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Evaluation of reopening strategies 
for educational institutions 
during COVID‑19 through agent 
based simulation
Ujjal K. Mukherjee1*, Subhonmesh Bose2, Anton Ivanov1, Sebastian Souyris1, 
Sridhar Seshadri1, Padmavati Sridhar3, Ronald Watkins1 & Yuqian Xu1

Many educational institutions have partially or fully closed all operations to cope with the challenges 
of the ongoing COVID-19 pandemic. In this paper, we explore strategies that such institutions 
can adopt to conduct safe reopening and resume operations during the pandemic. The research is 
motivated by the University of Illinois at Urbana-Champaign’s (UIUC’s) SHIELD program, which is a 
set of policies and strategies, including rapid saliva-based COVID-19 screening, for ensuring safety of 
students, faculty and staff to conduct in-person operations, at least partially. Specifically, we study 
how rapid bulk testing, contact tracing and preventative measures such as mask wearing, sanitization, 
and enforcement of social distancing can allow institutions to manage the epidemic spread. This work 
combines the power of analytical epidemic modeling, data analysis and agent-based simulations 
to derive policy insights. We develop an analytical model that takes into account the asymptomatic 
transmission of COVID-19, the effect of isolation via testing (both in bulk and through contact tracing) 
and the rate of contacts among people within and outside the institution. Next, we use data from the 
UIUC SHIELD program and 85 other universities to estimate parameters that describe the analytical 
model. Using the estimated parameters, we finally conduct agent-based simulations with various 
model parameters to evaluate testing and reopening strategies. The parameter estimates from UIUC 
and other universities show similar trends. For example, infection rates at various institutions grow 
rapidly in certain months and this growth correlates positively with infection rates in counties where 
the universities are located. Infection rates are also shown to be negatively correlated with testing 
rates at the institutions. Through agent-based simulations, we demonstrate that the key to designing 
an effective reopening strategy is a combination of rapid bulk testing and effective preventative 
measures such as mask wearing and social distancing. Multiple other factors help to reduce infection 
load, such as efficient contact tracing, reduced delay between testing and result revelation, tests with 
less false negatives and targeted testing of high-risk class among others. This paper contributes to 
the nascent literature on combating the COVID-19 pandemic and is especially relevant for educational 
institutions and similarly large organizations. We contribute by providing an analytical model that 
can be used to estimate key parameters from data, which in turn can be used to simulate the effect 
of different strategies for reopening. We quantify the relative effect of different strategies such as 
bulk testing, contact tracing, reduced infectivity and contact rates in the context of educational 
institutions. Specifically, we show that for the estimated average base infectivity of 0.025 ( R

0
= 1.82 ), 

a daily number of tests to population ratio T/N of 0.2, i.e., once a week testing for all individuals, is a 
good indicative threshold. However, this test to population ratio is sensitive to external infectivities, 
internal and external mobilities, delay in getting results after testing, and measures related to mask 
wearing and sanitization, which affect the base infection rate.
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The majority of the educational institutions in the United States, ranging from primary schools to universities, 
have temporarily ceased in-person classes and other activities due to the ongoing COVID-19 pandemic. While 
the importance of reopening is widely recognized1, there is lack of consensus on the strategies necessary to safely 
reopen these institutions2. The Center for Disease Control (CDC) has issued reopening guidelines that include 
extensive hand hygiene, cloth face coverings, repetitive disinfection, physical barriers and spacing of individuals 
inside enclosed surroundings, frequent testing, etc3,4. Sharp increase in COVID-positive cases from reopening 
with in-person interactions prompted eventual re-closures5. For example, Cherokee County School District in the 
state of Georgia, USA, quarantined 250 staff members and students after reopening in August, 20206. Similarly, 
the University of North Carolina, Chapel Hill, USA, canceled in-person classes after finding > 130 confirmed 
infected cases in the very first week after reopening7,8. Motivated by these observations, we explore the question of 
whether educational institutions and other organizations can safely commence in-person operations amidst the 
COVID-19 pandemic. In particular, we identify measures that are necessary to ensure the safety of the members 
of an institution and the public at large. To do so, we employ a combination of analytical modeling, data analysis 
and agent-based simulation. We first develop a mathematical model that captures the dynamics of the infection 
process with bulk testing and contact tracing. Then, we estimate some of the analytical model parameters from 
real data from a number of universities in the United States. Finally, we use the parameter estimates to conduct 
an agent-based simulation experiment to evaluate strategies for safe reopening.

SARS-CoV-2 is a novel strain of coronavirus that currently does not have an approved cure9–11. For mitiga-
tion, a variety of strategies have been implemented across the globe, ranging from complete lock-down of large 
geographical areas12 to partial restrictions on mobility and mask enforcement in public places13. A particular 
challenge associated with this virus is its asymptomatic transmission in which many infected individuals remain 
asymptomatic from a few days to several weeks and yet transmit the disease to susceptible people14,15. We mention 
the results from Hao et al.16 to highlight the seriousness of asymptomatic transmission17. As Ceylan18 reveals, 
Italy’s infected population may have ranged between 2.2 and 3.5 million in number as of May 4, 2020, while 
detected infections numbered a mere 200K. The potency of asymptomatic transmission is no different within 
an educational institution. Thus, we posit that a reopening strategy is difficult to design without the ability to 
conduct rapid bulk testing (testing everyone once every few days) so that one can detect and arrest the spread 
of infections through systematic isolation and quarantining of those who test positive for infection. Our work 
is motivated and guided by the SHIELD program of the University of Illinois at Urbana-Champaign (UIUC). 
In this program, the university is currently testing > 10K students and staff every day (that amounts to 0.2 tests 
per individual per week) through saliva-based tests.

There are multiple testing options for COVID-19. The nasal swab-based tests that utilize reverse-transcriptase 
polymerase chain reaction (RT-qPCR) define the gold standard for testing of COVID-19 and is acknowledged 
to be very accurate19,20. The US Food and Drug Administration (FDA) has recently approved saliva-based rapid 
testing21 that utilizes a loop-mediated isothermal amplification (LAMP) technique (see Wyllie et al.22,23). LAMP 
tests are significantly less costly than RT-qPCR tests, as Augustine et al.24 reveals. In the case of the UIUC SHIELD 
program, results from the RT-qPCR tests are being made available within 6 to 12 h for upwards of 10K daily 
tests. A recent study in the New England Journal of Medicine22 compared the sensitivities of the RT-qPCR tests 
with the saliva-based LAMP tests on 70 confirmed COVID-19 patients. They found that LAMP tests were able 
to detect a higher number of SARS-CoV-2 RNA samples (5.58 with 95% CI of 5.09 to 6.07) as compared to the 
nasal swab-based RT-qPCR tests (4.93 with 95% CI of 4.53 to 5.33) within 1 to 3 days of the infection. Moreover, 
a higher percentage of COVID-19 patients tested positive up to 10 days in saliva-based LAMP testing. The study 
also found that LAMP tests exhibited equal or higher sensitivity compared to RT-qPCR tests when patients are 
asymptomatic. While both RT-qPCR and LAMP testing procedures require similar laboratory turnaround time, 
sample collection and testing for saliva-based testing is faster and can be more easily administered en mass. The 
cost of the SHIELD saliva based testing is between $20 and $30 (https://​www.​uilli​nois.​edu/​shield) compared 
to more than $100 per nasal swab test. For bulk testing at large universities and institutions cost considerations 
are equally important as accuracy of testing25. In this paper, we consider two different channels of testing for an 
educational institution—one conducted in bulk at regular intervals and another through tracing of contacts of 
individuals who already test positive. While our results will continue to hold for other testing options, our study 
is motivated by the saliva-based testing paradigm adopted by UIUC.

Methodologically, we develop an analytical epidemic model with testing, use data to conduct parameter 
estimation and run agent-based simulation experiments to evaluate viable reopening strategies for educational 
institutions. Compartmental diffusion models have been widely employed to study epidemic processes, dating 
back to Serfling26. However, without modification, such models are not suitable for the analysis of COVID-19 
infections among small populations such as those in educational institutions27,28. Therefore, we propose our 
own compartmental model that accounts for the asymptomatic transmission of COVID-19, reflects the impact 
of testing on infection transmission, considers the effect of small populations as that of educational institutions 
and incorporates the role of infections in the counties surrounding the institution. The model has several param-
eters that describes the infection and testing process. We use a nonlinear regression technique that estimates 
these parameters from data. For estimation, we use data from COVID-19 dashboards maintained by several 
educational institutions within the US, including that from the UIUC SHIELD program. Using these estimated 
parameters, we devise an agent-based simulation experiment29. This experiment utilizes simple probabilistic rules 
for contact, infection transmission, testing and recovery, that taken together, seeks to mimic reality and build a 
digital twin for the epidemic process in practice. Testing and reopening strategies are then evaluated against the 
random sample path outputs of the agent-based simulation. This experimental setup makes our policy recom-
mendations quite robust to parameter variations and assumptions made to derive the compartmental model.

