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Abstract
The information processing mechanism of the visual nervous system is an unresolved scientific problem that has long puzzled

neuroscientists. The amount of visual information is significantly degraded when it reaches the V1 after entering the retina;

nevertheless, this does not affect our visual perception of the outside world. Currently, the mechanisms of visual information

degradation from retina to V1 are still unclear. For this purpose, the current study used the experimental data summarized by

MarcusE.Raichle to investigate the neuralmechanismsunderlying the degradation of the large amount of data from topological

mapping from retina to V1, drawing on the photoreceptor model first. The obtained results showed that the image edge features

of visual informationwere extracted by the convolution algorithmwith respect to the function of synaptic plasticitywhen visual

signals were hierarchically processed from low-level to high-level. The visual processing was characterized by the visual

information degradation, and this compensatory mechanism embodied the principles of energyminimization and transmission

efficiencymaximization of brain activity, whichmatched the experimental data summarized byMarcus E. Raichle. Our results

further the understanding of the information processing mechanism of the visual nervous system.

Keywords Visual nervous system � Visual information processing mechanism � Degradation mechanism �
Edge features � Convolution algorithm

Abbreviations
HBP Human brain project

BRAIN

initiative

Brain research through advancing

innovative neurotechnologies initiative

Brain/

mapping

Brain/mapping by innovative

neurotechnologies for disease studies

CV Computer vision

AI Artificial intelligence

RF Receptive field

CNN Convolutional neural network

ANN Artificial neural network

RMM Recurrent motion model

EDMRV1 Edge detection model based on retina to V1

DA Dark adaptation

LA Light adaptation

RMSE Root mean square error

DOG Difference of two Gaussians

STDP Spike timing-dependent plasticity

LTP Long-term potentiation

LTD Long-term depression

GSAV Gray-scale average value

Introduction

With the implementation of brain projects across the world,

such as Human Brain Project (HBP) in Europe (Markram

2012), Brain Research through Advancing Innovative

Neurotechnologies Initiative (BRAIN Initiative) in the

USA (Bargmann and Newsome 2014) and Brain/Mapping

by Innovative Neurotechnologies for Disease Studies

(Brain/Mapping) in Japan (Okano et al. 2015), China has

recently proposed a 15-year (2016–2030) brain project

called ‘‘Brain Science and Brain-Inspired Intelligence’’

(Poo et al. 2016), with the aim to understand neural basis of

cognitive functions, to develop brain-machine intelligence

technologies and to develop effective approaches for early

diagnosis/intervention of brain disorders.
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Over recent years, visual system has gained great

influence in the field of neuroscience and computer vision

(CV) (Marblestone et al. 2016). As the most crucial source

of human perception of the objective world (Gazzaniga

et al. 2014), the research of visual information processing

mechanisms can significantly further the exploration of

biological vision and the development of CV and the

related artificial intelligence (AI) research (Gaume et al.

2019; Qu and Wang 2017; Talebi et al. 2018).

In 1962, David Hubel and Torsten Wiesel discovered

that neurons in the V1 responded to specific simple features

in the visual environment, and they also found simple cells

and complex cells (Hubel and Wiesel 1962). Topologi-

cally, the simple cells of V1 are used to detect the edge of

the image (Gazzaniga et al. 2014). Neocognitron, which

was proposed by Fukushima (1980), is a hierarchical multi-

layer neural network composed of S-cells and C-cells and

inspired by the function of these neurons. S-cells are sim-

ilar to the receptive field (RF) of simple cells for feature

extraction, and C-cells correspond to the activation func-

tion. On the basis of the principle of neocognitron, LeCun

et al. (2015, 1989) have used the spatial structure rela-

tionship to reduce the learning parameters and improve the

training efficiency of the backpropagation algorithm, thus

generating convolutional neural network (CNN). CNN is a

kind of artificial neural network (ANN) and is one of the

most typical and successful examples of biological inspi-

ration. It draws on the characteristics of edge detection and

orientation selection of RFs in primary visual cortex; that

is, the cellular response of RFs in V1 in its optimal ori-

entation is the strongest after the influence of the visual

environment features (Lamti et al. 2019). By pooling

capabilities from multiple simple cells for different pre-

ferred orientations, the complex cells in V1 remain spa-

tially invariant (Kriegeskorte 2015). The overall

architecture of CNN is similar to the visual cortical ventral

pathway, which is a grade processing structure of LGN-

V1-V2-V4-IT. CNN is widely applied to CV; thus, the

research on visual system not only provides an intelligent

basis for grasping and understanding the information pro-

cessing mechanism of visual nervous system but also

makes a breakthrough progress for CV.

Over the past few decades following the development of

neuroscience, an increasing number of scientists have

focused on researching the visual information processing

mechanisms. As early as 1962, 1971 and 1982, Hubel and

Wiesel (1962), Zeki and Dubner (1971) and Marr et al.

