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Abstract
Deep learning techniques have recently made considerable advances in the field of artificial intelligence. These

methodologies can assist psychologists in early diagnosis of mental disorders and preventing severe trauma. Major

Depression Disorder (MDD) is a common and serious medical condition whose exact manifestations are not fully

understood. So, early discovery of MDD patients helps to cure or limit the adverse effects. Electroencephalogram (EEG) is

prominently used to study brain diseases such as MDD due to having high temporal resolution information, and being a

noninvasive, inexpensive and portable method. This paper has proposed an EEG-based deep learning framework that

automatically discriminates MDD patients from healthy controls. First, the relationships among EEG channels in the form

of effective brain connectivity analysis are extracted by Generalized Partial Directed Coherence (GPDC) and Direct

directed transfer function (dDTF) methods. A novel combination of sixteen connectivity methods (GPDC and dDTF in

eight frequency bands) was used to construct an image for each individual. Finally, the constructed images of EEG signals

are applied to the five different deep learning architectures. The first and second algorithms were based on one and two-

dimensional convolutional neural network (1DCNN–2DCNN). The third method is based on long short-term memory

(LSTM) model, while the fourth and fifth algorithms utilized a combination of CNN with LSTM model namely, 1DCNN-

LSTM and 2DCNN-LSTM. The proposed deep learning architectures automatically learn patterns in the constructed image

of the EEG signals. The efficiency of the proposed algorithms is evaluated on resting state EEG data obtained from 30

healthy subjects and 34 MDD patients. The experiments show that the 1DCNN-LSTM applied on constructed image of

effective connectivity achieves best results with accuracy of 99.24% due to specific architecture which captures the

presence of spatial and temporal relations in the brain connectivity. The proposed method as a diagnostic tool is able to

help clinicians for diagnosing the MDD patients for early diagnosis and treatment.

Keywords Major depression disorder � Electroencephalography � Effective connectivity � Deep learning �
Convolutional neural network � Long short-term memory

Introduction

Major depressive disorder (MDD) is a mental illness that

drastically interferes with the quality of life. It includes

symptoms such as feelings of severe despondency and

hopelessness, loss of interest in normal daily activities,

extensive changes in appetite and recurrent thought of

suicide (World Federation for Mental Health 2012).

According to the World Health Organization (WHO), more

than 350 million people of all ages are affected by

depression worldwide (World Health Organization 2017).

The exact cause of depression is not fully understood, but it
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is associated with an imbalance in neurotransmitters, hor-

monal abnormalities, genetic vulnerability, and stressful

environmental conditions. About half of depressed people

are unaware of their illness or their disorder is misdiag-

nosed (World Health Organization 2017). For the diagnosis

of mental disorders such as depression, electroencephalo-

gram (EEG) is a powerful tool due to high temporal res-

olution, low cost, noninvasive technique and easy setup.

EEG is also widely used in clinical applications (Afshani

et al. 2019; Shalbaf et al. 2017; 2019).

Traditionally, a number of EEG-based machine learning

methods have been used for automated detection of

depression. Puthankattil et al. (2012) used relative wavelet

energy, entropy and Artificial neural network (ANN) on the

5-min EEG signal of 30 subjects. Ahmadlou et al. (2012)

analyzed 12 depressed patients and 12 normal persons with

Higuchi and Katz Fractal measurements (HFD, KFD) of

the frontal brain signals. Ahmadlou et al. (2013) experi-

mented with 22 MDD subjects and presents a new non-

linear method: spatial temporal analysis of relative con-

vergence (STARC) of EEG signals. Hosssinifard et al.

(2013) worked on 45 subjects (Depressed and healthy)

using various non-linear methods such as detrended fluc-

tuation analysis (DFA), Higuchi fractal dimension (HFD),

largest Lyapunov exponent (LLE) to characterize the

amount of complexity of the signal. They also used cor-

relation dimension and Welch’s power spectral density for

estimating power in certain frequency bands. Faust et al.

