent the
largest class (more than 80%) of total circRNAs and locate in the cytoplasm, while intronic
circRNA represents only 20%(Chen, Huang, et al., 2015a) (Fig. 3).; 5) most of circRNAs are
located in the cytoplasm and few are found in the nucleus (Memczak et al., 2013; Zhang et
al., 2013); 6) circRNAs are highly conserved between species (Jeck et al., 2013; Salzman et
al., 2012; Zhang, Wang, et al., 2014a); 7) most of circRNAs have microRNA response
element (MRE), so they can interact with miRNAs and thus regulate target gene expressions
(Hansen et al., 2013); and &) vast majority of circRNAs can play roles in transcription and
post-transcription regulation (Zhang et al., 2013).

5. Biological functions and mechanisms of circRNAs

In recent years, the biological functions of circRNAs have become a hotspot of scientific
research. A growing body of evidence shows that besides acting as miRNA sponges (Bartel,
2009), several other roles of circRNAs have been proposed (Fig. 4). CircRNAs may also
interact with regulatory RBPs through their activities as protein sponges, decoys, scaffolds,
and recruiters (Huang, Zheng, Wu, Chen, & Huang, 2020). By enhancing binding to RNA
polymerase 11, circRNAs located in the nucleus may modulate the transcription of their host
genes, and regulate alternative splicing and transcription as well as translation (Conn et al.,
2017).
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5.1. CircRNAs can act as miRNA sponges

The majority of circRNAs are located in the cytoplasm, indicating that the circRNA is
involved in post-transcriptional regulation and might function as miRNA sponges or
competitive endogenous RNAs (ceRNAS) to regulate the expression of miRNA targets (Jeck
et al., 2013). MicroRNAs can bind to the complementary sequences in the 3”-untranslated
regions of MRNAs (Bartel, 2004) to facilitate mMRNA degradation. Many circRNAs contain
miRNA binding sites, also known as miRNA response elements (MREs), which allow them
to sponge miRNASs and act as ceRNAs in order to inhibit miRNAs from negatively
regulating their target mMRNAs (Memczak et al., 2013). By binding to the 3’-untranslated
region (UTR) of mMRNAs, miRNAs can inhibit protein translation and facilitate mMRNA
degradation (Bartel, 2004) (Fig. 4A).

Since miRNAs have an inhibitory effect on their target genes, circRNA sponging leads to the
upregulation of the miRNA target mMRNAs and increases the expression of that gene
products. Therefore, circRNAs indirectly regulate mRNAs translation. However, it is
important to consider the stoichiometric relationship between the miRNA binding sites of
the circRNA and the mRNA target sites of the miRNA. Of note, highly abundant circRNAs
having many competing binding sites are more likely to have competing endogenous RNA
function (Thomson & Dinger, 2016). For example, CDR1as, a circRNA that is highly
expressed in the brain tissue, has more than 70 conserved seed-binding sites for miR-7, and
miR-7 occupies many of these sites (Piwecka et al., 2017), which is involved in the
regulation of several miR-7 target genes in the brain (Hansen et al., 2013; Memczak et al.,
2013). Similarly, miR-671 has one complementary binding site to CDR1as, indicating that
while miR-671 can mediate cleavage of CDR1as, CDR1as might regulate miR-7 levels and
activity (Hansen et al., 2011; Hansen et al., 2013). Furthermore, the circRNA Sry acts as a
miRNA sponge for miR-138, with at least 16 binding sites for miR-138 (Hansen et al.,
2013). On the other hand, some circRNAs do not possess multiple binding sites for a
specific miRNA, but they harbor many different types of miRNA binding sites. For instance,
circRNA circITCH has multiple binding sites for miR-7, miR-17, and miR-214 leads an
increase of E3-ubiquitinligase gene (INCH) expression (Li et al., 2015c). Even though, some
identified circRNAs possess fewer miRNA binding sites than their co-linear mRNASs
counterpart, but also exhibit their miRNA sponge function, indicating that the function of
circRNAs as miRNA sponges is conserved across species. Recently, many studies have
determined the sponge function of circRNAs; for example, circ_CHFR has been shown to
promote oxidized low-density lipoprotein (oxLDL)-induced vascular smooth muscle cell
proliferation, migration, and inflammation by interacting with miR-214-3p (Zhuang et al.,
2020). In addition, homeodomain-interacting protein kinase 3 (HIPK3) circular RNA
(circHIPK3) suppresses miR-30a-3p activity by sponging miR-30a-3p (Shan et al., 2017).
These studies indicated that circRNAs might play a significant role as miRNA sponges in
inflammatory cardiovascular diseases.