(1982) have experimentally studied the visual systems and

visual areas from V1 to MT, proposing a series of visual

computation theories. Between 1996 and 2009, Shou et al.

(2010) discovered the genetic properties of the orientation

and direction sensitivity of LGN, V1 and MT, and con-

firmed the biological characteristics of cross fusion of two

visual pathways. This discovery was a basis for further

research on the neural mechanisms. In 2014, Joukes et al.

(2014) proposed a recurrent motion model (RMM) based

on the response characteristics of cell preferred orientation

in MT, which can predict the perception of cell motion

characteristics. However, there was still not enough

experimental data to elucidate the neural mechanisms

underlying the cell motion characteristics in MT. In 2015,

Xiao and Huang (2015) discovered the distinguishing

characteristics of the complex directions of MT nerve cells,

which was of great significance for the extraction of mul-

tiple motion directions. In short, although there have been a

large number of theories and discoveries generated by

neuroscience experiments or computational models, there

is still no consensus among the academic community on a

theory that could explain biological visual information

processing mechanisms. There is unlimited information

available from the objective world, but in visual nervous

system, only about 1010 bits/s are deposited in the retina,

which from neurobiological point of view can be translated

as about 1 million axons in each nerve. Due to this limited

number of axons in the optic nerves, only about

6 9 106 bits/s leave the retina and only 104 bits/s can get

to V1 (Raichle 2010). These data clearly show that the

visual cortex receives an impoverished representation of

the world (Peters et al. 2017). The aim of the current study

was to identify the mechanisms underlying visual infor-

mation processing, and to learn how the visual cortex of the

brain interprets and responds to this impoverished repre-

sentation in predicting the environment needs.

In short, the mechanisms of visual information degra-

dation when reaching V1 and after entering the retina are

still unclear. A common view in the field of visual neu-

roscience is that the essence of visual information pro-

cessing is both parallel processing and hierarchical

processing, which include feed-forward and feedback

processing (Shou 2010). The rapid acquisition of image

information from the messy objective world is also related

to the visual attention mechanism (Fan et al. 2017; Parhizi

et al. 2018). Regardless of the top-down or bottom-up

processes, the visual information on the photoreceptor is

not affected. When the visual information leaves the pho-

toreceptor, it begins to degrade (Ji et al. 2019; Raichle

2010). Attention to neurons modulation is mainly recorded

in V4 and above, while almost no attention modulation is

recorded in V1 and V2. The stronger attention modulation

occurs at the higher visual area (Anderson et al. 2013;

Kumar et al. 2019; Zhang et al. 2019). As is well known,

CNN is inspired by the biological vision system; therefore,

in order to study the information processing of biological

vision system from the retina to V1, we focused on the

significant degradation of visual information flow trans-

mission, drawing on the concept of convolution in CNN,
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and proposing an edge detection model based on retina to

V1 (EDMRV1). In the current study, the first layer of

EDMRV1 draws on that of CNN, which is used to char-

acterize the photoreceptor in the retina and can modulate

dark or optical signals. Then the model makes the algo-

rithm of convolution among the signals of dark/light

adaptation, RFs of the ganglion cells in the retina, RFs of

LGN and RFs of V1. Accordingly, the model of EDMRV1

is constructed based on the information processing order

from retina to V1, where it simulates the main function

from retina to V1, that is, the image edge detection pro-

cessing. This model, in turn, reflects the edge detection

functional channel of retina to V1 and visualizes it. In

EDMRV1 model, complex cells are not modeled sepa-

rately, since there is no apparent antagonistic area in their

RFs. Complex cells are similar to simple cells, given that

the RFs of complex cells identify the orientations as well.

However, there is no strict requirement for the locations.

Some studies have shown that the functional classification

between simple and complex cells is alterable, and their

functions can sometimes be transformed into each other

(Shou 2010).

The final simulation experiment results in the current

study showed that the visualized image of the EDMRV1

model exhibited the information processing of the edge

detection functional channel from retina to V1. It appeared

extremely sensitive to the light/dark response due to the

central-peripheral antagonism of RFs of the ganglion cells

in the retina and LGN, which was consistent with a pre-

vious study (Curcio and Allen 1990). The contrast between

light and dark is regarded as the feature of the image, and

the visual information is significantly degraded with the

transmission of the signals, which improves the efficiency

of visually extracting the image features.

The EDMRV1 model presented in this paper explains

the mechanism of visual information degradation in bio-

logical visual image information processing and draws two

conclusions: (1) in biological vision, image information is

transmitted from the photoreceptor in the retina to V1, and

the information processing method of the image edge

detection channel is similar to the model herein presented.