(2014) used combination of the two-level wavelet packet

decomposition and various entropies aiming to extract

significant features on 15 healthy controls and 15 depressed

patients. Acharya et al. (2015) have used non-linear

approaches including fractal dimension, LLE, Sample

entropy, DFA analysis, Hurst’s exponent, Higher order

spectra and recurrence quantification analysis (RQA) on 30

subjects. Li et al. (2016) used an event-related potential

method to diagnose depression among 37 university stu-

dents. Different feature selection methods were used,

consisting of Greedy stepwise and Genetic search (GS) to

identify the most efficient features to distinguish between

the two classes. Mumtaz et al. (2017) used linear charac-

teristics from EEG signals; band power and alpha inter-

hemispheric asymmetry with ranked the features based on

classification accuracy on data of 33 MDD patients and 30

normal participants. Finally, Bachmann et al. (2017) used

spectral asymmetry index (SASI), and DFA methods for

differentiating depressive and healthy subjects on 34 sub-

jects. But, as it can be concluded from the literature, most

of the studies focused on feature engineering and classifi-

cation optimization with moderate success and ultimately,

finding a solution for this mental disorder accurately

remains a challenging task.

In recent years, with developments in neural network

architecture design and training, there has been a devel-

oping interest in the utilization of deep learning methods as

the state-of-the-art in machine learning especially the

Convolutional neural network (CNN) in a wide range of

computer vision studies especially in medical applications

(Bachmann et al. 2017; Sun et al. 2017; Litjens et al. 2017;

Esteva et al. 2017; Roy et al. 2019) and also for processing

EEG signals with very success. (Faust et al. 2018; Zhang

et al. 2019; Chaudhary et al. 2019; Acharya et al. 2018).

Recently, Acharya et al. (2018) tried to automatically

detect depression using deep machine learning methods.

They have used CNN for discrimination of 30 normal and

depressed patients. They have also indicated that signals in

the right hemisphere were more effective for deep learning

classification. Sharma et al. (2018) developed a new

method bandwidth-duration-localized, three-channel

orthogonal wavelet filter bank for depression diagnosis.

The study included 30 subjects using the least square

support vector machine (LS-SVM) classifier. Ay et al.

(2019) used raw signals from 30 subjects (15 normal, 15

depressed) to develop a deep learning model using a CNN

to extract features and reduce variance, then feeding the

CNN maps directly to a LSTM cell and using fully-con-

nected layers for classification. Then, Mumtaz et al. (2019)

used CNN with long short-term memory (LSTM) archi-

tecture for automatically learn patterns in the EEG data that

were useful for classifying the 33 depressed and 30 healthy

controls. Raghavendra et al. (2019) in comprehensive

review presents state-of-the-art artificial intelligence auto-

mated techniques for diagnosis of neurological disorders.

The main novelty of this paper is to provide a more

generalized approach to model the brain dysfunction by

using insights from the connectivity concept. We have used

brain effective connectivity method to convert 1-D EEG

signal into 2-D image. Then, we have developed a classifier

using state of the art deep learning methods (CNN-LSTM)

as a novel approach for automated diagnosis of the

depression patients from EEG signals. The effectiveness of

the proposed approach is tested on dataset recorded of from

33 MDD patients and 30 normal participants.

Materials and methods

Participants

The dataset used in this study is provided by Mumtaz et al.

in (2017), with open access (https://figshare.com/articles/

EEG_Data_New/4244171). The Methodology was accep-

ted by the ethics committee in Hospital University Sains

Malaysia (HUSM). 34 MDD patients with age ranging

from 27 to 53 (mean = 40.3 ± 12.9) and 30 normal
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subjects with age ranging from 22 to 53 (mean = 38.3 ±

15.6) were recorded. The depressed group qualified for the

experiment based on the Diagnostic and Statistical Manual-

IV (DSM-IV) (Association 2000).

Data acquisition and preprocessing

The EEG data recording involved 19-channel EEG cap

placed on the scalp according to the 10–20 international

standard electrode position system was obtained with eyes

closed for 5 min. The EEG sampling frequency was set to

256 Hz. Notch filter was applied to reject 50 Hz power line

noise. An amplifier was simultaneously used to magnify

weak signals. All EEG signals were band-pass filtered with

cutoff frequencies at 0.1 Hz and 70 Hz. Sample of EEG

signals from normal and depressed subjects are demon-

strated in Fig. 1.