Our results shed light on viable strategies that institutions can adopt to cope with the challenges of the 
epidemic and yet, prioritize the health and safety of their members. First, we argue that since COVID-19 is 

https://www.uillinois.edu/shield
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characterized by asymptomatic transmission, rapid bulk testing is vital to safe reopening of educational institu-
tions. However, without proper mask enforcement and social distancing will require testing almost every indi-
vidual every day. The size of an educational institution makes it imperative that they conduct bulk testing and 
enforce precautionary measures in tandem to effectively manage testing costs to resume in-person activities. 
Second, we provide a framework to analyze the allocation of testing capacity between bulk testing and contact 
tracing. We demonstrate that the value of contact tracing is, somewhat counter-intuitively, higher when the 
positivity rate from bulk testing is low. With low positivity rates (e.g., during the initial stages of the epidemic), 
the probability of discovering infected individuals from bulk testing remains low, when contact tracing provides 
a targeted mechanism to discover infected individuals. As the infection spreads, development of bulk testing 
capabilities becomes crucial for effective mitigation of the infection spread. Instead of adopting a fixed alloca-
tion between bulk testing and contact tracing, a flexible and adaptive allocation based on estimated positivity 
rates of testing is shown to be more cost-efficient. We show that an institution must test more during the initial 
stages of reopening. The testing levels can then be ramped down adaptively as the infection load (positivity rate) 
decays. At UIUC, upon reopening in August 2020, students were required to test twice a week and faculty and 
staff were required to test once a week, however, after a few weeks students were moved to three times a week 
and others were moved to twice a week testing due to increasing infectivity within UIUC. Once the infections 
dampened by the middle of September, the frequency of testing for students and faculty was moved back to 
twice and once per week respectively. Third, we show that fast revelation of testing results along with measures 
to isolate detected positive individuals plays a rather central role in designing reopening strategies. In other 
words, it is important to quickly identify infected individuals and restrict them from further spreading the dis-
ease among the susceptible population. The rapid saliva-based tests with an average turnaround time of 6–12 h 
(e.g., the testing mechanism of the UIUC SHIELD program) are ideally suited for this task. The inability to do 
so (particularly when the delay grows beyond a day) renders testing largely ineffective. Fourth, we demonstrate 
that testing different sub-populations (based on risk categories) can be an important policy consideration. This 
finding supports the efforts of several universities such as UIUC that are testing the student population and the 
faculty/staff population at different frequencies. Students on campus at UIUC are being tested twice every week 
and faculty/staff are tested once every week for building and facility access, and this frequency of testing was 
changed over time to adapt to changing internal and external infections. Fifth, our data analysis reveals that the 
higher the infection rate of the county where a university is located, the higher is the infection rate within the 
university. The relationship is in fact dyadic in that large universities with a significant influx of students from 
outside, contribute significantly towards the growth of infection in the surrounding region. Thus, considering 
the infection spread within an educational institution in isolation cannot reveal the whole story; the prevalence 
of the disease in its vicinity plays an important role in this dynamics.

The rest of the paper is organized as follows. In “Methods” section, we describe the methods including the 
analytical model that describes the infection process, testing and contact tracing; the data and the parameter 
estimation process, and the simulation setup. In “Results and discussions” section, we present and discuss the 
results from our empirical analysis. Finally in “Conclusions” section, we conclude the paper with remarks on 
our results and directions for future work.

Methods
We begin by describing an epidemic model that accounts for the infection process as well as the testing pro-
cess. Then, we describe the data collected from several US universities and explain how we estimate the model 
parameters from this data. Finally, we use the parameter estimates and the analytical setup to conduct an agent-
based simulation to elicit feasible strategies for reopening. Sensitivities of our strategies to variations in the key 
assumptions of our model are also described.

The epidemic model.  We consider an educational institution with a population (total number of mem-
bers) n. To model the epidemic dynamics, we segment the population into different classes and track the dynam-
ics of the number of members in each class. Specifically, we consider the following population segments on day t:

•	 Susceptible individuals, st , who are not infected but can get infected when they come in contact with infected 
individuals.

•	 Infected but undetected individuals, ut , who can infect susceptible individuals when they come in contact 
with them.

•	 Infected individuals who test positive, pt.
•	 Individuals who became COVID-19 positive but ultimately recovered from it, rt.

To streamline the modeling process, we consider a specific sequence of events on day t. Many of the events 
we describe occur simultaneously. The sequence, however, helps us to formally describe the process quite easily 
without losing the essential features of the epidemic process. Specifically, consider the following event sequence: 
(i) The pool of all contacts ( ct−1 in number) who came in contact with COVID-19 positive individuals on day 
t − 1 are tested and then a portion of the institution population is tested under the institution’s bulk testing policy, 
(ii) members of the institution, as a result of their daily affairs, come in contact with other individuals within and 
outside the institution that results in new infection transmission, (iii) test results arrive, all COVID-19 positive 
individuals are isolated, and a list of contacts of all COVID-19 positive individuals is created to be tested the 
following day, and (iv) some infected individuals recover. In what follows, we develop a mathematical model to 
describe the dynamics of the population segments through this sequence of events:
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Step 1 Testing traced contacts from day t − 1 and bulk-testing: Let, Tt denote the testing capacity on day t that 
is assumed to exceed ct−1 , the number of contact traced individuals. First, all ct−1 individuals are tested. Then, 
the balance of Tt − ct−1 tests remaining after testing the contacts of detected infections, are used for bulk testing. 
Let, testing ct−1 individuals through contact tracing result in �pCt  new positive cases, and bulk testing Tt − ct−1 
people result in �pBt  new cases. We now derive an expression for �pBt  and leave un-derived the expression for �pCt  
till we have described step 3. Following the protocols of the UIUC SHIELD program, we assume that bulk test-
ing is conducted at a predetermined regular frequency among the mobile part of the population that comprises 
susceptible, undetected infectious and recovered individuals. Detected positive individuals are assumed to be 
isolated. The size of this mobile population is nt := st + ut + rt = n− pt . We assume that positive test results 
from bulk tests on day t within the tested population occurs at the same frequency as the ratio of undetected 
positive individuals to the total susceptible population among the mobile part of the population. Such a premise 
is justified when the institution and the testing capabilities within the institution are large enough. For the UIUC 
SHIELD program, we expect this assumption to be valid, given that UIUC has  50K members and are conduct-
ing > 10K daily tests. Thus, the (expected) number of new infections detected through bulk testing is given by

Notice that test results in our model do not arrive before the population segments interact in day t and give rise 
to new infections. As a result, the number who test positive on day t depends only on the size of the population 
segments at the start of day t.

Step 2 Infection propagation through contacts: Susceptible, undetected infected and recovered individuals 
interact. These interactions result in new infections. At time t, let mI

t denote the number of members that each 
individual within the institution meets within the institution. Thus, mI

t is a measure of intra-institution mobility 
or contact rate. Similarly, we encode the contact rate between members of the institution and the public at large in 
the vicinity of the institution in mE

t  . The contact rates depend largely on the nature and the frequency of activities 
that include in-person classes, office meetings, commercial activities, etc. The interactions create opportunities 
of infection transmission both from internal and external sources. Let new infections get transmitted at a rate 
β0
t  when a susceptible person within the institution meets an infected individual either within the institution or 

outside of it at time t.[To extend our results to organizations outside of educational institutions, one might need 
different β0 ’s for contacts within and outside the organization, depending on the nature of the jobs within that 
organization.] In addition to the inherent nature of the virus, this rate depends on the extent to which people 
adopt preventative measures such as mask wearing and social distancing, that may vary over time. We now count 
the expected number of new infections that result from interactions within the institution and outside of it.

Infection growth from intra-institution contacts Consider a susceptible individual at time t that meets mI
t people 

within the population at time t. The probability that k among them are infected is given by (
ut
k

)(
nt − ut
mI

t − k

)
/

(
nt
k

)
 and the probability that at least one among them infects this individual upon interac-

tion is 1− (1− β0
t )

k . Here, the notation 
(
a
b

)
 denotes the number of ways of choosing b objects from a collection 

of a objects without replacement. Multiplying the above probabilities and summing over k yields the probability 
of a new infection to be β0

t m
I
t ut/nt , when β0 is assumed small ( β0 ≈ 1−8% as estimated from data from US 

universities in parameter estimation from data). See “Additional notations used for the derivation” section and 
“Derivation of the number of new infections: β0

t m
I
t stut/nt + β0

t m
E
t stρ

E
t ” section of “Appendix 1” for a detailed 

derivation. The average growth in the number of infections within the institution due to interactions within the 
institution therefore becomes β0

t m
I
t stut/nt.

Infection growth from external contacts A very similar calculation for contacts outside of the institution leads 
to β0

t m
E
t stρ

E
t  new infections. Here, ρE

t  is the positivity rate of COVID-19 infections among people outside of the 
institution but in the vicinity of the institution. See the “Additional notations used for the derivation” section 
and “Derivation of the number of new infections: β0

t m
I
t stut/nt + β0

t m
E
t stρ

E
t ” section of “Appendix 1” for the 

derivation. This rate plays a similar role in the expression for infection growth from external contacts as ut/nt 
plays in the expression for intra-institution contacts.