This conclusion can be explained by the EDMRV1 model

presented in this paper, which is to say, that the RFs of the

ganglion cells extract the image signal, and then transmit it

to the RFs of LGN, which finally reaches the RFs of V1 for

processing. The RFs data transmission between different

grades uses the series connection, confirming the hierar-

chical hypothesis of the primary visual cortex proposed by

Hubel and Wiesel (1962), and is implemented by convo-

lution calculation. As a result, this efficiently detects the

image edge received on the photoceptor while greatly

degrading the amount of data, which is consistent with the

experimental data reported by Raichle (2010). (2) There is

a method similar to convolution calculation in the neural

information processing mechanisms of biological vision

used to extract the edge features of the image. Finally, the

EDMRV1 model supports hierarchical processing in which

visual information processing includes both parallel and

hierarchical processing, i.e. the edge detection channel of

multi-functional channels such as color, shape, contour,

motion, and stereopsis of visual information processing is

gradually processed by photoreceptors, ganglion cells,

LGN, simple cells and complex cells of V1.

Model of retina to V1 establishment

The visual system is the most important sensory system in

humans and animals and is mainly composed of the retina,

LGN and visual cortex (Deen et al. 2017). When the brain

recognizes an object through the visual system, it perceives

the edge information of the object. The edge detection is

included in many functional channels such as color, shape,

contour, motion, and stereopsis of visual information pro-

cessing, as shown in Fig. 1.

The primary visual pathway consists of retina, LGN, and

V1. As the only output unit of the retina, the ganglion cells

first transmit the image signal to the LGN for processing,

and then pass it to V1, which is the initial topological

mapping area of LGN’s axon (Gazzaniga et al. 2014). The

role of the primary visual pathway is to perceive a large

amount of static information and to process the edge sig-

nals of the image (Zhu et al. 2018). Thus, the functional

channel of edge information processing consists of the

primary visual pathway in visual system (Fig. 2).

According to the above description of the functional

channel of the edge detection, in this work, an EDMRV1

model for visual image edge detection was established

based on the information processing method and the

topological mapping relationship of image edge detection

from the retina to V1. The block diagram of function is

shown in Fig. 3.

As shown in Fig. 1, the image of the objective world is

transmitted to retina as a signal input, and after the retina

receives the optical signals transmitted by the lens, the

photopigment on the photoreceptor is decomposed. The

electric current flow around the photoreceptor is changed.

These series of changes trigger the action potential of

downstream neurons; thus, the photoreceptor converts the

optical signal into the bioelectrical signal, i.e. its biological

characteristic.

Inspired by CNN from neuroscience research and the

characteristics of retinal sensory cells (Marblestone et al.

2016), in the current work, we used the first layer of CNN

to characterize the photoreceptor on the retina and to

receive image signals. The image signal reaches the
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convolution layer, and then passes it through the outer

segment of the photoreceptor, which includes the rod

photoreceptor and the cone photoreceptor, after which

these two adjust the sensitivity of the image brightness to

achieve visual brightness adaptation consisting of dark

adaptation (DA) and light adaptation (LA).
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When the signals are weak, which occurs during the DA

process, the visual threshold changes to adapt to the dark

environment (Owsley et al. 2016). The functional changes

of cones and rods in the DA process are shown in Fig. 4.

When the signals are strong, which occurs during the LA

process, the visual threshold changes to adapt to the light

environment (Vinberg et al. 2018). The functional changes

of cones in the LA process are shown in Fig. 5.

Figure 4 shows that the DA process of cones ranges

from 0 to 12.16 s, thus indicating that the sensitivity of

cones is first adjusted at this time. The function of rods

begins to change, and the sensitivity starts to improve from

12.16 s. The sensitivity of photoreceptors to light is

reciprocal to the threshold (Shou 2010). If the sensitivity is

g, then:

g ¼ 1

f lt
ð1Þ

flt includes flt1, flt2, and flt3, which are shown as the

following.

Fitting the DA process of cones and rods with an

exponential function:

flt1 tð Þ ¼ 2:47e�0:57t þ 5:56e�0:001t; t 2 ½0; 12:16Þ
flt2 tð Þ ¼ 22:55e�0:17t þ 2:63e�0:003t; t 2 ½12:16; þ1Þ

�

ð2Þ

f1t1 (t) is the sensitivity curve of cones in the DA pro-

cess; f1t2 (t) is the sensitivity curve of rods in the DA

process. Respectively, the root mean square error (RMSE)

is:

e1 ¼ 4:03%
e2 ¼ 7:53%

�
ð3Þ

The time parameter t has a positive correlation with the

sensitivity g, which is the ability of photoreceptor to rec-

ognize the darker image I1(i, j) = l1. Through the DA

process will get a processed image I2(i, j) = l2, of which
the corresponding sensitivity is g2; thus:

flt1ðt1Þ
flt2ðt2Þ

¼ g2
g1

¼ l2
l1

¼ I2ði; jÞ
I1ði; jÞ

ð4Þ

Figure 5 suggests that the LA process of the cones changes

and the sensitivity of cones is adjusted at this time.