Effective connectivity

Effective connectivity has become a popular analysis

method in modern neuroscience because of its potential to

represent information flow between different channels

(Astolfi et al. 2007). The most famous method for esti-

mating effective connectivity is Granger causality (GC)

which is a model-based approach (Granger 1969). If a

signal can be predicted by previous information from

another signal better than from its own information, then

the second signal is considered to be the cause of the first

signal. GC measures can be computed in the frequency

domain which allows the analysis of EEG frequency bands

(Geweke 1984). To achieve this, the estimation of param-

eters of Multi-Variable Auto-Regressive (MVAR) model

for an individual signal data is required. Suppose xt is a

m� 1 vector representing m channels at time t. The MVAR

model can be written as

xt ¼
Xp

k¼1

Akxt�k þ ut ð1Þ

where p is the model order, Ak is an m� m matrix and ut is

a white noise process with R as covarince matrix which

will be used later. By rearranging Eq. (1), it can be written

as follows:

ut ¼
Xp

k¼0

Âkxt�k where Âk ¼ �Ak and Â0 ¼ I: ð2Þ

By performing Fourier transform Eq. (2) can be written

as:

U fð Þ ¼ A fð ÞX fð Þ ð3Þ

where A(f), U(f) and X(f) m� m spectral representation of

vectors in Eq. 2 and Âk and can be written as:

A fð Þ ¼
Xp

k¼0

Âke
�i2pfk: ð4Þ

Equation (3) can be written as:

X fð Þ ¼ A fð Þ�1U fð Þ ¼ H fð ÞU fð Þ: ð5Þ

Also, Spectral density matrix S(f) is defined as

S fð Þ ¼ X fð ÞX Fð Þ�¼ H fð ÞRH fð Þ�: ð6Þ

The matrices A(f), H(F) and S(f) can be used to define

various effective connectivity measures. Most used quan-

titative spectral measures are: Generalized Partial Directed

Coherence (GPDC) (Baccalá and Sameshima 2001, 2007),

and Direct directed transfer function (dDTF) (Kaminski

et al. 2001) which have been used in this study and can be

defined as follows:

GPDCij fð Þ ¼
1
rii
aij fð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1

1
r2ii

akj fð Þ
�� ��2

q ð7Þ
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Fig. 1 EEG signals from a normal and b depressed subjects
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dDTFij ¼
Hij fð Þ
�� ��2

P
f

Pm
k¼1 Hik fð Þj j2

� Ŝij fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ŝii fð ÞŜjj fð Þ

q ð8Þ

where GPDCij and dDTFij shows the information flow

from channel j to channel i. rii is the component [i,i] of R,

aij is the component [i,j] of A(f) and Ŝ fð Þ ¼ S fð Þ�1
.

We extract each frequency range for each measure by

averaging as follows: delta (1–4 Hz), theta (4–7 Hz), alpha

or mu (8–12 Hz), beta1 (12–15 Hz), beta2 (15–22 Hz),

beta3 (22–30 Hz), Beta (12–30 Hz) and gamma

(30–70 Hz). All calculations were done in MATLAB (The

Mathworks, Inc., Natick, MA, USA) via the open-source

SIFT toolbox (Mullen 2010).

Proposed deep learning scheme

In this paper, five famous deep learning algorithms were

presented. The first and second algorithms were based on

one and two-dimensional convolutional neural network

(1DCNN–2DCNN). The third method is based on long

short-term memory (LSTM) model, while the fourth and

fifth algorithms utilized a combination of 1DCNN and

2DCNN with LSTM models namely, 1DCNN-LSTM and

2DCNN-LSTM. The spatial and temporal characteristics of

the EEG signal are captured by combination of CNN with

LSTM models.