5.2. CircRNAs can act as RNA-binding protein (RBP) sponges

RBPs play a critical role in post-transcriptional regulatory processes associated with
different biological activities, including cell proliferation, apoptosis, senescence, and cell
responses to oxidative stress via post-transcriptional regulation (Brinegar & Cooper, 1647).
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Increasing evidence suggests that specific circRNAs can act as protein sponges by providing
binding sites for specific RBPs to sequester and inhibit the biological activity of proteins
through competitive inhibition (Zang, Lu, & Xu, 2020) (Fig. 4B) ). The interaction of
circRNAs with the RBPs such as Elav like RNA binding protein 1 (HuR), KH-type splicing
regulatory protein (KHSBP), tristetraprolin (TTP), heterogeneous nuclear ribonucleoprotein
D, F-box family protein (AUF1), and other potent regulatory RBPs could indirectly affect
the fate of their respective target mMRNAs (Panda, Grammatikakis, Munk, Gorospe, &
Abdelmohsen, 2017a). We and our collaborators recently reported that in a bone marrow
(BM) transplantation mouse model with TTP deficient BM transplantation into low-density
lipoprotein receptor deficient recipient mice (LDLR™"), TTP deficient (TTP™") BM
recipients display significantly higher systemic and multi-organ inflammation than TTP*/*
BM recipients, implying that the TTP-sponged circRNAs could enhance systemic
inflammation (Saaoud et al., 2020). Previous studies showed that circFoxo3, the circular
RNA variant of the Foxo3 gene, can interact with p21 and cyclin dependent kinase 2
(CDK?2) to inhibit cell cycle progression. CircFoxo3 can also bind and inhibit senescence-
associated proteins (ID1 and E2F transcription factor 1, E2F1) and stress-related proteins
(hypoxia-inducible factor 1, HIF1a and focal adhesion kinase, FAK) in the cytoplasm to
regulate cardiac senescence (Du et al., 2016; Du et al., 2017).

5.3. CircRNAs can regulate translation and alternative splicing

Besides acting as miRNA sponges and binding to RBPs, circRNAs have a potential role in
regulating protein translation (Jeck & Sharpless, 2014) (Fig. 4C). Several circRNAs can bind
open reading frames (ORFs) and be translated as protein fragments. It has been shown that
protein/polypeptides can be coded by circRNAs both /n vivo and in vitro only when the
RNASs contain prokaryotic ribosome-binding sites, or internal ribosome entry site elements
(IRES) (Chen & Sarnow, 1995; Perriman & Ares Jr., 1998). It has been confirmed that circ-
ZNF609 can be translated into a protein functioning in myogenesis (Legnini et al., 2017).
Recently, it has been reported that Né-methyladenosine (m®A) is the most common and
abundant base methylation modification of RNAs and promotes the initiation of protein
translation from circRNA in human cells. Many circRNAs contain the m6A motifs, and only
one m®A is required to drive translation initiation (Yang et al., 2017a). Interestingly, a large
number of circRNAs have the potential for translation, indicating that they may have a
regulatory role in the stimulation of circRNA-derived proteins in cell responses to
environmental stressors. Besides being translated themselves, there is emerging evidence
that some circRNAs, including circPABPN1, can regulate translation of their associated
linear MRNAs (Abdelmohsen et al., 2017). These studies provide a new direction for the
functional studies of circRNAs.

Previous studies reported that ecircRNAs could play a role in alternative splicing as the
circularization can compete with canonical splicing. Mannose-binding lectin 2 (MBL2)
protein is a splicing factor, which can affect alternative MBL pre-mRNA splicing during the
generation of MBL mRNA and circular MBL (circMBL). The second exon of the MBL gene
contains sequences that form a circRNA transcript having conserved binding sites for MBL
protein in the flanking intronic sequences. In an auto-regulatory manner, circMBL
influences the selective splicing of the MBL mRNA. Additionally, MBL can interact with
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circMBL and its flanking introns to promote exon circularization. Therefore, the competition
between back-splicing for circRNA generation and canonical splicing is evident from the
concomitant reduction in circRNA and an increase in linear splicing (Ashwal-Fluss et al.,
2014). These findings may hint that some circRNAs may play a role in controlling the
expression of MRNA through binding to RBPs and affecting the canonical splicing.

5.4. CircRNAs act as gene expression regulators

There are competitions between the biosynthesis of circRNAs and linear RNAs, with the
expression of linear RNAs being regulated by circRNAs. Recent studies showed that certain
circRNAs such as intron (ciRNAs) and intron-exon (EICiRNAS) circRNAs can promote
transcription of the parental genes. These circRNASs have few binding sites for miRNAs,
suggesting that they may function differently (Zhang, Yang, & Chen, 2014b). Also, ciRNAs
and EIciRNAs are widely localized and detected in the nuclei and act as transcriptional
regulators by binding to U1 small nuclear ribonucleoproteins (U1 snRPN) and RNA
polymerase 1l in the promotor region of genes, thus promoting the transcription of the
parental gene (Ashwal-Fluss et al., 2014; Li, Huang, et al., 2015b) (Fig. 4D).