In the LA process of cones, fitting with an exponential

function generates the following formula:

flt3 tð Þ ¼ 2:77e0:02t � 2:76e�5:42t; t 2 ½0; þ1Þ ð5Þ

f1t3 (t) is the sensitivity curve of cons during the LA pro-

cess. According to the above formula, the RMSE can be

calculated as: e3 = 10.04%.

When the photoreceptor recognizes a lighter image, the

time parameter t has a negative correlation with the sen-

sitivity g, which is the ability to identify the lighter image

I1(i, j) = l1. Through the LA process will get a processed

image I2(i, j) = l2, of which the corresponding sensitivity

is g2; thus:

flt3ðt1Þ
flt3ðt2Þ

¼ g2
g1

¼ l2
l1

¼ I2ði; jÞ
I1ði; jÞ

ð6Þ

Assuming that the I1 is a two-dimensional image, the

image signal transmitted to the retinal pigment epithelium

is adaptively adjusted by the DA and LA process of pho-

toreceptor, and the processed image I2 is obtained, which is

shown as the following:

I1ði; jÞDA and LA
�! I2ði; jÞ ð7Þ

After that, the I2 makes a convolution calculation with

RFs of ganglion cells in retina. The DOG model is a two-

dimensional kernel. After the pre-processing of retinal

photoreceptor, the image signal is transmitted to RFs of

ganglion cells as demonstrated by the following formula:

Fig. 4 Dark adaptation curve of cones and rods

Fig. 5 Light adaptation curve of cones
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I3 i; jð Þ ¼ I2 � DOGð Þ i; jð Þ ð8Þ

The structure of RF of On-center ganglion cell is shown

in Fig. 6 (Gazzaniga et al. 2014). At the center area of RF,

the inner circle of photoreceptors with the light generates

higher frequency action potentials in ganglion cells; the

outer circle of photoreceptors with the light inhibits fre-

quency action potentials in ganglion cells. The central

stimulation response and the peripheral stimulation

response are mutually offset, so the ganglion cells are very

sensitive to the difference in brightness in RFs. After that,

photoreceptors on RFs transmit the signals to the ganglion

cells.

According to the schematic diagram of RF of ganglion

cell from Fig. 6, it is composed of two concentric circles,

where the small one represents a central mechanism with

strong excitatory effects, and the big one represents a

peripheral mechanism with weak inhibitory effects (Gaz-

zaniga et al. 2014). These two circles have mutual antag-

onistic effects and the Gaussian distribution to each other.

Therefore, the model of Rodieck, which is the difference of

two Gaussians (DOG), can be used to describe these two

concentric circles (Shou 2010).

DOG1 i; jð Þ ¼ kce
�i2þj2

2r2c

� �
ð9Þ

DOG2 i; jð Þ ¼ kse
�i2þj2

2r2s

� �
ð10Þ

In the Gaussian model of the small circle represented by

DOG1, and the Gaussian model of the big circle repre-

sented by DOG2, kc represents the maximum sensitivity of

the central area of RF, and ks represents the maximum

sensitivity of the peripheral area of RF. rc and rs represent

the radius with respect to the maximum sensitivity of the

central area and the peripheral area drops to e-1, respec-

tively. Accordingly, the DOG model is:

DOG i; jð Þ ¼ DOG1 i; jð Þ � DOG2 i; jð Þ

¼ kce
�i2þj2

2r2c

� �
� kse

�i2þj2

2r2s

� �
ð11Þ

Formula (11) can be written as follows (Köppen et al.

2009):

DOG i; jð Þ ¼ A1

2pr21
e

�i2þj2

2r2
1

� �
� A2

2pr22
e

�i2þj2

2r2
2

� �
ð12Þ

A1 represents the sensitivity of the central area; A2, the

sensitivity of the peripheral area. r1 represents the RMSE

of the Gaussian distribution function in the central area,

r2 represents the RMSE of the Gaussian distribution

function in the peripheral area.

After the image information processing of RFs of gan-

glion cells, the signals are transmitted to LGN. Like RFs of

ganglion cells, RFs of LGN is also divided into two central-

peripheral antagonistic parts, which are the central area and

the peripheral area, and have a similar structure and

function (Gazzaniga et al. 2014). Hence, it can also be

presented by the DOG model. The convolution calculation

between image I3 and the model of RFs of LGN is image

I4, which is shown as this following formula:

I4 i; jð Þ ¼ I3 � DOGLGNð Þ i; jð Þ ð13Þ

Finally, this image information is passed through the LGN

to the simple cells of V1 for processing.