Convolutional neural networks (CNN)

CNN is a specific type of neural networks which widely

used in image processing and classification tasks. It is the

state-of-the-art deep learning methodology consisting of

many stacked convolutional layers. This network contains

a convolutional layer, pooling layer, and finally fully

connected layers (Chauhan et al. 2018).

Convolutional layers In this layer, a linear transformation

is performed on the data using a particular filter. Filters are

a way of extracting important patterns from the prototypes.

This operation can be defined as follows:

xlij ¼
Xk�1

a¼0

Xk�1

b¼0

waby
l�1 iþ að Þ jþ bð Þ ð9Þ

ylij ¼ r xlij

� �
ð10Þ

where the filter is a K � K matrix in which each element

corresponds to a weight in wab. x
l
ij denotes a single output

element from the current layer l, and is calculated with the

filter sliding over the last layer’s output yl�1. After con-

volution operation, a sigmoid activation function r is

applied to xlij introducing non-linearity, demonstrated in

Eq. (10). During the training phase, filter coefficients are

updated based on error back propagation to derive the most

distinct features. Thus, filters can have different count,

length, or striding and padding size depending on the input

characteristics.

Pooling layers Like convolutional layers, pooling plays

an important role in CNNs. A pooling layer has a fixed

kernel size and strides over the feature map resulted from

convolutional layers, whereas it reduces the dimensionality

by selecting only a number of elements. In a convolutional

layer, the input size is reduced from N � N to

N � mþ 1� N � mþ 1, whereas in pooling operation it’s

reduced to N=K � N=K with a pool size of K � K as only

one element is chosen in every iteration. Depending on the

layer type, a mean, max or summation operation can be

chosen. What this operation does is that it lets the com-

putations proceed faster, and also by reducing parameters

and making the network less vulnerable to every single

element in feature map, helps to prevent overfitting.

Fully-connected layers Ultimately the feature map is

flattened to a single column vector and is fed to fully-

connected layers. They allow non-linear summation of

features to be used to maximize discrimination. The whole

action is done as follows:

vj nð Þ ¼
Xm

i¼0

wji nð Þyi nð Þ ð11Þ

yi nð Þ ¼ uj vj nð Þ
� �

ð12Þ

where yi is the input from the earlier layer i, which is then

multiplied by the jth layers weights wji, resulting in vj nð Þ,
in the end vj nð Þ goes through a desirable activation (uj) to

produce yi nð Þ.
CNNs used here are shown in Table 1. They have two

convolutional layers of small and bigger filters to derive

both high and low scale features. These layers were then

accompanied by 50% dropouts. In a dropout layer, the

neuron weights are randomly discarded to reduce variance

from training to testing. After each dropout, a max pooling

layer with pool sizes and strides of 2 were applied. In the

end flattened, features mapped by a dense layer will be

used for the final decision. Figure 2 demonstrates the one

and two dimensional CNNs that were used in this study.

Long short-term memory (LSTM)

LSTM is an extension of Recurrent neural networks (RNN)

(Hochreiter and Schmidhube 1997). These types of net-

works have the ability to transfer a hidden state as a rep-

resentation of what’s been through the network. LSTMs
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have been linked to many sequence classification problems

with huge success (Nagabushanam et al. 2019). LSTMs

have been introduced because of the problem of gradient

loss in RNNs (Hochreiter 1998), which prevents the start-

ing layers of the RNN to be updated with gradient vector.

The problem is that the local gradient will get close to zero

as it approaches the first layers and the learning effect

becomes minimal. With LSTM, a number of gates are

developed to be able to carry important information for

larger sequences and provide control over information

flow. Just like RNNs, each LSTM cell passes a hidden state

to the next layer. But the procedure in which the hidden

state is calculated is very different. Three gates are used for

this purpose which is explored below. The architecture of

the proposed LSTM is shown in Fig. 3.

Forget gate This gate decides to keep the information

from the previous cell status. Cell state plays an invaluable

role in forwarding the information through the LSTM cells.

This procedure can be expressed as below:

ft ¼ r wf ht�1 � xt½ � þ bf
� �

ð13Þ

where xt is the specific input gets concatenated with last

layers hidden state ht�1. Then a linear transformation is

done using layer weights wf and a bias bf . The output value

is between 0 and 1, where a higher ft means keeping a

larger proportion of the cell state.