6. Degradation and elimination of circRNAs

Once generated, exonic circular RNAs progressively accumulate in the cytoplasm.
CircRNAs are highly stable and have long half-lives because of their circular structure,
which makes them naturally resistant to degradation by RNase exonucleases. Currently, very
little is known about the mechanisms of how circRNAs are degraded /n vivo. The first
evidence of natural circRNAs degradation via endonuclease activity was found /n vitro using
RNase H and DIS3 homolog, exosome endoribonuclease and 3’-5’ exoribonuclease (Rrp44)
(Zhao, Zhu, Limbo, & Russell, 2018). Also, RNase L has been identified globally to degrade
circRNAs (Liu et al., 2019a) (Fig. 4E). Additionally, circRNA binding by miRNAs may
initiate circRNA decay by Argonaute RNA-induced silencing complex (RISC) catalytic
component 2 (Ago2)-mediated cleavage. For instance, circRNA CDR1as degradation was
dependent on miR-671-mediated Ago2 cleavage (Hansen et al., 2011). Emerging studies
have demonstrated that circRNAs are abundant and stable in exosomes. These exosomal
circRNAs were identified and detected in human blood and urine (Li, Zheng, et al., 2015g;
Memczak, Papavasileiou, Peters, & Rajewsky, 2015) (Fig. 4F). Furthermore, multiple
circRNAs are secreted from cells into extracellular space by exosomes and further removed
by the reticulo-endothelial system or eliminated by the kidney and liver (Choi & Lee, 2016;
Lasda & Parker, 2016; Wang et al., 2019a). Recently, the RNA modification, N6-
methyladenosines (m®A), as well as poly (1:C) stimulation were shown to mediate the
activation of the endoribonuclease, RNase L, and ultimately the degradation of both mRNAs
and circRNAs (Park et al., 2019).

7. Approaches studying circRNAs

Since the initial discovery of circRNAs, various biochemical tools have been discovered and
identified to detect and validate the existence of circRNAs and their localization, biogenesis,
biological functions, disease implication, interacting molecules, and therapeutic potential.
Furthermore, online resources, bioinformatics and statistical approaches have been
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developed to quantify the expression of circRNAs and identify new circRNAs with high
confidence (Li, Yang, & Chen, 2018b) (Table 2A). First, high-throughput circRNA
sequencing (circ-seq) analysis has enabled the identification of thousands of circRNAs. The
unique feature of this technique is that circRNAs are enriched with RNase R digestion to
eliminate most linear transcripts and keep circRNAs intact (Jeck et al., 2013; Salzman et al.,
2013). Second, microarray high-throughput analysis is another useful technique to detect the
expression levels of specific circRNAs. This method typically requires pre-treatment of the
RNA samples with RNase R to degrade linear transcripts and enhance circRNA detection.
The disadvantages of this technique include: 1) microarray platforms incorporate only a
limited number of known circRNAs, 2) circRNAs identification is based only on the
junction sequences and circRNAswith shared junction sequences cannot be distinguished,
and 3)microarray cannot inform on the internal sequence of a given circRNA (Li et al.,
2016a; Qu et al., 2015). A third technology used to study circRNA is reverse transcription-
polymerase chain reaction (RT-PCR) has been used to validate the high-throughput circ-seq
and microarray analysis. This technique requires the use of divergent primers spanning the
circRNA junction, and the extracted circRNAs must be enriched with RNase R followed by
RT-gPCR analysis, but often this step can be avoided if the circRNA is abundant, as
divergent primers do not amplify linear RNA (Panda, Abdelmohsen, & Gorospe, 2017b).
Fourth, digital droplet PCR (ddPCR) analysis is used to quantify circRNA copy number
(Hindson et al., 2011). Compared to the conventional RT-gPCR, ddPCR is more accurate,
provides absolute numbers, and measures low-abundance RNAs. However, it requires
special instrumentation, software, and proprietary reagents (Quan, Sauzade, & Brouzes,
2018). Fifth, northern blot analysis is another technique used to investigate circRNAs size,
isoforms, processing, sequence, and abundance, and also to distinguish between a circRNA
and its linear counterpart (Pamudurti et al., 2017). Sixth, RNA fluorescence in situ
hybridization (RNA-FISH) coupled with high-resolution microscopy is a commonly used
technique to examine the abundance and localization of RNA molecules. RNA-FISH probe
targets circRNA junctions to detect and quantify several circRNAs and determine the co-
localization of circRNAs with proteins (Itzkovitz & van Oudenaarden, 2011; Jeck &
Sharpless, 2014).

Furthermore, several online circRNA resources and public databases have been developed to
provide key bioinformatics knowledge about circRNAs (Table 2B) including exoRBase
(http://www.exorbase.org/) which was mentioned earlier in this review. Circ/ntractome can
be used to design divergent primers and siRNA (Dudekula et al., 2016). C/rcBase can
provide information about circRNA identity and tissue specificity based on RNA-seq data
and identify potential interacting factors such as miRNAs and RBPs (Memczak et al., 2013).