We approximate the total number of new infections by the sum of infections from within and outside of 
the institution, given by β0

t m
I
t stut/nt + β0

t m
E
t stρ

E
t  . This assumption is justified, and the expression in formally 

derived in the “Additional notations used for the derivation” section and “Derivation of the number of new 
infections: β0

t m
I
t stut/nt + β0

t m
E
t stρ

E
t ” section of “Appendix 1”. As a result of these contacts, the above number 

of individuals migrate from the susceptible segment to the undetected infected group.
Step 3 COVID-positives are isolated, contact pool is created: Upon receiving the test results, individuals 

who test positive are isolated. As a result, they no longer contribute to further infection-spread. The num-
ber of COVID-positive patients increases by �pt . Recall that bulk testing Tt − ct−1 individuals results in �pBt  
newly detected cases, for which we already derived an expression. Contact tracing ct−1 individuals results in 
�pCt  new positive cases, for which we now derive an expression. Let P denote the probability that a person in 
the contact pool of detected positive individuals on day t − 1 is infectious by the end of day t − 1 . Then, the 
expected number of new cases detected through contact tracing will be �pCt = Pct−1 . To estimate P, notice 
that an individual in the contact pool was either already infected at the start of day t − 1 , or got newly infected 
through interactions on day t − 1 . The probability that an individual in the contact list started day t − 1 being 
in the undetected infected group should roughly equal the fraction of that group within the mobile population 
within the institution, given by ut−1/nt−1 . The probability of finding an individual who got infected on day t − 1 
is (1− ut−1/nt−1)φ(β

0
t ,m

I
t ,�pt−1) . The exact expression for φ is included in “Derivation of the probability of 

�pRt = (Tt − ct−1)
ut

nt
.
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infection of an individual among the contact list, φ(β0
t ,m

I
t ,�pt)” section of “Appendix 1”, where we show that 

it is reasonable to approximate it by κtβ0
t  , where

This approximation is valid when �pt−1 ≪ ut−1 ≪ nt−1 . We expect that regime to hold in practice from the 
UIUC SHIELD program, given that �p < 100 and n ≈ 50K  . We do not directly observe the sequence of ut’s; 
however, we expect the number to be more than 5�p , given that every individual tests at least once per week. 
Upon collecting the terms for P, we get

Thus, the total number of detected infections on day t becomes �pt = �pBt +�pCt  . Next, we estimate the 
expected number of contacts ct−1 of those who were detected as infected on day t − 1.

Pick a mobile individual within the institution that is not part of the group that newly tested positive on day 
t − 1 . The total number of such individuals is nt−1 −�pt−1 . Then, ct−1 equals this number multiplied by the 
probability that they belong to the contacts of the newly COVID-positive group �pt−1 . Contact tracing is either 
conducted manually (e.g., through interviews, phone calls, etc.) or through automated means (e.g., through a cell 
phone application such as the Safer Illinois app employed by UIUC). Perfectly tracing all contacts of a positive 
individual is challenging. The accuracy of tracing depends on several factors, such as the patient’s recollection 
of contacts, record-keeping at locations where the patient may have visited, adoption and usage of mobile apps, 
etc. Let 0 < η < 1 model the efficiency of the contact tracing process. Then, the expected size of the contact pool, 
per our description, becomes

The approximation is derived in the “Derivation of the probability of infection of an individual among the contact 
list, φ(β0

t ,m
I
t ,�pt)” section of “Appendix 1” under the assumption that mI

t ≪ �pt−1 ≪ nt−1 . Again, we expect 
this inequality chain to be valid for UIUC, given that measures related to social-distancing and mask wearing 
are relatively strictly enforced in an institutional setup. In the case of the UIUC and other similar institutions, 
usually, mI

t is below 10, �pt ranges between a few tens to a few 100’s, and nt is in thousands, as we will see in 
greater detail in “Results and discussion” section.

Step 4 Some infected individuals recover: The average time to recover from COVID-19 has been computed 
to be between 12 and 15 days after which the infected individuals move to the recovered group. The average 
recovery rate γ is assumed to be the inverse of the average time to recover. Incidence of repeat infections are 
rare. Hence, we deem the recovered group as no longer infective or susceptible to infection. For an educational 
institution with bulk testing capabilities such as UIUC, we only model the recovery process for individuals who 
test positive at some point. That is, we do not allow undetected infected population to recover. Such an assump-
tion is justified in the presence of bulk testing such as the SHIELD program of UIUC that tests all individuals 
at least once a week, thus, identifies all undetected cases. The recovery process is mathematically modeled in

Summary of the epidemic model.  The infection dynamics due to transmission, recovery and testing as illus-
trated in Fig. 1 results in the following updates to the population segments within the institution. In Fig. 1, we 
show the four distinct stages that an individual can be in at any time, i.e., susceptible, undetected infected, posi-
tive, and recovered, the dynamics of which is mathematically captured in (1). Additionally, some individuals 
from the susceptible and the undetected infected group may be indicated for contact tracing, who either move 
to positives or susceptibles after getting tested. 

We remark that the above epidemic model lends itself to simplifications when the population is very large. While 
such simplifications allow for closed form analysis, they are not quite appropriate when the considered popula-
tion is small as that within an institution. Rather than pursuing such closed-form analysis, here we estimate key 
parameters of our model from data collected at several universities across the US. These parameter estimates 

κt := mI
t
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nt(nt −�pt)
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are then plugged in an agent-based simulation that reveals interesting insights into strategies necessary to safely 
reopen an educational institution.

Parameter estimation from data.  We estimate a subset of the parameters of our dynamic epidemic 
model from data. In this section, we describe the data and the parameter estimation techniques used in the 
empirical and simulation studies.

We utilize the daily number of tests and infections from the SHIELD testing program at the University of 
Illinois at Urbana-Champaign (UIUC), Champaign County, IL. In addition, we use less granular data of weekly 
new infections and testing conducted at 85 large universities other than UIUC across 78 counties in the US (see 
list in “Appendix 2”). While data from more universities are available, we only used universities that conduct 
some bulk testing for random screening purposes. A non-random testing strategy is unsuitable for providing 
a credible estimate of institutional infection rates, and hence, do not conform to our modeling. The data on 
COVID-19 infections at the universities across the US were collected from COVID-19 dashboards maintained 
by respective universities. For example, the data for UIUC was collected from https://​covid​19.​illin​ois.​edu/​on-​
campus-​covid-​19-​testi​ng-​data-​dashb​oard/. The data from tests at these universities is augmented with informa-
tion about COVID-19 infections in the counties within which the universities are located to estimate parameters 
pertaining to infections from external contacts. We use the data from the Johns Hopkins Coronavirus Resource 
Center at https://​coron​avirus.​jhu.​edu/. A detailed description of the data collection and data are available in the 
following website: https://​public.​table​au.​com/​profi​le/​anton.​ivano​v3554, which is managed and maintained by 
one of the co-authors.

To explain the estimation process, consider the dynamics of the untested infected population ut in (1). Notice 
that the strength of the untested infected population is not observed, making it difficult to estimate parameters 
directly from data without making simplifications. In what follows, we justify the simplifications we make using 
the data from the SHIELD program and then describe our data fitting approach. First, we assume that the seg-
ment pt that has tested positive and is isolated from the rest of the population is relatively small compared to the 
total population of an institution, i.e., nt ≈ n and st ≈ n− ut − rt . The UIUC data reveals that the typical number 
of people that test positive tests is < 100. If individuals recover roughly in the span of two weeks, we expect the 
number of quarantined individuals at any particular day to be around 1K–2K, that is much smaller than the total 
population of 50K in UIUC. We remark that even during the initial surge of infections immediately following 
the re-opening of UIUC in August 2021, the total isolated individuals on a day was below 5% of the population. 
Second, we assume that the positivity rate among the daily bulk tests is a good approximation of the infection 
incidence within the whole population within the institution, i.e., �pt/Tt ≈ ut/n . This assumption is reasonable 
within UIUC, given that UIUC is testing almost 20% of its population daily. Third, we simplify contact tracing by 
using an approximate value for κ for parameter estimation. At UIUC, the number of daily tests conducted traced 
contacts has typically ranged in 50–250 that is much smaller than the 10K daily bulk testing. We emphasize that 
even though we ignore contact tracing in estimating parameters, we do not ignore it in agent-based simulation 
as we precisely study the role of contact tracing and bulk testing in infection mitigation.

The dynamics of the untested infected population from (1) can be translated into the dynamics of the positiv-
ity rate νt = �pt/nt ≈ ut/n based on the aforementioned approximations as

Figure 1.   The SUPR Infection Dynamics with Testing and Contact Tracing (where, st : number of susceptible 
individuals, ut : number of undetected infected individuals, pt : number of positive infections detected from 
testing, rt : number of recovered individuals, ct number of contacts traced on date t, Tt : total number of tests, βI

t  : 
internal infectivity, βE

t  : external infectivity, and γ : recovery rate.).

https://covid19.illinois.edu/on-campus-covid-19-testing-data-dashboard/
https://covid19.illinois.edu/on-campus-covid-19-testing-data-dashboard/
https://coronavirus.jhu.edu/
https://public.tableau.com/profile/anton.ivanov3554
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where we have used the notation

We have the data of total daily tests Tt , strength of the recovered group rt , and the daily new detected infections 
�pt over the course of D = 14 weeks from the UIUC SHIELD program and the external infection load ρE

t  in 
Champaign county where UIUC is located, over the same period from the Johns Hopkins Coronavirus Resource 
Center. From the values of Tt , rt ,�pt , we can infer τt , r̃t , νt in (2). Our goal is to estimate the parameters

Given ν0 and the measured values of τt , r̃t , ρE
t  for t = 1, . . . ,D , the parameters � := (θ1, . . . , θD) determine the 

trajectory of positivity rates ν(�) over the D days, per (2). The goal of the estimation process is to find � that 
minimizes an error between the observed trajectory of positivity rates νobs1 , . . . , νobsD  and ν1(�), . . . , νD(�) . To 
find θt , define �t := (θt , . . . θt) that assumes the same value of the parameter for each time over the D days and 
minimizes the weighted squared error

The weights w’s are positive and weigh the error between observed positivity rates νobs and the same implied by 
the parameters ν(�t) . The weight is more around day t and less so as d gets further away from t. We specifically 
choose wd

t := exp
(
−(t − d)2/h

)
 , where h is a tuning parameter to minimize error in estimation. This estimation 

process solves D nonlinear regression problems to compute the parameters, one for each day. The regression prob-
lems are nonlinear as the parameters enter the ν-dynamics in (2) non-linearly. We remark that such an estimation 
process can detect variations in the estimated parameters over time and provides us a way of identifying the 
efficacy of testing and other infection mitigation measures. Finally, from the non-linear regression we obtain the 
estimates for {β̂I

t , β̂
E
t , m̃

I
t } , which enables us to estimate rest of the parameters as β̂0

t = β̂I
t /m̃

I
t and m̃E

t = β̂E
t /β̂

0
t .