Input gate The input gate determines the exact data to be

passed to the current cell state. Equation 6 shows this

procedure.

it ¼ r wi ht�1 � xi½ � þ bið Þ ð14Þ

It’s a result of product between the previous hidden state

ht�1 and this cells input xi, which then goes through the

linear transformation with wi, bi and ultimately a sigmoid

activation r resulting it. The calculations for the input gate

and forget gate may seem the same but the difference is in

the information flow that they are able to control. With

forget gate, the cell state output is changed, although the

input gate affects the information that is to be provided by

the candidate gate, which will be explained shortly. The

network used in this study had a LSTM layer with 256

neurons, following a 50% dropout and a deep layer with 64

neurons (Table 2).

Candidate gate Candidate layer has an tanh activation

function and serves as the main source to the current cells’

contribution to the cell state. This gate can be expressed as

below.

ct ¼ tanh wc ht�1 � xc½ � þ bcð Þ ð15Þ

This gate is also a simple dot product between ht�1 and

xc, which then goes through the linear transformation with

wc, bc, featuring unique weights and bias. In the end, next

cell state can be computed as:

ct ¼ ft � ct�1 þ it � ct: ð16Þ

Output gate In this layer, we decide on the next cells

hidden state and the final output of current cell. The

expression can be simplified as below.

ot ¼ r wo ht�1 � xo½ � þ boð Þ ð17Þ

This gate is also a simple dot product between input xo
and hidden state ht�1, which then goes through the linear

transformation with wo, bo, and will be passed to a sigmoid

function r to produce the cell output. The next hidden state,

which will be sent to the upcoming cell will also be cal-

culated by using a tanh activation on the cell state ct which

is then multiplied by the cell output ot.

ht ¼ ot � tanh ctð Þ ð18Þ

Convolutional neural network-long short-term memory
(CNN-LSTM)

A newly issued method, named CNN-LSTM which was

first used on text classification (Luan and Lin 2019) tries to

find spatiotemporal relations in the data. In CNN-LSTM,

the input first goes through a series of convolutional layers

to provide a satisfactory feature map. Then, these features

will be fed to a number of LSTM layers to inspect possible

temporal information. The classification in CNN-LSTM is

also done by using fully-connected layers. The CNN-

LSTM evaluated in this work consisted of three main

layers and two time-steps with a length of 76 samples.

First, a conventional layer with 64 filters and a kernel and

stride of size of 2 and 1 are used, respectively, followed by

a 50% drop of neuron weights to reduce variance from

Table 1 Parameter descriptions for the one and two dimensional

CNNs

Layer-model 1D CNN 2D CNN

Convolution 32 - 1 * 1 strides 32 - 1 * 1 strides

Dropout 50% 50%

Pooling 2 - 1 * 2 strides 2 * 2 - 2 * 2 strides

Convolution 64 - 1 * 1 strides 64 - 1 * 1 strides

Dropout 50% 50%

Pooling 2 - 1 * 2 strides 2 * 2 - 2 * 2 strides

Fully-connected 64 32

Dropout 50% 50%

Output 2 2
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training to testing. Then a max pooling with size 2 and a

stride of 2 is performed. Secondly, the resulting features

are flattened and fed to a LSTM cell with 2 neurons which

is then followed by another 50% dropout. Ultimately, the

LSTM output is forwarded to 64 fully-connected layers to

evaluate classification. Activations were all RELU except

for output layer that used the sigmoid function. Better

interpretation of the CNN-LSTM can be seen on Fig. 4 and

Table 3.

Evaluation

Independently, 4 versions of the proposed models were

trained on 70% of data and then evaluated from the residual

data. This procedure was then repeated ten times and the

results were averaged to derive the mean and standard

deviation of the metrics for each model. The accuracy,

sensitivity and specificity measures are computed in this

study as follow.