Since circRNAs have the ability to regulate gene expression, it exist as potential therapeutic
tool for various diseases (Li, Yang, & Chen, 2018b). Currently, molecular tools for circRNA
manipulation are under investigation. Furthermore, the manipulation of circRNA expression
levels is another strategy to understand the impact of its expression levels in disease
progression. CircRNA overexpression (gain of function) and knockdown (loss of function)
approaches have been successfully used to study circRNAs. CircRNA gain of function
approaches to overexpress circRNAs have been used to design expression vectors containing
the circRNA sequence and delivered by viral vector systems such as plasmid transfection
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and AAV vector (Hansen et al., 2013; Meganck et al., 2018) which already used in clinical
trials (Jessup et al., 2011). The limitation of this technique is the formation of concatemers if
the RNA polymerase cannot recognize the transcription terminator site (TTS) (Barrett &
Salzman, 2016). Therefore, northern blot is required to exclude concatemer expression.
Non-viral strategies are also developed to produce exogenous circRNAS /n vitroin
eukaryotic cells (Hansen et al., 2013; Wesselhoeft, Kowalski, & Anderson, 2018).

In addition, circRNA loss-of-function experiment is usually used to knockdown the
circRNAs expression. Small interfering RNA (siRNA) and small hairpin RNA (shRNA)
designed specifically to target the circRNA junction (back-splice site) without affecting the
linear mMRNA counterpart are used to successfully knockdown circRNA expression (Chen et
al., 2017b). However, the limitation of this technique is that the sSiRNA may target the linear
mRNA or other circRNAs with the same junction sequence (Holdt et al., 2016; Wang, Long,
et al., 2016a). Therefore, the negative effect of sSiRNA-mediated knockdown on the parental
gene expression should always be examined and ruled out. Also, CRISPR-Cas9 genome
editing technology can be used to delete intronic complementary regions and potentially
generate circRNA knockouts (Abudayyeh et al., 2017; Cox et al., 2017). This tool was used
to remove the circRNA CDR1as locus from the mouse genome to generate CDR1as-loss-of-
function mutant mice (Piwecka et al., 2017). Moreover, the CRISPR/Cas9 genome editing
was used to remove the intronic complement sequence (ICS) of the circGCN1L1-flanking
introns to suppress its expression without affecting the linear MRNA (Zhang et al., 2016). In
general, manipulation tools for circRNA are a considerable gain in uncover circRNA
function in diseases, and they have perfect prospects for being progressing into circRNA-
based therapeutic strategies in the future.

8. Exosomal circRNAs

CircRNAs have a high degree of stability and resistance to exonuclease degradation;
therefore, they may be accumulated in the cells if not controlled by cellular mechanism
(Conn et al., 2015). One of the most important cellular mechanisms is the excretion of
circRNAs from cells through extracellular vesicles such as exosomes. Exosomes are
membrane-bound vesicles of endocytic origin secreted by most cell types (Xu et al., 2018;
Yang et al., 2017b) and contain cellular components such as proteins, lipids, mRNAs, and
miRNA (Valadi et al., 2007) and participate in cell-to-cell communication, and transfer
genetic information (Bai et al., 2019). Recently, circRNAs have been detected in exosomes
indicating that cells may use exosomes to transport circRNAS to communicate to other cells
(Lasda & Parker, 2016). In 2015, L/ et al. reported, for the first time, that exosomes contain
abundant circRNAs (Lener et al., 2015). These circRNAs within the exosomes (referred to
as exo-circRNAs) are stable and circulate in the serum after RNase R treatment. The
presence of exo-circRNAs has been confirmed in a variety of cells. It has been reported that
numerous exo-circRNAs could be released into extracellular space and detected in the blood,
which is used as potential biomarkers in cancers. In addition, exo-circRNAs could enter the
cell again (autocrine effect), taken by adjacent cell (paracrine effect), or enter a distant cell
(endocrine effect) (Fig. 5) and release their content (Milman, Ginini, & Gil, 2019). However,
the functions of exosomal circRNAs are not fully clear. By delivering circRNAS, exosomes
play a key role in regulating signaling transduction between neighboring or distant cells and
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transfer biological activities to recipient cells (Li, Zheng, et al., 2015a; Théry, Zitvogel, &
Amigorena, 2002).

Furthermore, circRNAs have been reported to be able to bind to miRNAs, which are also
shown to be abundant in exosomes (exomiRNAS) (Li, Zheng, et al., 2015a). CircHIPK3 has
been reported to be transferred from cardiomyocytes into cardiac microvascular endothelial
cells by exosomes and protect endothelial cells from oxidative damage and vascular
dysfunction /n vitro under oxidative stress conditions by sponging miR-29 (Wang et al.,
2019b). Additionally, exosomal ncRNAs are involved in cardiovascular diseases and their
potential use as disease biomarkers (Jaquenod De Giusti, Santalla, & Das, 2019). However,
the roles of exo-circRNAs in accelerating and propagating cardiovascular and metabolic
inflammation still require further study.