Agent‑based simulation.  The analytical epidemic model in (1) mathematically describes the infection and 
the testing dynamics. However, this model alone is not sufficient for robust policy evaluations—the goal of our 
current paper. To appreciate why that is the case, notice that the epidemic model is deterministic and is meant 
to capture the average infection dynamics through time. The possible deviations from the average will depend 
on the inherently random interactions among people and disease transmission. The compartmental model can-
not adequately capture this randomness. This is the intrinsic downside to using compartmental models that 
seeks to represent the infection status of n individuals (with 4n possibilities at any time t) through the dynamics 
of the size of different population segments with respect to the disease. While different policies for testing and 
other preventative measures can be approximately evaluated based on (1), such evaluations are not robust to the 
randomness of this dynamics. Jaffrey and Treur29 show that for relatively smaller populations, the agent based 
analysis provides better representation of the infection dynamics than that provided by compartmental models. 
To address the challenge, we adopt a different strategy in this section. Specifically, we build scenarios of daily 
interactions among individuals and track the infection status of n agents in simulations. Each simulation run 
of these n agents is random and provides one sample path of the infection dynamics through time. Our setup 
is such that the aggregate dynamics indeed mirrors the mathematical model we presented in (1). We also relax 
several simplifying assumptions made to derive the analytical model in these agent-based simulations. Differ-
ent testing policies are then evaluated over multiple sample paths with less restrictive assumptions, making the 
resulting policy evaluations more immune to said assumptions and the randomness of the infection process.

Agent-based simulations have been extensively used in the context of epidemic spreads and transmissions29–32. 
In Algorithm 1, we outline the steps of our agent-based simulation. In our setup, we create n agents who interact 
with each other and with people outside the institution following simple probabilistic rules. We track the status 
of n individuals. At any given time, their status is one among susceptible (S), undetected infected (U), detected 
positive (P) or recovered (R). Agents can randomly transition from one state to another based on the random 
interactions and chances of infections and recovery. The dynamics of Fig. 1 guides the transitions for each 
individual. We maintain the contact list C of individuals to simulate the effects of testing via contact tracing.

For the dynamic interactions and disease transmission, we let each agent meet other agents randomly in a 
way that the average number of contacts within and outside the institution are the average values of mI and mE , 
respectively. New infections emerge with a probability β0 . Recall that our analytical model allows for possibly 
time-varying number of tests Tt , mobility parameters mI

t ,m
E
t  and base infectivity β0

t  . In the agent-based simula-
tions, we choose constant values of these parameters within a simulation run over D = 120 days and drop the 
subscript in their symbols for brevity. These parameters are varied across different simulation runs from among 
the values obtained from parameter estimation with data over multiple days. With each choice of such param-
eters, we generate 100 sample paths. We evaluate the outcome of an experiment through the following metric

(2)
νt+1 = νt + βI

t νt(1− νt − r′t)+ βE
t ρ

E
t (1− νt − r′t)− τtνt

− m̃I
tνt−1τt−1(1− νt−1τt−1)

[
νt−1 + (1− νt−1)κβ

I
t

]
,

βI := β0m
I
t , β

E := β0m
E
t , m̃

I
t = ηmI

t , τt := Tt/n, r̃t := rt/n.

θt :=
(
βI
t ,β

E
t , m̃

I
t

)
, t = 1, . . . ,D.

(3)minimize
θt

Et(�t) :=

D∑

d=1

wd
t

(
νobsd − νd(�t)

)2
.
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that measures the average number of susceptible individuals as a fraction of the total population. This measure 
can also be viewed as the area below the trajectory of the number of susceptible people in the institution (area 
below the susceptibility curve), normalized by the population size. Since st ≤ N , we have fS ∈ [0, 1] . A higher 
value of fS indicates a healthier outcome as it implies that less number of people on average are infected. Policy 
evaluations are made based on both the mean and the range (95% confidence interval) of fS over D = 120 days.

We are able to study the effects of several refinements through agent-based simulations that do not appear 
in our analytical model. For example, in one of our experiments, we consider two different risk-groups within 
the population, one with a higher risk of infection transmission due to higher contact rates than another. Other 
example deviations from the analytical setup includes modeling the effect of delay δ between testing and the 
revelation of test results, imperfect isolation of detected COVID-positive individuals (isolation efficiency ψ ) and 
possibilities of false negative tests (test sensitivity χ ). 

Results and discussions
First, we report the results from parameter estimation using data from various universities. Then, we present the 
results from our agent-based simulation with estimated parameters to glean interesting insights into reopening 
strategies.

Parameter estimation from data.  We first present the results from the UIUC SHIELD program and 
then compare these results from those we obtain from other US universities. Figure 2a shows the daily number of 
COVID-19 tests and the daily new detected positive cases at UIUC. Over the 14 weeks of the Fall 2020 semester, 
daily tests averaged at 7964 with a standard deviation of 3525. The large variations in daily tests can be explained 
by lower testing conducted during the weekends and the adaptive bulk testing policy adopted by UIUC. By 
adaptive, we mean that the necessary testing frequency has been changed to cope with positivity rates over time. 
For example, right after the school reopened, the incidence of infection was quite high (between August 1, 2020 
and August 25, 2020). Figure 2b captures this increased positivity rate mid-August. Stricter social distancing and 
mask wearing measures were implemented, which included increased surveillance and enforcement of CDC 
guidelines for COVID-19. At the same time the frequency of testing was increased from twice a week to thrice a 
week for students and from once a week to twice a week for faculty and staff.

Table 1 records the results of parameter estimation from the data of the UIUC SHIELD program with 95% 
confidence intervals. In Fig. 2c, we present the weighted least square estimates for base infectivity β0 starting 
from the fourth week (day 25) to the end of week 14. Our estimation process yields β0 for each day, shown as 
a dashed black line in the figure, with a smoothed variant drawn as the blue line. The average β0 is 0.025 with 
a standard deviation of 0.015. The estimates corroborate the higher infection rates around 0.1 after reopening. 

fS :=
1

D

D∑

t=1

st

N
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Several media reports criticized UIUC’s reopening strategy based on this initial high infectivity rate. After the 
elevated infection rates in the beginning, however, the rates quickly dropped to around 0.01. While the UIUC 
population took some time to get used to the new reality of operating with COVID-19, sound policies related 
to social distancing and mask wearing enforcement rapidly took effect. The climb in infection rates to 0.03 in 
week 11 (both in Fig. 2a,b) is explained by the dyadic relationship between an institution’s internal infections 
and the surrounding environment’s infections. In Fig. 2b we show the plots of daily new cases for UIUC as well 
as Champaign county. The figure indicates that the external infections and the internal infections of UIUC are 

Table 1.   Parameter estimates from UIUC SHIELD data.

Parameter Mean Std. Dev 95% CI Range

β0 0.025 0.015 0.01–0.075 0.007–0.112

m
I 5 1.35 1–6 1–11

m
E 2 0.41 0–3 0–3

ρt 0.043 0.022 0.012–0.083 0.009–0.968

τt 0.159 0.071 0.112–0.237 0.042–0.351

Figure 2.   Visualization of the data and the results of parameter estimation from the UIUC SHIELD program.
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not independent. While the first surge of infections in the initial weeks of reopening is associated with a large 
inflow of students from outside, the second surge in infections in Champaign county where UIUC is located, and 
the internal infections from UIUC’s SHIELD program is probably related to the general rise in infections due to 
several reasons including increase in social contacts due to elections, social unrest and lockdown fatigue in the 
general population. This second surge in institutional infections is not a characteristics of UIUC alone. Rather, 
the second rise in infections is observable in all other universities as shown in Fig. 3b, which we discuss later.