Sensitivity ¼ TP

TPþ FN
ð19Þ

Fig. 2 Block representations of

the a one and b two dimensional

CNNs
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Specificity ¼ TN

TN þ FP
ð20Þ

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN

Results

19 channels of EEG signals from each subject were pre-

processed using the EEGlab toolbox in Matlab software

(version 2019a). The EEG data were segmented with a

window length of one second. The selection of a one sec-

ond window size was based on the evaluation of the pro-

posed models. Then, two measures of effective

connectivity named GPDC and dDTF methods based on

parameters of calculated MVAR model are extracted on

each signal frequency band ranges [Delta, theta, alpha,

beta1, beta2, beta3, beta and gamma]. The parameters for

MVAR model fitting were selected according to

autocorrelation function and portmanteau tests. The opti-

mized parameters are: 1 s of window length, and model

order of 5.

Since the input of CNN is an image, a process to convert

1D EEG signal to image is required. To do this, effective

connectivity method has been used which yields in 19*19

image (19 channels). Then, this image must be resized to

match the size of the input layer and then feed it to the

CNN. However, one should notice that the input layer size

is usually large and resizing and up-sampling might dete-

riorate the quality of the image. That’s the reason we chose

to build an image which does not need resizing to be fed to

CNN. Having 19-channel EEG, 19*19 effective connec-

tivity image between channels was extracted for each

method. Since there are 2 connectivity measures (GPDC

and dDTF) and eight frequency bands (Delta, theta, alpha,

beta1, beta2, beta3, beta and gamma), 16 images with size

of 19*19 can be estimated. These images are combined in

the way shown in Fig. 5 to provide the image input (76*76)

for the deep learning networks. Also, it should be noted

that we hypothesized that the order of image grouping

should not have considerable impact on the performance,

since the spatial filters in convolutional layers are powerful

enough to learn patterns in an image regardless of the exact

location of the pattern (for example Googlenet is able to

recognize an apple given the apple is at the center or corner

of the image, i.e. it is translation invariant). We also tested

this hypothesis and formed different images with different

groupings and no meaningful change in the performance

was observed. Figure 6 shows a sample image for healthy

subject and MDD patient. Then, constructed images from

EEG signals were fed as input to each deep learning

method and the parameters of these models were trained. It

should be noted that the images were resized to match the

acceptable dimension for each deep network architecture.

Independently, five versions of deep methods, 1DCNN,

2DCNN, LSTM, 1DCNN-LSTM, and 2DCNN-LSTM

were trained. For model training, a batch size of 4 was

selected and each network was trained for five hundred

epochs. Cross Entropy was chosen as the loss function and

in optimization phase, ADAM algorithm was chosen due to

superior results and shorter run-time. An early stopping

criterion was used, if the validation loss wouldn’t improve

after 125 consecutive epochs. Classifier tuning parameters

were shown in Table 4. Training was performed on 70% of

data for classification of MDD patients and healthy sub-

jects and then the residual data used to evaluate the per-

formance of the classifier using various metrics (accuracy,

Sensitivity, Specificity). All computations were done using

a single NVIDIA Tesla k80 chip provided for free by

Google Colaboratory, and two reliable deep learning

frameworks Keras and Tensorflow, available in python.

Figure 7 shows an overview of the proposed method.

Fig. 3 Block representation of the LSTM network

Table 2 Parameter descriptions for the LSTM model

Layer-model LSTM

Long short-term memory 256

Dropout 50%

Fully-connected 64

Dropout 50%

Output 2
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Fig. 4 Block representations of the a one and b two dimensional CNN-LSTM

Fig. 5 Constructed connectivity image with 2 connectivity measures

(GPDC and dDTF) and eight frequency bands (Delta, theta, alpha,

beta1, beta2, beta3, beta and gamma) for input of deep learning

networks (each block is comprised of a 19*19 connectivity image)

Table 3 Parameter descriptions for the one- and two-dimensional

CNN-LSTM

Layer-model 1D CNN-LSTM 2D CNN-LSTM

Convolution 64 - 1 * 1 strides 64 - 1 * 1 strides

Dropout 50% 25%

Pooling 5 - 1 * 2 strides 2 * 2 - 2 * 2 strides

LSTM 256 - 1 * 1 strides 64 - 1 * 1 strides

Dropout 50% 25%

Fully-connected 64 64

Dropout 50% 50%

Output 2 2
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Training and validation accuracy and loss curves for CNN