Currently, a database named exoRBase (http://www.exorbase.org/) is mainly a collection of
all long RNA species derived from RNA-seq data analyses of human blood exosomes. It
studied the RNA expression profiles in normal individuals and patients with different
diseases. The first release of exoRBase contains 58,330 circRNAs, 15,501 IncRNAs and
18,333 mRNAs from 87 blood exosomal RNA-seq datasets. Compared to healthy
individuals, patients with coronary heart disease (CHD) significantly upregulated 2,425 exo-
circRNAs and downregulated 485 exo-circRNAs (Li, Li, et al., 2018a). These finding
indicated that exo-circRNAS play a role in the development of the disease and can be used as
disease biomarkers.

9. CircRNAs as potential diagnostic biomarkers

In the early stages of a disease, the characterization of biomarkers is considered a very
promising strategy in the diagnosis and prevention of the disease. Since circRNAs are highly
abundant, stable, and have tissue-specific expression, previous reports highlighted their
potential as disease biomarkers. In addition to this, it has been shown that circRNAs are
packaged and released in exosomes that provide additional protection to it, and increasing
amounts were found in exosomes when compared to the cells (Li, Zheng, et al., 2015a).
Previous studies have demonstrated that the circRNAs hsa_circ_002059 and
hsa_circ_104916 were dramatically downregulated in the plasma and gastric cancer tissues
and significantly correlated with tumor metastasis, age, and sex, suggesting the potential of
these circRNAS as a stable diagnostic biomarker for gastric cancer (Li et al., 2015d; Li et al.,
2017b). Additionally, circ-ITCH can be used to diagnose esophageal cancer (Li, Zhang, et
al., 2015c), whereas hsa_circ_0005075 can be used as a potential biomarker of
hepatocellular carcinoma (Qin et al., 2016). Although several circRNAs have been examined
and suggested to exert important functions in the pathological process of various
cardiovascular diseases (CVDs) (Fan et al., 2017), however, very few circRNA biomarker
candidates for CVDs have been reported. The expression of circRNAs was investigated in
peripheral blood of patients with coronary heart disease (CHD) and results suggested that
circRNA hsa_circ_0124644 could be used as a diagnostic biomarker of CHD (Memczak et
al., 2015; Zhao et al., 2017b). Another study reported that circulating circRNA
hsa_circ_0021001 was decreased in peripheral blood of patients with intracranial aneurysms
(1A), and was considered to be a potential diagnostic marker for 1A (Teng et al., 2017).
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Furthermore, bioinformatics analysis of peripheral blood circRNA expression profiles in
hypertensive patients identified circRNA hsa-circ-0005870 as a novel biomarker for
diagnosis of hypertension (Wu, Jin, & Cai, 2017). Another study identified circRNA
MICRA as a novel prognostic biomarker for patients with heart failure after myocardial
infarction (Salgado-Somoza, Zhang, Vausort, & Devaux, 2017). CircRNAs can also be used
as diagnostic biomarkers in central nervous system (CNS). These circRNAS can cross the
blood-brain barrier (BBB), enter into the blood and cerebrospinal fluid (CSF), and thus be
used as novel biomarkers (Lu & Xu, 2016).

10. Regulation of oxidative stress and reactive oxygen species (ROS)

production by circRNA

Oxidative stress is characterized by an imbalance between oxidants and antioxidants and a
disruption of redox signaling (Sies, 2015). It is generally accepted that oxidative stress can
lead to cell and tissue injury having a fundamental role in vascular dysfunction and
inflammation (Siti, Kamisah, & Kamsiah, 2015; Steven et al., 2019). Under physiological
conditions, ROS control vascular function by modulating various redox-sensitive signaling
pathways. However, in vascular disorders, oxidative stress triggers endothelial dysfunction
and inflammation, affecting several cells in the vascular wall including endothelial cells and
vascular smooth muscle cells (Steven et al., 2019; Sun et al., 2020). Recently, we reported
that mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial cell
activation status for both physiological recruitment of patrolling cells (at low ROS levels)
and pathological recruitment of inflammatory cells (at high ROS levels) (Cheng et al., 2017,
Lietal., 2013; Li et al., 2016b; Li et al., 2017c; Nanayakkara, Wang, & Yang, 2019).
Several studies demonstrated that several circRNASs are regulated by oxidative stress and
mediate ROS production as well as promote ROS induced cellular death, cell apoptosis, and
inflammation (Cheng, Cao, Xue, Xia, & Xu, 2019; Li et al., 2020a; Liang et al., 2020). A
previous study showed that sodium/calcium exchanger 1 (ncx1) circular RNA (circNCX1)
was upregulated in response to ROS (H,05,) in cardiomyocytes by acting as a miR-133a-3p
sponge to release the pro-apoptotic gene cell death inducing p53 target 1 (CDIP1) and
promote cardiomyocyte apoptosis (Li et al., 2018c). However, H,0, stimulation resulted in
the downregulation of circHIPK3 expression in human osteoblast whereas circHIPK3
overexpression alleviated H,O,-induced cell viability reduction, cell death and apoptosis
(Liang et al., 2020). Furthermore, autophagy-related circular RNA (circACR) is
downregulated by high glucose (HG) irritation, and its overexpression attenuated HG-
aroused SchwannRSC96 cell apoptosis, autophagy, and ROS generation (Liu, Chen, Yao, &
Kang, 2019) (Table 3). Interestingly, circHIPK3 can be transferred by exosomes released
from hypoxia-pretreated cardiomyocytes into cardiac microvascular endothelial cells, and
protect endothelial cells from oxidative damage and vascular dysfunction /n vitro under
oxidative stress conditions by sponging miR-29a (Wang, Zhao, et al., 2019b). These studies
indicated that circRNAs play a critical role in vascular pathology especially in disease
conditions wherein oxidative stress plays a crucial role, such as endothelial dysfunction,
vascular inflammation, diabetes mellitus, and atherosclerosis (Fuschi, Maimone, Gaetano, &
Martelli, 2019).
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11. Association of innate immune response with circRNA