Simple cells respond strongly to specific orientations in

specific spatial locations. That is, different simple cells

have selective characteristics to different orientations and

edge positions (Liu et al. 2010). Every simple cell has its

preferred orientation, which has the strongest cellular

response. The characteristics of simple cells with different

orientations can be simulated as the two-dimensional

Gabor function (Gu and Liang 2007), which is demon-

strated as the following formula:

Gk;h;w;r;c i; jð Þ ¼ e�
i02þc2 j02

2r2 cos 2p
i0

k
þ w

� �
ð14Þ

where

i0 ¼ i cos hþ j sin h
j0 ¼ �i sin hþ j cos h

�
ð15Þ

Excitatory Input

Inhibitory Input

Ganglion Cell

Excitatory Inhibitory

Photoreceptors

Receptive Field

Fig. 6 Schematic diagram of

RF structure of On-center

ganglion cell
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The formula (14) is the product of a Gaussian function and

a cosine function where k is the wavelength, which directly

affects the filter scale of the filter. Commonly, h is the

direction of the filter. w is the phase shift of the tuning

function,. c is the ratio of spatial vertical to horizontal,

which determines the shape of the filter. r is the variance of

the Gaussian filter.

Finally, simple cells processing with different preferred

orientations are integrated to the final image information,

in which the image information signals of complex cells

come from simple cells with different positions in the same

orientation (Ferrell 2011) which is equivalent to the

abstraction of simple cells (Shou 2010). Since there is no

clear antagonistic zone in RFs of complex cells, there are

no strict requirements for position selection during orien-

tation selection (Shou 2010). As long as the edge signal

falls on RFs, it will cause the reaction in the complex cell,

and the functions of simple cells and complex cells can be

converted into each other. Therefore, the EDMRV1 does

not model the complex cells separately. Schematic dia-

grams of simple cells and complex cells are shown in

Fig. 7.

Finally, the processed image I is obtained:

I i; jð Þ ¼ I4 � Gð Þ i; jð Þ ð16Þ

Figure 8 is a schematic diagram of RFs of simple cells with

preferred orientations of h1 = 0�, h2 = 45�, h3 = 90�, and
h4 = 135�, respectively. Figure 9 is a schematic diagram of

the Gabor model.

The connections between neurons are very complicated.

In the EDMRV1 model we proposed, the connectivity of

neurons in different RFs is related to spike timing-depen-

dent plasticity (STDP) (Beyeler et al. 2013; Kim and Lim

2019; Rolfs 2009), that is, it has a pulse time-correlated

plasticity. This connectivity is closely related to the ori-

entation selectivity of RFs (Carver et al. 2008). The STDP

mechanism consists of long-term potentiation (LTP) and

long-term depression (LTD) (Gazzaniga et al. 2014). The
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Fig. 7 Schematic diagram of RF of simple cell and complex cell and their relationship

Fig. 8 Schematic diagram of RFs of simple cells with 4 different

preferred orientations

Fig. 9 Schematic diagram of Gabor model
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relationship between the sequence of discharge of neurons

and the strength of connection determines the detection of

image edge information by cells of RFs:

1. In the edge area, the pre- and postsynaptic neurons

produce synchronous and high-probability positive

discharges under the action of LTP, thus producing

an excitatory effect. At this point, the synaptic

connections are constantly increased, which is repre-

sented by the following formula:

potentiationði; jÞ ¼ tpostði; jÞ � 1þ synapse(i; jÞð

�e� tpreði;jÞ�tpostði;jÞj j
�
; tpre\tpost

ð17Þ

where potentiation(i, j) represents image edge decoding

information after the LTP effect in STDP. synapse(i,

j) represents the connection strength of the synapse.

tpre\ tpost indicates that neurons pre- and postsynaptic

neurons are positively discharged.

2. In the non-edge area, the pre- and postsynaptic neurons

produce non-synchronous and high-probability non-

positive discharges under the action of LTD, thus

producing an inhibitory effect. At this point, the

synaptic connections are constantly suppressed, which

is represented by the following formula:

depressionði; jÞ ¼ tpostði; jÞ � 1� synapse(i; jÞð

�e� tpreði;jÞ�tpostði;jÞj j
�
; else

ð18Þ

where depression(i, j) represents image edge decoding

information after the LTD effect in STDP. tpre C tpost

indicates that neurons pre- and postsynaptic neurons

are non-positively discharged.

After the action of LTD and LTP, Fig. 10 indicates

those distributions of weights as the following. The

X-axis presents the results of potentiation(i, j) and

depression(i, j). The Y-axis presents the calculation times,

which means the higher value of the Y-axis indicates that

the higher frequency of appearance of the corresponding x

value.

According to the above description, the image infor-

mation processing flowchart of the EDMRV1 model is

shown as the following Fig. 11:

Simulations and results analysis

Environment of simulations and model
parameter settings

This section uses simulation experiments to verify the

proposed EDMRV1 model. The parameters of simulation

experiments are illustrated in Tables 1 and 2:

Visualization of model outputs

According to the description of the EDMRV1 model, the

following three different scenarios were taken as examples,

and the EDMRV1 model is shown in Figs. 12, 13, 14, 15,

16 and 17. Due to the significant degradation of visual

information after reaching V1, the experimental results

were difficult to identify. Therefore, the brightness value of

images recognized by the ganglion cells, LGN and V1 were

reduced by 40%, and the contrast value was increased by

40%.