1D, CNN 2D, LSTM, CNN 1D-LSTM and CNN 2D-

LSTM methods are demonstrated in Fig. 8. Table 5 shows

the classification results for these methods for MDD

detection from healthy controls. Maximum accuracy was

achieved for 1DCNN-LSTM with 99.245%, followed by

2DCNN-LSTM with accuracy of 96.415%. Worst accuracy

was achieved by to the LSTM (89.057%). Highest sensi-

tivity was acquired with the 1DCNN-LSTM and 2DCNN-

LSTM, having a lower standard deviation with 2DCNN-

LSTM. Considerable specificity was seen in 1DCNN-

LSTM (100% specificity). Based on the training times,

2DCNN had the 262 s times and 1DCNN took the 1030 s

due to the need to use more fully-connected layers. The

2DCNN-LSTM also showed a lower training time (296 s)

compared with the 1DCNN-LSTM (405 s), which can be

related to the higher number LSTM cells in the 1DCNN-

LSTM. The LSTM needed the longest time, although that

is consistent with Keras’ GPU problem when compiling

LSTM models only.

Fig. 6 A sample constructed

connectivity image. Left) MDD

patient, Right) healthy subject

EEG signals 

Normal

MDD

Effec�ve 
Connec�vity 

(GPDC), (dDTF)

1D and 2D 
Convolu�onal 

Neural Networks

Long-short Term 
Memory

Fully Connected

connec�vity images 

Fig. 7 Block diagram of the

proposed method which

summarizes the process of the

entire work

Table 4 Classifier tuning

parameters
Parameters CNN 1D CNN 2D LSTM CNN 1D-LSTM CNN 2D-LSTM

Batch size 4 4 4 4 4

Loss function Cross entropy Cross entropy Cross entropy Cross entropy Cross entropy

Optimizer Adam Adam Adam Adam Adam

Learning rate 0.001 0.001 0.001 0.001 0.001

Epochs 50 150 60 100 100
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Fig. 8 Training and validation accuracy and loss curves for CNN 1D, CNN 2D, LSTM, CNN 1D-LSTM and CNN 2D-LSTM methods
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Discussion

Screening of depressed patients is important for early

diagnosed and treated. Artificial intelligence methods

(Subhani et al. 2018; Wang et al. 2019; Čukić and Stokić

2020; Yao et al. 2020) like this paper can overcome this

limitation and can be utilized everywhere with no need to

highly-trained experts. In this research, we have used deep

learning and effective connectivity methods for automated

detection of MDD patients and healthy controls with very

success. Accuracy value of 99.245% is achieved for

applying the 1DCNN-LSTM architecture in images of

GPDC and dDTF methods on 19 channels of EEG signals.

One of the main novelties of this work is using brain

effective connectivity method to convert 1-D EEG signal

into 2-D image to be fed to CNN Architecture. There are

number of ways to convert 1-D signal to 2-D image

namely, classical ways based on time–frequency distribu-

tion (STFT, wavelets etc.) (OzalYildirim et al. 2019); or

techniques based on dynamical system view point such as

RQA. However, we have used effective connectivity

method which represents information flow between dif-

ferent EEG channels in different frequencies. Also, the

combination of effective connectivity methods over dif-

ferent frequencies has been used to form the image needed

for CNNs. Also, we have exploited different deep learning

schemes which are fundamentally different, i.e. convolu-

tional neural networks which search for patterns in images

vs LSTMs which tries to classify based on time depen-

dencies between frames. Also, the combinations of these

deep techniques are used to achieve the highest possible

performance.