The activation of the innate immune system results in enhanced responsiveness to
subsequent triggers, which is termed trained immunity or innate immune memory (Netea &
van der Meer, 2017). Not only the innate immune cells such as (monocytes, macrophages,
and NK cells), but also traditional non-immune cells such as endothelial cells and smooth
muscle cells have this memory function (Hamada, Torre, Drancourt, & Ghigo, 2018; Shao et
al., 2020a). As discussed above, we recently proposed a new working model that endothelial
cells are conditional innate immune cells (Wang, Zhao, et al., 2019b). Challenged cells with
exogenous or endogenous insults results in metabolic reprogramming and epigenetic
modifications (Lu et al., 2019), which is phenomenon seen in trained immunity of innate
immune cells. Furthermore, when cells are exposed to a subsequent non-specific immune
stimulus, they respond more strongly (secondary response) than to the primary insult (Netea,
Quintin, & van der Meer, 2011; Zhong, Yang, Feng, & Yu, 2020). The metabolic
reprogramming in trained immunity is characterized by increased glycolysis, increased
acetyl-CoA generation, and increased cholesterol (mevalonate) pathway synthesis (Penkov,
Mitroulis, Hajishengallis, & Chavakis, 2019). Initiation of innate immune memory through
trained immunity is the likely mechanism behind the non-specific protective effects of
certain vaccines (Benn, Netea, Selin, & Aaby, 2013), while increased inflammatory
responsiveness of the cells due to trained immunity could also play a central role in
inflammatory diseases (Bekkering, Joosten, van der Meer, Netea, & Riksen, 2013). We
recently reported that pro-atherogenic lysophosphatidylcholine (LPC) activates human aortic
endothelial cells (HAECs) (Li et al., 2018d; Li et al., 2018e; Li, Fang, et al., 2016b) and
upregulates trained immunity pathways (TIPs) via analyzing our RNA-Seq data and histone
3 lysine 14 acetylation (H3K14ac)-chromatin immunoprecipitation (CHIP)-Seq data, both
performed on HAEC treated with LPC (Lu et al., 2019). CircRNAs have been shown to play
a critical role in glycolysis through sponging miRNAs, which represses the expression of
several enzymes and transporters of glycolysis pathway (Yu et al., 2019). Some experimental
studies reported that circMAT2B (Li et al., 2019b) and circ-PRMT5 (Ding, Guo, Deng, &
Li, 2020) promote glycolysis, while knockdown of circAKT3 (Xu, Jiang, Wu, & Zhang,
2020), circCUX1 (Li et al., 2019c), and circDENND4C (Ren et al., 2019) inhibits glycolysis
in cancer cells.

Microbial lipopolysaccharides (LPS) induce Toll-like receptor (TLR) pathways and NF-x
activation leading to modulation of genes involved in innate and adaptive immunity
(Rosadini & Kagan, 2017). A previous study reported that the activation of TLR in mouse
macrophages regulate the expression of circRasGEF1B. Additionally, circRasGEF1B could
modulate the expression of intercellular adhesion molecule 1 (ICAM-1) as part of the LPS
response, and that knockdown of this circRNA leads to a reduction in ICAM-1expression
levels in vitro (Ng et al., 2016). Furthermore, innate immune response and trained immunity
contribute to the development of atherosclerotic cardiovascular diseases (Hansson &
Hermansson, 2011).
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12. Regulation of vascular inflammation by circRNA