The estimated contact rate mI within UIUC is 4.85 ≈ 5 with a range of [1, 11] and standard deviation of 1.35. 
The median contact rate from the estimates is 3. Similarly, the mean and median external contact rate mE is 2. 
While mI > mE , the proximity among these estimates indicate that the prevalence of infection in the county 
around the institution contributes heavily towards the infections within the institution. Recall that βI = β0mI 
denotes the internal infectivity rate. This rate is estimated at 0.12 with a standard deviation of 0.02. One often 
uses the basic reproduction number of an epidemic as a metric of how fast an epidemic is growing. This number 
is given by R0 = βI/γ , the ratio of the infection rate within the institution and the recovery rate. For UIUC, R0 
is estimated to be 1.82 with a 95% confidence interval of 0.75–3.05 for an average recovery period of 15 days. 
Early published estimates put R0 for COVID-19 in the range 3.40–3.6716,33. Thus, our estimates for UIUC are 
significantly lower than published estimates. We suspect that the difference between these estimates emanates 
from the institutional setup that is significantly different than that of general social life. The differences arise in 
terms of the population sizes, the ability of institutions to enforce preventative measures such as social distanc-
ing, mask wearing and extensive facility sanitization.

To validate our estimation, we computed one day look-ahead prediction of the positivity rates νt using the 
estimated parameters and compared these predictions to observed positivity rates. Figure 2d shows that the day-
ahead estimates indeed match well with observed data (with a mean prediction error of 4.12%).

Table 2 shows the results of parameter estimation using weekly testing and infection data from 85 universities 
across the US other than UIUC; the list is included in “Appendix 2”. Figure 3a shows the estimates of β0 with 
an average of 0.017 across all 85 universities. The internal and external mobility estimates mI and mE are 3 and 
1, respectively. While these numbers vary across universities and vary over time within universities, they are 
quite similar to those obtained for UIUC. The parameter estimates from the weekly data from these universities 
together with those from the UIUC SHIELD program provide us with a range of parameters for the agent-based 
simulation later in this section.

In Fig. 3b, we include a box-plot of the total number of infections in the universities and in the counties 
where the universities are located. Notice that the infection count within the universities and the counties both 
show a surge in the month of November. The UIUC data shows a similar surge in Fig. 2b. This elevated infection 
count is possibly a result of the confluence of multiple factors that include US elections, the rise in socio-political 
uprisings and COVID-19 lock-down fatigue among the general populace. Another important factor that may 
have resulted in the overall increase in infections in the environment is dropping ambient temperature due to 
the approaching winter season34,35. In our analysis, we do not include the effect of climate due to lack of data 
and due to the fact that all universities that we analyze are located in the United States, and therefore, the climate 
variation is not too high. This is a simplifying assumption that we have used for our analysis, and therefore, is 
a potential limitation. Motivated by the similarity in the variation of the infection counts within and outside 
the university, we plot the weekly test positivity for all 85 universities against the external positivity of the sur-
rounding environment in Fig. 3c. The external COVID-positivity is measured as the ratio of the total number 
of active cases in the neighboring county and the total population of said county. The plot demonstrates a clear 
positive correlation—a linear fit yields a slope of +0.317 with a standard error of 0.031 (p value: < 10−16 ). This 
plot illustrates that incidence of COVID-19 infections within an institution affects and is affected by the infec-
tions in the neighboring counties. This data analysis validates our modeling choice to include external infection 
load ρt and external contact rate mE in the dynamical system model for the epidemic in (1).

Through the agent-based simulation later in the section, we argue that rapid bulk testing is key to safely 
reopening educational institutions. Before we present the results from our simulations, we remark that weekly 
COVID-19 positivity rates from these 85 US universities indeed exhibit negative correlation with the extent of 
testing conducted at the universities. See Fig. 3d for the plot of the positivity rates against the ratio of the daily 
tests conducted at the universities to the institutional population.

Agent‑based simulation to evaluate reopening strategies.  We now report the results from agent-
based simulations to understand the effects of various parameters such as the extent of bulk testing, efficiency of 
contact tracing, preventative measures that reduce base infectivity, etc. on the dynamics of the infection process. 
Majority of the results utilize parameter estimates from the UIUC SHIELD program with n = 50K. The param-

Table 2.   Parameter estimates using data from 85 US universities other than UIUC.

Parameter Mean Std. Dev 95% CI Range

β0 0.017 0.013 0.005–0.067 0.001–0.096

m
I 3 1.02 1–5 1–5

m
E 1 0.28 0–2 0–3

ρt 0.025 0.016 0.002–0.057 0.001–0.127

τt 0.083 0.104 0.006–0.750 0.004–0.300
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Figure 3.   Relevant plots generated using the data from 85 universities in the US (see “Appendix 2” for the list).
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eters are chosen from the range obtained from the estimation step for each of the 100 runs. These parameters, 
however, are held constant through t = 1, . . . ,D in each run, unless otherwise specified.

We remark that we have conducted upwards of a million simulations with different combinations of param-
eters, over and beyond what we report here. As a result, we believe our policy evaluations to be robust and useful 
for practical policy guidelines. However, we do not claim optimality of our guidelines in a statistical sense and 
leave such a quest to a future endeavor.

Bulk testing capacity.  With the parameters β0 = 0.025 , mI = 5 , mE = 2 , and ρE = 0.043 estimated from the 
UIUC data, we simulated four different scenarios of bulk testing with constant daily tests of T ∈ {1K, 5K, 10K, 15K} 
over a period of D = 120 days roughly spanning a semester. In our simulations, we assumed the efficiency of 
contact testing to be η = 0.9 and the efficiency of isolation to be ψ = 0.95 . To make our simulations more 
realistic we assumed that the tests have a sensitivity of 0.92. See Wyllie et al.22,36 that reports the sensitivity of 
saliva-based tests to be between 0.90 and 0.95. Given that the average delay between conducting a test and 
revealing the test result at UIUC is generally below 12 h, we assume that test results are available immediately 
in our simulations. In Fig. 4a, we plot the size of the susceptible population across time in our simulations. For 
all experiments, we set the initial number of infection u0 = 5 . One of our test runs with 10K daily tests lead to a 
total of 11, 041 infections in a span of 4 months. This number is close to 10, 890 infections that we obtain from 
simulating the analytical model in (1) with 10K daily tests—a step that verifies that the analytical model and the 
agent-based simulations are consistent. The agent-based simulation, however, is much more powerful for policy 
design as it captures the stochastic nature of the infection dynamics that permits robust policy evaluation.

The simulations reveal that the marginal benefits of testing capacity is high at lower testing capacities. For 
example, moving daily tests from 1K to 5K reduces the average fraction of total infected from 0.247 to 0.138, a 
reduction of 44% . This translates to a total of 5450 less infections over a span of 120 days. However, increasing 
the capacity from 5K to 10K daily tests reduces the same fraction to 0.117, a reduction of only 15% . Increasing 
daily testing to 15K decreases the same to 0.109, a reduction of 7% from 10K tests per day. Without bulk testing, 
we obtain fS = 0.710 , which indicates that the total infection is 2.48 times higher than that obtained with 10K 
daily tests. This translates to a total of 8650 less infections over 120 days that result from bulk testing at the rate 
of 10, 000 daily tests on an average. In other words, bulk testing can dramatically reduce the number of infections 
and should ideally form a central component of reopening strategies for educations institutions.

We perform a similar analysis for Illinois State University (ISU) for which the parameters of infectivity and 
contact rates are similar to that of UIUC, but its institutional population is around half of that of UIUC. The 
similarity between the outcomes in Fig. 4a for UIUC and in Fig. 4b for ISU demonstrates that τ = T/n—the 
ratio of daily tests to the population size—plays a determining role on the infection dynamics.

In the simulations described above, we have fixed the daily number of tests throughout the D days. In practice, 
operating with a fixed capacity is typically inefficient and may lead to higher costs compared to adaptive testing 
capacities. UIUC has undertaken an adaptive approach to testing. For example, upon opening in the beginning 
of August 2020, UIUC required all students to get tested once a week. From August 16, the university mandated 

Figure 4.   Comparison of the effect of bulk testing at UIUC and ISU.
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all students and faculty/staff to test twice a week due to increased positivity within the university. On September 
9, the requirement for faculty and staff was dropped to once per week, following the dampened rate of infections 
within the university. On November 2, the requirement was ramped up to thrice a week for students and twice 
a week for faculty and staff as positivity rates increased both within and outside UIUC. In view of the above, we 
seek to understand the effect of adaptive testing policy. Therefore, we perform an agent-based simulation where 
on each day t, the testing capacity Tt+1 for the next day grows with the ratio of the positivity rates on day t and 
t − 1 . By positivity rate on a day, we mean the ratio of number of positive infections detected to the number of 
tests conducted on that day. Figure 5 illustrates the result of this experiment. Notice that the average number of 
daily tests in the adaptive approach dropped to 9688, that is lower than 10K by 312 tests every day. Yet, average fS 
with adaptive testing capacity is 0.887, which is higher than the area under the susceptible curve (0.883) obtained 
with 10K daily tests. Recall that rapid saliva testing costs $20–$30 per test. Thus, adaptive testing leads to an 
estimated cost saving of $7.5–$1.1 million over D = 120 days, while performing better on the disease mitigation 
front than fixed testing capacity. In this simulation, the daily tests fluctuate significantly during the initial periods, 
which dampen after the infection load stabilizes. In practice, however, such daily fluctuations may be difficult to 
administer, requiring a smoother variation in testing policy similar to that adopted at UIUC.