Fig. 10 Distribution of weights after STDP processing

Image Input

Photoreceptors

Light Changes?

Rod and Cone Cells

RF of Ganglion 
Cells

YesDark/Light 
Adaptation

RF of LGN

RF of V1

Image Output

Model 
Responses

Fig. 11 Flowchart of EDMRV1 model
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Experiment of airplane

In this experiment, we took the Boeing 747 airplane in the

dark as the first example. The picture’s resolution was

960 9 600, each pixel of the image was encoded in one

byte. The corresponding gray-scale average value (GSAV)

was grayairplane_average1 = 53.60, as shown in a and b of

Fig. 12. When the retinal photoreceptors received the

optical signals, the amount of data at this time was

4.61 9 106 bits. Subsequently, the DA process of rods and

cones worked for t1 = 30 min, as shown in c of Fig. 12.

The sensitivity of cones, which have dominant roles in the

photoreceptors before Dt = 12.16 s (from 0 to 12.16 s),

was improved. Also, after Dt = 12.16 s, rods have domi-

nant roles in the photoreceptors, the sensitivity was

improved, and corresponding GSAV increased to gray

airplane_average2 = 133.98, as shown in d of Fig. 12. Subse-

quently, the image signal after the DA process was trans-

mitted to RFs of the ganglion cells. Since these are very

sensitive to the change of the light and dark, the edge

information of the image could be detected; the image after

the processing is shown in e of Fig. 12. Next, the image

signals were transmitted to LGN (indicated in f of Fig. 12),

at which point, the visual information of this image signals

was 3.35 9 103 bits, which was about 7.27 9 10-4 times

that of the retinal photoreceptors visual information. Sim-

ple cells with different preferred orientations h were only

related to the image information of the specific orientation,

and could recognize the edge information of these orien-

tations. The current paper has given four examples. Those

respectively are, h = 0�, 45�, 90�, and 135�. The processing
images are shown in a-d of Figs. 13. The images of inte-

grated information of these corresponding orientations are

shown in e of Figs. 13. Finally, the signals from RFs of the

ganglion cells and LGN were transmitted to V1. The image

after RFs processing of V1 is shown in f of Figs. 13. The

visual information at this time was 5.46 9 102 bits, which

was 1.18 9 10-4 times that of retinal photoreceptors. From

the experimental picture of Boeing 747, it can be seen that

Table 1 Parameters of ganglion cells and LGN

RFs of ganglion cells RFs of LGN

r1 r2 kernel r3 r4 kernel

0.90 1.00 3 9 3 0.40 1.00 3 9 3

Table 2 Parameters of V1
RFs of V1

h1 k1 r0� h2 k2 r45� h3 k3 r90� h4 k4 r135�

0.00 2.00 0.50 45.00 2.00 0.50 90.00 2.00 0.50 135.00 2.00 0.50

Fig. 12 Airplane image in dark adaptation-ganglion cells-LGN

processing. a Airplane image before dark adaptation processing of

rods and cones. b Gray scale curve corresponding to image before

dark adaptation processing. c Airplane image after dark adaptation

processing of rods and cones. d Gray scale curve corresponding to

image processing after dark adaptation of rods and cones. e Airplane

image processing after RFs of ganglion cells. f Airplane image

processing after LGN
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Fig. 13 Airplane image processing after preferred orientation of V1

and EDMRV1 model responses. a Airplane image processing after

the preferred orientation of V1 equals 0�. b Airplane image

processing after the preferred orientation of V1 equals 45�. c Airplane
image processing after preferred orientation of V1 equals 90�.

d Airplane image processing after preferred orientation of V1 equals

135�. e Airplane image processing after four different preferred

orientations of V1. f Airplane image output according to the

EDMRV1 model responses

Fig. 14 Building image in light adaptation-ganglion cells-LGN

processing. a Building image before light adaptation processing of

cones. b Gray scale curve corresponding to image before light

adaptation. c Building image after light adaptation processing of

cones. d Gray scale curve corresponding to image after light

adaptation. e Building image processing after RFs of ganglion cells.

f Building image processing after LGN
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Fig. 15 Building image processing after the preferred orientation of

V1 and EDMRV1 model responses. a Building image processing after

preferred orientation of V1 equals 0�. b Building image processing

after preferred orientation of V1 equals 45�. c Building image

processing after preferred orientation of V1 equals 90�. d Building

image processing after preferred orientation of V1 equals 135�.
e Building image processing after four different preferred orientations

of V1. f Building image output according to the EDMRV1 model

responses

Fig. 16 Sportscar image in ganglion cells-LGN-V1 processing.

a Sportscar image input on retina. b Sportscar image processing

after RFs of ganglion cells. c Sportscar image processing after LGN.

d Sportscar image processing after preferred orientation of V1 equals

0�. e Sportscar image processing after preferred orientation of V1

equals 45�. f Sportscar image processing after preferred orientation of

V1 equals 90�
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visual information significantly degraded from retina to V1

in our model.