Endothelial dysfunction (Etwebi, Landesberg, Preston, Eguchi, & Scalia, 2018; He et al.,
2016; Shao et al., 2014) and vascular inflammation are associated with several pathological
processes such as inflammatory and ischemic cardiovascular disease as well as metabolic
disorders (Carmeliet, 2003; Puro, Kohmoto, Fujita, Gardner, & Padovani-Claudio, 2016).We
recently proposed a new working model that endothelial cells are conditional innate immune
cells (Wang, Zhao, et al., 2019b), which are equipped with receptors including Toll-like
receptors and inflammasome/caspase-1 (Li et al., 2016c; Li et al., 2017d; Shen et al., 2010;
Wang et al., 2016b; Yang, Yin, & Wang, 2008; Yin et al., 2013) for danger/pathogen-
associated molecular patterns (DAMPs/PAMPs) for sensing various DAMPs and conditional
DAMPs such as pro-atherogenic lysophospholipids (Li et al., 2016d; Shao et al., 2017,
Wang et al., 2016c), hyperlipidemia (Yin et al., 2015), hypoxia (Fu et al., 2017), uremic
toxins (Ferrer et al., 2016; Monroy et al., 2015; Sun et al., 2018), LPS (Sha et al., 2015;
Virtue et al., 2017), pro-inflammatory cytokines such as interleukin-7 (IL-17) (Mai et al.,
2016) and anti-inflammatory cytokines including interleukin-35 (IL-35) (Li et al., 2012; Li,
Fang, Yang, Wang, & Yang, 2017; Li, Shao, et al., 2018e) and interleukin-10 (IL-10) (Li et
al., 2020b) as well as having innate immune memory (trained immunity) functions (Lu et al.,
2019; Shao et al., 2020b; Zhong et al., 2020). Thus, targeting vascular endothelial
dysfunction and inflammation has enormous therapeutic potential in the prevention and
treatment of vascular complications. Several lines of evidence indicate that circRNAs are
expressed in different cardiovascular diseases (Holdt et al., 2016; Wang, Long, et al., 2016a;
Zheng et al., 2016) that are usually associated with endothelial dysfunction, vascular smooth
muscle cell proliferation and migration, and vascular inflammation (Eelen, de Zeeuw,
Simons, & Carmeliet, 2015; Sena, Pereira, & Seica, 1832).

CircRNAs participate in cardiovascular disease via miRNA sponging and thus regulating
their target genes to maintain homeostasis (Su & Lv, 2020). Some of these circRNAS (pro-
inflammatory circRNAS) have been shown to promote endothelial dysfunction, vascular
inflammation, and cardiovascular disease (Table 4A). Of note, circRNA from IncRNA
ANRIL (antisense ncRNA in the INK4 locus) was positively correlated with INK4/ARF
(Cdkn2a—Cdkn2b genes encoding three potent tumor suppressors, namely p16!nk4a p19Arf
and p15/Mk4b) expression and atherosclerosis risk (Burd et al., 2010). Circ-Sirt1 binds to
miR-132/212 and controls NF-kappaB activation to mediate inflammatory phenotypic
switching of vascular smooth muscle cells (VSMCs) which play a fundamental role in
neointimal formation and atherosclerosis (Kong et al., 2019). Also, circRNA CDR1as could
regulate the miR-7 on its target gene expression and promote myocardial infarction via
promoting cell apoptosis (Geng et al., 2016). In 2017, Du et al. discovered that circRNA
circ-Foxo3 promotes cellular senescence and cardiac cell death (Du et al., 2017).
Meanwhile, other circRNAs (anti-inflammatory circRNAS) have been shown to attenuate
endothelial dysfunction and vascular inflammation (Table 4B). For instance, circRNA
circ_0003204 was significantly upregulated in oxLDL-activated endothelial cells, and its
silencing promoted endothelial cell proliferation and angiogenesis (Li, Ma, & Yu, 2017f).
However, more pro-inflammatory circRNAs associated with cardiovascular diseases have
been identified and characterized than the anti-inflammatory circRNAs. In general,
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circRNAs are potentially involved in vascular dysfunction/inflammation; however, we
recently reported that pro-atherogenic LPC induced circRNAs may contribute to
homeostasis in LPS-induced HAEC activation (Li, Sun, et al., 2019a). Of note, the relevance
of circRNAs to vascular inflammation and its molecular mechanism in cardiovascular
diseases remains poorly characterized, and a better understanding of circRNA involvement
in vascular-related inflammation and cardiovascular diseases will form a basis for the
development of these circRNAs as biomarkers in the cardiovascular system. Additionally, a
better understanding of circRNA may lead to discovery and the development of therapeutic
agents as well as better patient prognosis.