Efficiency of contact tracing.  Efficiency of contact tracing is understood as the probability with which a contact 
of an infected positive individual is identified and tested. We report our empirical findings for contact tracing 
efficiencies of 90% and 80% in Table  3. The results indicate that contact tracing efficiency has much more impact 
on the epidemic dynamics when bulk testing capabilities are small. This impact almost disappears when bulk 
testing capabilities increase. For example, with bulk testing 1K individuals daily, contact tracing efficiency drop 
from 90 to 80% leads to a drop of mean fS from 0.753 to 0.712 (5.4% reduction). The same numbers with 15K 
daily tests are 0.891 and 0.890, respectively. While contact tracing helps, our results yield that bulk testing has 
a much larger impact. With around 10K daily tests with parameters for UIUC, we typically found the number 
of contacts of positive individuals ct ≈ 650 on an average, and with a probability of infection slightly higher 
(factor of κ ) than that of random selection approximately 20 positive cases are detected. As a result, the total 
number of infections detected via contact tracing is much smaller as compared to about 200+ COVID-positive 
individuals detected via bulk testing. Judging based on our experiments, we find it unlikely for contact tracing 
alone to define a viable infection containment strategy, given the large proportion of asymptomatic carriers of 
COVID-19.

Figure 5.   Adaptive testing outcome with maximum test capacity of 15, 000 (average daily tests: 9688, maximum 
daily tests: 11,998, fS : 0.887.

Table 3.   Impact of contact tracing efficiency on mean and range of fS.

T

Contact tracing efficiency η

90% 80%

1K 0.753 [0.743, 0.764] 0.712 [0.697, 0.724]

5K 0.862 [0.856, 0.867] 0.859 [0.854, 0.867]

10K 0.883 [0.880, 0.886] 0.880 [0.878, 0.883]

15K 0.891 [0.887, 0.894] 0.890 [0.887, 0.893]
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Base infectivity and preventative measures.  Universities have adopted several measures that directly impact the 
base infectivity levels, such as mask wearing and frequent sanitization of its premises. Some institutions have 
even pursued punitive measures for violation of mask wearing measures such as financial penalty, sanctions, and 
restrictions on accessing institution facilities. For example, at UIUC, several students were placed under proba-
tion for violation of regulations related to COVID-19 measures after the initial surge of infections immediately 
following reopening in August. At UIUC, our estimation puts β0 in the range 0.01–0.11, with a mean of 0.025. 
We simulate the effect of adopting less stringent preventative measures and report the results of agent-based 
simulations with β0 ∈ {0.025, 0.040, 0.055, 0.070} for multiple levels of testing T. We plot the outcomes in Fig. 6. 
Interestingly, Fig. 6a reveals that with 1K daily tests, the entire population will get infected within 50 days for 

Figure 6.   Effect of base infectivity rates on agent-based simulations.
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β0 ≥ 0.04 . Similar catastrophic results ensue even with higher testing capacities (see Fig. 6b–d) at high values of 
β0’s. The impact of β0 on the infection dynamics is rather pronounced, underscoring the importance of preven-
tative measures. This sensitivity to β0 is not surprising, given that β0 directly changes the potency of each meet-
ing between a susceptible and an infected individual. The consequence of each new infection then accumulates 
fast, given the nature of the epidemic dynamics. Besides bulk testing, it is thus imperative for institutions to 
enforce mask wearing, place hand sanitizers at various locations, periodically clean classrooms and laboratories, 
etc. This same sentiment is resonated in existing literature37.

Contact rates.  Contacts create opportunities for infection transmission. With the parameters for UIUC (where 
average mI is 5 with a range 1–15), we evaluate the effect of varying mI from 2 to 11 in steps of 3 in Fig. 7. Increas-
ing internal contact rate severely impacts the transmission of infection with testing capacities of 1K and 5K per 
day. The impact, however, becomes minimal with higher daily testing capacities of 10K and 15K. Strategies to 
reduce internal contacts include spacing out classroom sitting arrangements, staggering class and meeting times, 
using larger capacity rooms for classes and meetings, and adopting a hybrid of online and in-person operations 
as feasible. Our experiments demonstrate that increased bulk testing decreases the need for severely restricting 
internal contacts, revealing that contact restrictions and testing play a complimentary role in infection mitiga-
tion.

The effect of the number of external contacts mE is similar and the results are omitted for brevity. While an 
institution may not possess the means to directly control mE , targeted information and awareness campaigns can 
indirectly reduce mE by educating the members of the consequences of infection transmission.

Varying testing frequencies among sub‑populations.  The agent-based simulation results presented so far assume 
that the institution has a population with homogeneous mobilities that we estimate from data. In practice, stu-
dent groups and faculty/staff typically have different mobilities and hence, belong to different risk categories 
in terms of their potencies to transmit the disease. Personal communication with the UIUC SHIELD program 
indicates that they expect the contact rates among the student population to be at least double that of faculty 
and staff. Based on these expectations, the program has delineated different guidelines for these population 
groups. Specifically, students were asked to test at least twice a week and the faculty and staff to test once a week 
over initially, which moved to thrice a week testing for students and twice a week testing for staff and faculty 
on November 2, 2020 due to increased positivity. Here, we study the impact of risk-based modulation of bulk-
testing frequencies through agent-based simulations. To that end, we divide the population of 50K agents in the 
simulation into two groups—40K students and 10K faculty/staff. We assume that students have an internal con-
tact rate of mI = 5.5 , compared to that of mI = 3 for faculty/staff. The numbers are chosen such that the average 
mI becomes 5, that approximately equals the rate we estimated from data. Students are then tested at double the 
rate compared to the faculty/staff. Table 4 presents the simulation outcomes.

Compared to the uniform testing frequency, the targeted risk-based testing indeed reduces the overall infec-
tion load. The gain from modulation of the testing frequency among the population is higher when the testing 
capacity is especially limited. For example, the increase in the mean value of fS is 4.24% (from 0.753 for uniform 
testing to 0.784 for risk-based testing) with a daily testing level of 1K. The corresponding increase with 10K daily 
tests reduces to 0.79% (from 0.883 for uniform testing to 0.890 for risk-based testing). Our experiments affirm 
that targeted testing among the group with a higher mobility (and hence, higher chances of infection) will lead 
to faster identification and isolation of more COVID-positive individuals, leading to higher values of fS . Such 
a strategy is especially useful during the initial stages of the infection when testing infrastructure is likely to be 
limited. While we have only studied two risk classes, a more nuanced risk-stratification of the population can 
lead to further reductions in infection loads.

Efficiency in isolating COVID‑positive patients.  While we have so far assumed that isolation is 100%, in reality 
isolation efficiency tends to vary significantly. For example in China, it was found that 75–80% of all clustered 
infections occurred within family. Therefore, in many countries such as in China, South Korea and Singapore 
COVID-19 patients were isolated in separate facilities rather than at home38–40. In the context of an institution 
such as UIUC, creation of separate isolation facilities provides high isolation efficiency41, however, isolation 
efficiency may vary depending on adherence behavior of infected and non-infected individuals. Also, testing 
is an effective strategy to mitigate infection transmission only if positive detection is followed by proper isola-
tion measures. Here, we study the impact of varying degrees of isolation efficiency ψ through our agent-based 
simulations. This efficiency captures the probability that an individual who tests positive in fact isolates. Table  5 
shows the average daily fraction of the susceptible population over 120 days for ψ = 100%, 90%, 70% and 50%. 
The efficacy of testing drops sharply with isolation efficiency and the impact is more pronounced when the num-
ber of daily tests is low (see the case with T = 1K). Increased volumes of bulk testing can offset the inefficiencies 
of isolation in part, but that comes at higher costs of building the testing infrastructure.

Delay in obtaining test results.  Delay in receiving test results, either due to the nature of testing or due to lim-
ited testing capacity as compared to the demand for testing, can have adverse effect on the infections within an 
institution. In Table 6, we record fS from our experiments with delays δ varied from zero to 4 days in steps of 2 
days. The case with δ = 0 days corresponds to the setting we considered so far, which is in line with rapid saliva 
testing at UIUC, where the test results are often made available within 12 h of testing. As our experiments dem-
onstrate, delay in revelation of test results has a significant impact on the efficacy of testing, even when number 
of daily tests are high. This is not surprising, given that delay in isolation of infected individuals renders the test 
somewhat ineffective if these individuals continue to interact with people, awaiting test results.
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Figure 7.   Effect of internal contact rates on agent-based simulations.

Table 4.   Effect of uniform and risk-based testing frequency on mean and range of fS.

T Uniform frequency Risk-based frequency

1K 0.753 [0.743, 0.764] 0.784 [0.767, 0.791]

5K 0.862 [0.856 , 0.867] 0.877 [0.871 , 0.884]

10K 0.883 [0.880, 0.886] 0.890 [0.887, 0.893]

15K 0.891 [0.887, 0.894] 0.892 [0.889, 0.894]
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Test sensitivities.  Our final study seeks to understand the impact of the sensitivity of tests on the infection  
mitigation strategy. Early reports22,36 claim saliva-based RT-qPCR tests to have an average sensitivity of 92%, i.e., 
they are able to correctly detect 92% of the cases that are COVID-positive. In contrast, some other reports19,20 
show that under certain conditions, particularly with different duration of infections, the test sensitivity can vary 
widely, and nasal swab based RT-qPCR tests tend to demonstrate much superior accuracy than the saliva based 
tests. While we consider bulk testing within institutions, where each individual gets tested relatively frequently 
(once to twice per week), and the duration of infections may not have a as high a variation as in the case of the 
general population, yet, we check for sensitivity of bulk testing and isolation policies to varying test sensitivities. 
In Table 7, we present the outcomes of agent-based simulations with test sensitivities in {90%, 80%, 70%, 60%} 
with varying degrees of time delays between testing and reporting of test results. All experiments for this study 
utilized T = 10K daily tests. While both the rate of false negatives of the tests and said time delay have adverse 
effects, the latter appears to be the dominant factor. Higher sensitivity of tests is desirable, no doubt. Even if that 
efficiency drops, rapid bulk testing appears crucial to effectively control the infection growth within the institu-
tion.