Experiment of building

In this experiment, we took the Shanghai Pudong Devel-

opment Bank building in the bright light as the second

example. The picture’s resolution was 2000 9 1500, each

pixel of the image was encoded in one byte. The corre-

sponding GSAV was graybuilding_average1 = 165.68, as

shown in a and b of Fig. 14. When the retinal photore-

ceptors received the optical signals, the amount of data at

this time was 2.4 9 107 bits. Subsequently, the LA process

of cones worked for t2 = 10 min, as shown in c of Fig. 14

The sensitivity of cones, which have dominant roles in the

photoreceptors during the whole t2 = 10 min, was

improved, the corresponding GSAV increased to gray

building_average2 = 89.88, as shown in d of Fig. 14. Subse-

quently, the image signal after the LA process was trans-

mitted to RFs of the ganglion cells, and the edge

information of the image could be detected, as shown in e

of Fig. 14. Next, the image signals were transmitted to

LGN (described in f of Fig. 14), at which point, the visual

information of this image signals was 2.11 9 105 bits,

which was about 8.79 9 10-3 times that of the retinal

photoreceptors visual information. Simple cells with dif-

ferent preferred orientations h were only related to the

image information of the specific orientation, and could

recognize the edge information of these orientations. The

current paper has given four examples. Those respectively

are, h = 0�, 45�, 90�, and 135�. The processing images are

shown in a–d of Figs. 15. The images of integrated infor-

mation of these corresponding orientations are shown in e

of Fig. 15. Finally, the signals from RFs of the ganglion

cells and LGN were transmitted to V1. The image after

RFs processing of V1 is shown in f of Fig. 15. At this time,

The visual information was 4.93 9 102 bits, which was

2.05 9 10-5 times that of retinal photoreceptors. From the

experimental picture of Shanghai Pudong Development

Bank, it can be seen that visual information significantly

degraded from retina to V1 in our model.

Experiment of sportscar

In this experiment, we took the Mustang car in the

changeless light environment as the third example. The

picture’s resolution was 1024 9 768, each pixel of the

image is encoded in one byte, as shown in a of Fig. 16.

When the retinal photoreceptors received the optical sig-

nals, the amount of data at this time was 6.29 9 106 bits.

Subsequently, the signals after the processing of rods and

cones were transmitted to RFs of ganglion cells. RFs of

ganglion cells are very sensitive to the change of the light

and dark; thus the edge information of the image could be

detected, and the image after the processing was as shown

in b of Fig. 16. Next, the image signals were transmitted to

LGN, which is shown in c of Fig. 16. At this time, the

visual information of this image signals was 1.15 9 104 -

bits, which was about 1.82 9 10-3 times that of the retinal

photoreceptors visual information, and was a significant

degradation of these data. Simple cells with different pre-

ferred orientations h were only interested in the image

information of the specific orientation, and can recognize

the edge information of these orientations. The current

paper has given four examples. Those respectively are,

h = 0�, 45�, 90�, and 135�. The images of the processing

are shown in d-f of Figs. 16 and a of Fig. 17. The image of

the integrated information of these corresponding orienta-

tions is shown in b of Fig. 17. Finally, the signals from RFs

of the ganglion cells and LGN were transmitted to V1. The

image after RFs processing of V1 is shown in c of Fig. 17.

The visual information was 8.87 9 102 bits at this time,

which was 1.41 9 10-4 times that of retinal photorecep-

tors. From the experimental picture of Mustang, it can be

seen that visual information of this image significantly

degraded from retina to V1 in our model.

Fig. 17 Sportscar image after V1 processing and EDMRV1 model

responses. a Sportscar image processing after preferred orientation of

V1 equals 135�. b Sportscar image processing after four different

preferred orientations of V1. c Sportscar image output according to

the EDMRV1 model responses
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Model simulation results and analyses