13. Conclusion

CircRNAs are now a noteworthy area in the field of RNA. Several studies have demonstrated
that circRNAs are an abundant, diverse, stable, and conserved class of RNA molecules,
representing a new type of regulatory ncRNA. Nevertheless, their regulation and biological
roles are not yet clearly understood, as well as their degradation, localization, and their
involvement in disease pathogenesis. Recent studies have demonstrated that circRNAS can
act as miRNAs sponges, RBP sponges, regulate transcription, or affect gene expression, and
a growing body of evidence suggests that there might be other functions remaining to be
revealed. Recently, a circRNA database has been constructed to provide tissue-specific
circRNA expression profiles and circRNA-miRNA-gene regulatory networks. Considering
the studies mentioned above, circRNAs might be useful therapeutic agents. Controlling the
expression of circRNAs in specific tissues and cells of the body might yield greatly reduced
endothelial dysfunction and vascular inflammation associated with cardiovascular and
metabolic diseases. The studies mentioned above provide novel insights on the roles of
circRNAs in regulating ROS, vascular inflammation associated with cardiovascular and
metabolic diseases.
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A classification of non-coding RNA and their biological functions. Abbreviations: ncRNA:

non-coding RNA; circRNA: circular RNA; IncRNA: long non-coding RNA; miRNA:

microRNA,; siRNA: small interfering RNA; snoRNA: small nucleolar RNA; snRNA: small
nuclear RNA; piRNA: piwi-interacting RNA; rRNA: ribosomal RNA; tRNA: transfer RNA.
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Fig. 2A.
Schematic representation illustrating circRNA biogenesis. In the nucleus of eukaryotic cells,

DNA is transcribed to form precursor mMRNA (pre-mRNA), which contain coding exons and
introns. Different from linear mRNAs, which are formed by canonical linear splicing and
cutting away introns of the pre-mRNAs using small nuclear ribonucleoproteins (SnRNPS),
circular RNAs (circRNAs) are formed by back-splicing of the pre-mRNAs and
circularization of the cut segment, where the 5’ end joins the 3’ end. (A) Single exon
circRNAs: circular RNAs can be generated from a single exon; (B) Multi-exon circRNAs:
circular RNAs can also be generated from two or more exons; (C) Exon-intron circRNAS:
circular RNAs can contain intron(s) that have been retained between one or more circular
exons; (D) Intronic circRNAs: introns can be excised from pre-mRNAs and circularize to
give rise to circRNAs.
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Fig. 2B.
The proposed models of circRNA formation. i) Intron-pairing-driven circularization. Two

complementary introns form a circular structure containing several introns and exons
through a base-pairing connection. Finally, introns are removed to form exonic circRNAs
(EcircRNAS). ii) RNA binding protein (RBP)-driven circularization. The binding of RBPs
acts as a vehicle that binds two non-adjacent introns. Then circRNAs are generated after the
removal of introns. iii) Exon skipping: the back-splicing process can take place because of
exon skipping mechanism, which leads to lariat formation. This process can generate three
different products: linear mMRNA, an exonic or exonic-interonic circRNAs, and intron lariats
iv) Intron lariat will generate intronic circRNAs.
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introns

Represent small fraction of
circRNAs ~ 20%
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Three major subclasses of circRNAs. (A) Exonic circRNAs (ecircRNASs) consist of only
exon(s) (usually less than five) and represent the most important group of circRNA class.
EcircRNAs have cytoplasmatic location and may regulate microRNA and protein functions.
(B) Exon-intron circRNAs (EICiRNAS) are composed of exons and retained introns.
EICiRNAs have nuclear localization and have been found to be able to regulate gene
transcription in c/sand probably also in #rans.(C) Intronic circRNAs (ciRNAS) are derived
from intron lariats and are accumulated in the nucleus in which regulate gene transcription in

cis.
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Fig. 4.

Sc%ematic representation of circRNA functions and degradation. (A)microRNA sponges:
circRNAs can act as miRNA sponges by competing for miRNA binding sites (miRNA
response elements (MRESs)) and prevents miRNA from interacting with their target
messenger RNA (mMRNA) at 3’ untranslated region (UTR) leading to reduced the effect of
miRNA-mediated regulatory activities.(B) Interaction with RNA binding proteins (RBPs):
circRNAs may act as protein sponges, by directly binding to RBPs, and therefore retain
them in the cytoplasm. These RBPs includes: cyclin-dependent kinase inhibitor 1 (p21),
cyclin-dependent protein kinase 2 (CKD2), inhibitor of DNA binding 1 (ID1), E2F1,
Hypoxia-inducible factor-1a (HIF1a), and preface focal adhesion kinase (FAK). (C)
CircRNA can be translated with ribosome and encode peptides or proteins. (D) CircRNAS
(e.g. EICiRNAs and ciRNASs) may interact with transcription complexes and enhance the
expression of their parental genes. (E) The degradation of circRNAs. CircRNAs are globally
degraded by RNase L in early cellular innate immune responses. (F) The elimination of
circRNAs. circRNAs can be eliminated into the extracellular space by exosomes
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Fig. 5.
Generation of exosomal circRNAs (exo-circRNAS). circRNAs can be loaded into exosomes,

released by donor cells into extracellular space, and enter the cells again (Autocrine effect)
or targets nearby cells (Paracrine effect) or targets a distant cells (Endocrine effect) through
endocytosis, thus modulating gene expression in recipient cells. Some exo-circRNAs are not
bind to miRNAs in exosomes, they are able to sponge specific in target cells leading to target
gene activation; or exo-circRNAs are bind to miRNAs in exosome. After entering target
cells, miRNAs are released and target genes can be silenced.
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