Conclusions
The reopening of institutions during the COVID-19 pandemic is challenging. The initial experience of reopening 
in August and September 2020 demonstrate that reopening requires careful planning and measures to mitigate 
rapid infection spread within an institution. Per a recent media report, several universities have clocked more 
than 500 cases, such as the University of Alabama at Birmingham (972 cases), the University of North Caro-
lina at Chapel Hill (835 cases), University of Central Florida (727 cases), Auburn University in Alabama (557 
cases), Texas A&M University (500 cases), University of Notre Dame (473 cases), and the University of Illinois 
at Urbana-Champaign (448 cases) within days or weeks of reopening. Our work is motivated to answer if there 
is any possible policy path that allows institutions to manage the disease, if not fully stop it.

To study epidemic mitigation strategies, we first formulated a dynamical system model to describe the spread 
of COVID-19 within an institution. The key features of this model include the asymptomatic transmission of 
the disease, the effect of two channels of testing (contact tracing and bulk testing) and subsequent isolation of 
those who test positive. The analytical model is parameterized. We used COVID-19 data from 86 universities in 
the US (including that from the UIUC SHIELD program) to estimate some of these parameters via non-linear 
regression. The range of parameters were utilized as inputs to an agent-based simulations setup. The outcomes of 

Table 5.   Effect of isolation efficiency on the mean and range of fS.

T

Isolation efficiency ψ

100% 90% 70% 50%

1K 0.753 [0.743, 0.764] 0.750 [0.740, 0.761] 0.744 [0.734, 0.755] 0.739 [0.729, 0.749]

5K 0.862 [0.856, 0.867] 0.848 [0.842, 0.854] 0.821 [0.813, 0.827] 0.793 [0.785, 0.799]

10K 0.883 [0.880, 0.886] 0.867 [0.863, 0.871] 0.835 [0.830, 0.840] 0.804 [0.797, 0.810]

15K 0.891 [0.887, 0.894] 0.874 [0.870, 0.878] 0.841 [0.835, 0.846] 0.808 [0.801, 0.814]

Table 6.   Impact of gap δ between testing and availability of test results on the mean and range of fS.

T

Gap between testing and results δ

0 days 2 days 4 days

1K 0.753 [0.743, 0.764] 0.714 [0.704, 0.724] 0.698 [0.685, 0.713]

5K 0.862 [0.856, 0.867] 0.844 [0.838, 0.850] 0.823 [0.817, 0.830]

10K 0.883 [0.880, 0.886] 0.867 [0.863, 0.872] 0.849 [0.843, 0.854]

15K 0.891 [0.887, 0.894] 0.875 [0.870, 0.880] 0.857 [0.851, 0.862]

Table 7.   Impact of the rate of false negatives together with the the gap between testing and availability of test 
results on the mean and range of fS with T = 10K daily tests.

Test sensitivity

Gap between testing and results δ

0 days 2 days 4 days

90% 0.881 [0.875, 0.886] 0.866 [0.861, 0.871] 0.848 [0.843, 0.852]

80% 0.877 [0.873, 0.882] 0.862 [0.857, 0.866] 0.844 [0.838, 0.850]

70% 0.872 [0.867, 0.877] 0.857 [0.851, 0.862] 0.839 [0.834, 0.844]

60% 0.865 [0.859, 0.871] 0.852 [0.846, 0.857] 0.834 [0.828, 0.839]
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this simulation are sample paths of the epidemic within the institution. The mean and the range of the outcomes 
helped us to derive important insights into the efficacy of various parameters and reopening strategies. Having 
grounded our study to the context of the UIUC SHIELD program data and cross-validated with data from 85 
other universities, we believe that our observations are fairly robust and suitable to guide policies at educational 
institutions.

Our study yields three key observations. First, preventative measures such as mask wearing, social distancing 
and reduction of contact rates among individuals are indispensable to even consider reopening. Such measures 
are vital to reduce the potency of asymptomatic transmission. Second, contact tracing is not enough to contain 
the infection spread. Even though testing infrastructure is expensive, bulk testing capabilities are crucial to 
contain the disease. The key design parameter is the ratio of the total number of daily tests to the institution 
population. Additional measures can help combat the disease propagation such as increasing testing frequencies 
for subgroups with higher mobilities and increasing the efficiency of isolation of patients who test positive. Third, 
the testing technology should be able to provide test results quickly. The rapidity of the testing cycle appears even 
more important than test sensitivity (within reasonable limits). Therefore, institutions considering reopening 
must invest in COVID-testing for its members that is cost-effective, easy to administer in high volumes, and has 
a quick turnaround time to results.

Data availability
The data and codes for this program are available in the following websites: 1. Summary description of the project 
is available at https://​apps.​heart-​analy​tics.​com/​covid​19/, 2. UIUC data is available at https://​covid​19.​illin​ois.​edu/​
on-​campus-​covid-​19-​testi​ng-​data-​dashb​oard/, 3. Data for all other 85 universities are available at www.​covid​
edutr​ends.​com, 4. The simulation codes are available at https://​github.​com/​heart-​group/​insti​tutio​ns-​model, 5. A 
preprint version of the paper is available at https://​www.​medrx​iv.​org/​conte​nt/​10.​1101/​2020.​09.​04.​20188​680v4.

Appendix 1: Steps in the derivation of the analytical epidemic model
Additional notations used for the derivation.  Define the following:

•	 St as the set of individuals who are susceptible;
•	 Ut as the set of individuals who are infected but undetected;
•	 Pt as the set of individuals who are infected and detected;
•	 Rt as the set of individuals who are recovered;
•	 Nt is the set of mobile individuals who are not isolated, i.e., Nt = St ∪Ut ∪Rt;
•	 C

i
t  is the set of contacts of individual i at time t;

•	 Ct is the set of all contacts in the contact list for day t to be tested in day t + 1;
•	 �Pt is the set of new detected positive individuals on day t;
•	 x → y as x meets (comes in contact with) y;
•	 # as the cardinality of a set such that #Ut = ut;
•	 A = {x : x ∈ X } , an arbitrary a set A of elements of type x belonging to a super-set X;
•	 X ∪Y , is the union of set X and set Y;
•	 X ∩Y , is the intersection of set X and set Y;
•	 i, j, k are individual members of an institution.

Derivation of the number of new infections: β0

t
m

I

t
stut/nt + β0

t
m

E

t
stρ

E

t
.  At time t, the number of 

infected undetected individuals are ut , the number of susceptible individuals are st , and the number of recovered 
individuals are rt . The infected and detected individuals, pt , are isolated and do not participate in the infection 
dynamics. The base infection rate, defined as the probability that a suseptible individual gets infected when she 
comes in contact with an infected individual, is β0

t  . A susceptible individual at time t get infected at time t + 1 if 
the susceptibe individual comes in contact with one or more infected individual. The probability that a suscep-
tible individual i at time t becomes infected at time t + 1 , denoted by P{i ∈ Ut+1|i ∈ St} is obtained by consid-
ering first, the probability that a susceptible individual meets k undetected individuals, where k can take values 
in {1, 2, . . . ,mI

t } (recall mI
t is the internal contact rate); and then, multiplying this probability by the probability 

of infection and finally, summing over k. The number of ways in which a susceptible individual meets k infected 

individuals is given by, 
(
ut
k

)(
nt − ut
mI

t − k

)
 , where nt = st + ut + rt . Similarly, the number of ways in which the 

susceptible individual can meet mI
t individuals equals 

(
nt
mI

t

)
 . Therefore, the probability that susceptible indi-

vidual meets k infected individual in period t is given by

for the individual by i. The probability that the susceptible individual gets infected given that the the individual 
meets k infected individuals is given as

P{i → C
i

t = {j : j ∈ Nt , i �= j} : #C i
t = mI

t ; #{C
i

t ∩Ut} = k} =

(
ut
k

)(
nt − ut
mI

t − k

)

(
nt
mI

t

)

P{i ∈ Ut+1|i ∈ St; #{C
i

t ∩Ut} = k} = 1− (1− β0
t )

k ≈ kβ0
t .

https://apps.heart-analytics.com/covid19/
https://covid19.illinois.edu/on-campus-covid-19-testing-data-dashboard/
https://covid19.illinois.edu/on-campus-covid-19-testing-data-dashboard/
http://www.covidedutrends.com
http://www.covidedutrends.com
https://github.com/heart-group/institutions-model
https://www.medrxiv.org/content/10.1101/2020.09.04.20188680v4
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The approximation 1− (1− β0
t )

k ≈ kβ0
t  is acceptable since β0 is usually much smaller than 1, approximately in 

the range of 0.01–0.05. Therefore, the probability that a susceptible individual meets k infected individual and 
gets infected is given by

Therefore, the probability a susceptible individual becomes infected at time t is