According to Table 5, the CNN-LSTM models showed

higher accuracy compared to other techniques, which are

also extremely popular and powerful. This is due to a

higher-level representation of the data with less variance

provided by convolutional layers which aid the LSTM in

finding relations in the time domain case (Luan and Lin

2019). The LSTM itself is unable to analyze the EEG

connectivity image due to lack of spatial resolution. While,

the CNNs themselves get great results. LSTM is built in

order to operate differently from a CNN and generally is

used to interpret arbitrary input sequences and it’s not

appropriate for spatial data. Since the connectivity matrix

image is an image consisting of spatial relations between

different EEG channels, a local interpretation is needed.

This indicates that most of the role played in the modeling

is done by CNNs and the remaining important minority by

LSTMs giving the desired performance enhancement on

the derived features by keeping a memory of the past

features, which were simplified by the CNN. The LSTM

itself was unable to analyze the EEG connectivity effi-

ciently to extract local features. The less efficiency in

modeling brain connectivity from LSTM itself can be

observed from Table 5. Moreover, as it was clear from the

results, the one-dimensional CNN-LSTM performed better

than its two-dimensional version. It can be suggested that,

two-dimensional filtering on the proposed connectivity

image might loss temporal information, which prevents a

faster model like 2DCNN-LSTM achieve remarkable

results even with more parameters compared to 1DCNN-

LSTM.

In Table 6, results of this study are compared with new

best related studies that used EEG signals of the same

database (Mumtaz et al. 2017; Mumtaz and Qayyum 2019)

and different database (Acharya et al. 2015; Bachmann

et al. 2017; Acharya et al. 2018; Sharma et al. 2018; Ay

et al. 2019; Čukić and Stokić 2020). As it is observed,

accuracy achieved in this study is higher than those studies

with the traditional machine learning methods of extraction

of linear and non-linear features and proves the preference

of the proposed method. Moreover, our results with

1DCNN-LSTM and image constructed with effective

connectivity has higher accuracy compared other deep

learning methods on time-series data of EEG signals. So,

compared to other similar studies, this work has the

advantage of comparing the deep learning models, and

inspecting the importance of temporal and spatial infor-

mation mutually and jointly with CNN-LSTM. The authors

did not just use a powerful model like CNN-LSTM, but

evaluated such model on brain effective connectivity image

converted from EEG signals. Consequently, according to

Table 5 Classification comparison between the proposed models

Model-metrics Accuracy Sensitivity Specificity F1 Score Precision Training time

CNN 1D 95.283% ± 2.109 91.481% ± 4.074 97.170% ± 1.538 95.23 ± 1.23 97.37% ± 2.40 1030.78

CNN 2D 96.226% ± 1.208 94.815% ± 2.457 98.846% ± 1.763 96.57% ± 1.41 97.37 ± 2.25 262.508

LSTM 89.057% ± 1.849 84.815% ± 4.521 93.462% ± 7.102 88.75% ± 1.92 89.31 ± 1.77 3253.17

CNN 1D-LSTM 99.245% ± 1.152 98.519% ± 2.457 100% 99.05% ± 0.94 98.14 ± 1.85 405.52

CNN 2D-LSTM 96.415% ± 3.422 98.519% ± 1.814 94.231% ± 7.740 96.55% ± 1.80 97.73 ± 2.77 296.89
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the Table 6, this study acquired the best results so far in

automated detection of depressed patients and healthy

controls. The main drawback of the research can be con-

sidered the dataset size to train the networks. By per-

forming regularization terms and simplifying deep models,

we were able to overcome this problem. Our aim in the

future is to further expand the experimental space by col-

lecting more samples and employing the developed

methodology on other types of EEG data.

Conclusion

In this paper a comprehensive study was done using

effective brain connectivity methods (GPDC, dDTF) and a

number of famous deep learning algorithms (CNN, and

LSTM). The best accuracy of 99.24% in classifying MDD

patients and healthy controls was achieved via 1DCNN-

LSTM. The spatial and temporal characteristics of the EEG

signals are captured by this deep learning model. Relying

on the results, newly issued deep learning model is capable

of effectively analyzing the brain connectivity and pro-

duces the best results compared to all studies in recent

years. So, the current technique can help health care pro-

fessionals to identify the patients with MDD for early

identification and intervention.
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