Based on the above experimental simulations of Boeing

747, Shanghai Pudong Development Bank and Mustang,

the experimental data analysis of visual information of

retinal photoreceptors in the EDMRV1 model were

4.61 9 106 bits, 2.40 9 107 bits and 6.29 9 106 bits,

respectively. The average values were 1.16 9 107 bits, as

shown in the above Fig. 18. Next, the visual informa-

tion was transmitted to the model of RFs of ganglion cells

and LGN for processing. At this time, the amount of visual

information transmitted to LGN could be calculated, and

were 3.35 9 103bits, 2.11 9 105bits and 1.15 9 104bits,

respectively. In addition, the average values were

7.53 9 104bits, as shown in Fig. 19. Finally, the amount of

processed visual information transmitted to V1 by LGN

were 5.46 9 102bits, 4.93 9 102bits and 8.87 9 102bits,

respectively, and the average was 6.42 9 102bits, which is

shown in Fig. 20. The visual information changes of the

EDMRV1 model information processing in these scenarios

can be obtained by Figs. 18, 19 and 20, which is shown as

the above Fig. 21 and Table 3. The visual information

transmitted to LGN of these three scenarios were

7.27 9 10-4 times, 8.79 9 10-3 times and 1.82 9 10-3

times that of retinal photoreceptors, respectively. More-

over, the average was 3.78 9 10-3. The visual information

transmitted to V1 were 1.18 9 10-4 times, 2.05 9 10-5

times and 1.41 9 10-4 times that of retinal photoreceptors,

respectively, and the average was 9.32 9 10-5. These

results were slightly different due to different test scenar-

ios; nonetheless, the average data shown in Table 3, which

are the degraded rate of LGN from retina and the degraded

rate of V1 from retina, almost matched the experimental

data reported by Raichle (2010), which respectively were

0.6 9 10-3 and 10-6 due to the characteristics of convo-

lution and invariant features (Fukushima 1980). It can be

seen that as the retinal photoreceptors sequentially transmit

signals to RFs of ganglion cells and LGN, and then

transmit signals to V1, the visual information amounts are

significantly degraded. After processing, the image signals

only retain the features with a very large difference

between light and dark, and the edge signals of the image

can be obtained.

The EDMRV1 model in this paper describes the image

edge detection functional channel of biological vision,

based on the biology of retina to V1 in visual system.

Whether the ganglion cell or LGN, their RFs are composed

of two concentric antagonist circles, and the center and

peripheral stimuli react with each other by offsetting.Fig. 18 Visual information of retinal photoreceptors

Fig. 19 Visual information of LGN

Fig. 20 Visual information of V1
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Therefore, they are very sensitive to the brightness differ-

ence of the image, and their main function is to extract the

light or dark features from the image, and then obtain the

edge information. After this, LGN transmits this informa-

tion to V1, and the RFs of V1 are selected for their pre-

ferred orientations. It can be seen that during the process of

light transmission from retina to V1, the pathway of pho-

toreceptors-ganglion cells-LGN-V1 is used to extract the

image edge information.

Conclusions

This paper examined the neural mechanisms underlying the

degradation of the large amount of data from topological

mapping from retina to V1, originating from the photore-

ceptors in visual system. We established an EDMRV1

model based on retina to V1, and quantitatively explained

the neural information processing mechanisms, through

which the visual information significantly degrades from

topological mapping from retina to V1, based on the

experimental data summarized by Marcus E. Raichle.

According to the characteristics of visual information

transmission, the EDMRV1 model uses the first layer of

CNN to characterize the retinal photoreceptors. After the

light or dark signals are adjusted by light or dark adapta-

tion, and the first layer successively calculates RFs of

ganglion cells of retina, RFs of LGN and RFs of V1 are

used with the convolutional algorithm to obtain the final

image edge features. Therefore, the EDMRV1 model

describes the edge detection function of retina to V1 and

realizes the visualization.

Based on the obtained results, we came to two following

conclusions: (1) When the external image information is

transmitted from retinal photoreceptors to V1, the con-

nection from the edge detection channel of the visual

system is similar to the EDMRV1 model presented in this

paper, so that the image features of retinal photoreceptors

can be detected efficiently. This is also the first reason why

significant degradation occurs in visual system. The

transmission of visual information from RFs between dif-

ferent grades, which are the pathway of photoreceptors-

ganglion cells-LGN-V1, uses the series connection, con-

firming the hierarchical hypothesis of the primary visual

cortex proposed by Hubel and Wiesel. (2) When visual

signals are in the processing of classification from low-

level to high-level, there is the possibility of extracting the

edge features of the image through the algorithm of con-

volution calculation. However, this possibility is built at

the considerable cost of the degradation of the data, and is

the second reason for the V1 receiving an impoverished

representation of the world. This compensatory mechanism

embodies the principle of energy minimization of brain

activity and also matches the experimental data summa-

rized by Marcus E. Raichle.

The conclusions drawn in this paper have positive

effects on the research of the visual information variations

on the higher level of visual cortex and the exploration of

the visual information processing mechanisms.

Fig. 21 Visual information of retina to V1

Table 3 Information degradation of EDMRV1 model information processing in three scenarios

Scene\data Retina/bits LGN/bits V1/bits Degraded rate of LGN from

retina

Degraded rate of V1 from

retina

Boeing 747 4.61 9 106 3.35 9 103 5.46 9 102 7.27 9 10-4 1.18 9 10-4

Shanghai Pudong development

bank

2.40 9 107 2.11 9 105 4.93 9 102 8.79 9 10-3 2.05 9 10-5

Mustang 6.29 9 106 1.15 9 104 8.87 9 102 1.82 9 10-3 1.41 9 10-4

Average 1.16 9 107 7.53 9 104 6.42 9 102 3.78 9 10-3 9.32 9 10-5
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