The last expression is obtained by replacing the summation with the expectation of the hypergeometric distribu-
tion. The probability of external infection is also similarly obtained as β0

t m
E
t ρ

E
t  , where ρE

t  plays the role of ut/nt . 
Therefore, the total number of new infections in period t is given by the product of the number of susceptibles 
at time t with the probability of each susceptible getting infected. Therefore, expected number of new infections 
in time t is given by

Derivation of the probability of infection of an individual among the contact list, 
φ(β0

t
,m

I

t
,�pt).  We first derive the probability of infection through within-institutional-transmission 

(internal) of an individual i who is among the contact list and who was not infected in period t − 1 , i.e., 
φ(β0

t ,m
I
t ,�pt) = P{i ∈ Ut , i ∈ Ct |i /∈ Ut−1} . The probability of infection of individuals in the contact list given 

that the individual was not infected in the previous period is derived by considering that individual i can meet 
k ∈ {1, . . . ,mI

t } infected individuals, of which at least one individual needs to be among the detected positive 
cases �pt that is the individual i is in the contact list of the detected individuals. Recall that the probability 
of infection for an individual in the contact list is obtained by adding the probability that the individual was 
already infected in the previous period, and the probability that the individual is newly infected after the previ-
ous period, i.e., φ(β0

t ,m
I
t ,�pt) . Also, for simplicity, in the following expressions we ignore the notation that the 

individual i was not infected in the previous period. Therefore, we have the following expression:

The term P{i ∈ Ut |i /∈ Ut−1} is derived as above and equals 1− (1− β0
t )

k . The probability of meeting k individu-
als of which at least one is in �pt is given by

The probability of meeting k individuals in a small population is modeled using the Hypergeometric prob-
ability. The mobile population nt = st + ut + rt at time t is divided into two groups, (i) undetected infected 
group, ut , who can transmit infection, and (ii) the susceptible and recovered group, st + rt , who cannot trans-
mit infection further. Therefore, the first probability, P{#{C i

t ∩Ut} = k} , is given by the ratio of the product 
of the number of ways of choosing k from ut possibilities and choosing the rest mI

t − k from st + rt group, to 
the number of ways of choosing the total mI

t  contacts from nt individuals. Similarly, the second probability, 
P{#{C i

t ∩Ut} = k;C i
t ∩�Pt = ∅} , is obtained by the ratio of the product of the number of ways of choosing 

k infected individuals from ut −�pt individuals (since, we are interested in the probability of detecting contacts 
with infected individuals who are not in the detected group, �pt ), the number of ways of choosing 0 individuals 
from �pt newly detected infected individuals, and choosing the rest of the mI

t − k contacts from st + rt individu-
als, to the number of ways of choosing the total mI

t individuals from nt individuals. Thus, we have

Therefore, combining the above, the function φ(β0
t ,m
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However, the above expression considers only infections through internal transmission. However, individuals 
in the contact list can also get infected by external sources. Therefore, to extend the function φ(β0

t ,m
I
t ,�pt) to 

include infections from outside the organizations, the expression becomes (after considering that 
(
�pt
0

)
= 1

)

We consider the regime where β0
t ≪ 1 and ρE

t ≪ 1 . This is acceptable since the infectivities are usually of the 
order of 5%, and the maximum environmental positivty is below 10%. Therefore, this assumption holds for the 
case of COVID-19. This assumption leads to the approximation 1− (1− β0

t )
k ≈ kβ0

t  , that gives

where, we have

Approximating κt.  From the above derivation, we get

As mentioned earlier, for analytical simplicity, we consider the regime where �pt ≪ st + ut + rt = nt , where 
recall that nt is the size of the mobile part of the population. This is acceptable because in the case of UIUC data, 
we observe that the maximum detected �pt < 500 in a population of 50K individuals.

The step in (b) follows from noting that the first summation in (a) is the expectation of a hyper-geometric dis-
tribution with parameters (nt , ut ,mI

t ) , while the second one is the same for a hyper-geometric distribution with 
parameters (nt −�pt , ut −�pt ,m

I
t ).

Derivation of the contact traced positive individuals.  As indicated in the earlier section, the probability of an 
individual in the contact list is equal to the prior probability of infection, which is given by ut−1

nt−1
 , and the prob-
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ability of getting infected in day t, given that the individual was not infected earlier. The probability that an 
individual in the contact list is infected on day t given that the individual was not infected earlier is derived in 
the previous section as κtβ0

t  , where, the value of κt , as we have derived earlier in  (14). The probability that an 
individual was not infected earlier is given by 1− ut−1

nt−1
 . Therefore, the total probability of infection of a contact 

traced individual is given by

Appendix 2: List of universities in the empirical dataset with location information

Name City State
Zip-
Code

Eastern Illinois University Charleston IL 61920

Emory University Atlanta GA 30322

Florida State University Tallahassee FL 32306-
1037

George Washington University Washington DC 20052

Illinois State University Bloomington-Normal IL 61761

Kansas State University Manhattan KS 66506

Louisiana State University and Agricultural & Mechanical College Baton Rouge LA 70803-
2750

Loyola University Chicago Chicago IL 60660

Northern Illinois University Dekalb IL 60115-
2828

Northwestern University Evanston IL 60208

Rochester University Rochester Hills MI 48307

Rutgers University-Camden Camden NJ 8102

Tufts University Medford MA 02155-
5555

Tulane University of Louisiana New Orleans LA 70118-
5698

University at Buffalo Buffalo NY 14260-
1660

University of Arkansas at Little Rock Fayetteville AR 72701

University of California-Berkeley Berkeley CA 94720

University of California-Los Angeles Los Angeles CA 90095-
1405

University of California-San Diego La Jolla CA 92093

University of Colorado Boulder Boulder CO 80309-
0017

University of Colorado Denver Denver CO 80204-
2026

University of Connecticut Storrs CT 6269

University of Florida Gainesville FL 32611

University of Georgia Athens GA 30602

University of Illinois at Chicago Chicago IL 60607

University of Illinois at Urbana-Champaign Champaign IL 61820-
5711

University of Kentucky Lexington KY 40506-
0032

University of Maryland Baltimore Baltimore MD 21201-
1627

University of Massachusetts-Amherst Amherst MA 1003

University of Miami Coral Gables FL 33146

University of Michigan-Ann Arbor Ann Arbor MI 48109

University of Minnesota-Twin Cities Minneapolis MN 55455-
0213

University of Nebraska-Lincoln Lincoln NE 68588

University of North Carolina at Chapel Hill Chapel Hill NC 27599

University of North Dakota Grand Forks ND 58202-
8193

University of Notre Dame Notre Dame IN 46556

University of Oklahoma-Norman Campus Norman OK 73019-
3072

P{i ∈ Ut , i ∈ Ct} =
ut−1

nt−1
+

(
1−

ut−1

nt−1

)
κtβ

0
t .
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Name City State
Zip-
Code

University of Pennsylvania Philadelphia PA 19104-
6303

University of Pittsburgh-Pittsburgh Campus Pittsburgh PA 15260

University of South Carolina-Columbia Columbia SC 29208

University of Vermont Burlington VT 05405-
0160

Vanderbilt University Nashville TN 37240

Virginia Polytechnic Institute and State University Blacksburg VA 24061-
0131

West Virginia University Institute of Technology Beckley WV 25801

Wichita State University Wichita KS 67260-
0124

William & Mary Williamsburg VA 23187-
8795

Ball State University Muncie IN 47306

Binghamton University Vestal NY 13850-
6000

Boston College Chestnut Hill MA 2467

Boston University Boston MA 2215

Brown University Providence RI 2912

Case Western Reserve University Cleveland OH 44106

Clark University Worcester MA 01610-
1477

Clemson University Clemson SC 29634

Columbia University in the City of New York New York NY 10027

Dartmouth College Hanover NH 03755-
3529

Duke University Durham NC 27708

Harvard University Cambridge MA 2138

Haverford College Haverford PA 19041-
1392

Johns Hopkins University Baltimore MD 21218-
2688

Lehigh University Bethlehem PA 18015

Massachusetts Institute of Technology Cambridge MA 02139-
4307

Mississippi State University Mississippi State MS 39762

New York University New York NY 10012-
1091

North Carolina State University at Raleigh Raleigh NC 27695-
7001

North Carolina State University at Raleigh Raleigh NC 27695-
7001

Northeastern University Boston MA 02115-
5005

Northern Michigan University Marquette MI 49855-
5301

Ohio Northern University Ada OH 45810-
1599

Ohio State University-Main Campus Columbus OH 43210

Oklahoma State University-Main Campus Stillwater OK 74078-
1015

Old Dominion University Norfolk VA 23529

Pennsylvania State University-Main Campus University Park PA 16802-
1503

Purdue University-Main Campus West Lafayette IN 47907-
2040

Radford University Radford VA 24142

Rensselaer Polytechnic Institute Troy NY 12180-
3590

Rice University Houston TX 77005-
1827

Stanford University Stanford CA 94305

Stony Brook University Stony Brook NY 11794
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Name City State
Zip-
Code

SUNY at Albany Albany NY 12222

Syracuse University Syracuse NY 13244

Temple University Philadelphia PA 19122-
6096

Texas A & M University-College Station College Station TX 77843-
1248

The University of Texas at Austin Austin TX 78705

University of Wisconsin-Madison Madison WI 53706-
1380

Virginia Commonwealth University Richmond VA 23284-
2512
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