TABLE 3.
Training populationa | Test population | Trait | Modelb |
|||||||
GBLUP-A | GBLUP-AD | BB-A | BB-AD | BL-A | BL-AD | RKHS | RF | |||
105-ILs | 275-F1s | Petiole length | 0.352 | 0.364 | 0.326 | 0.338 | 0.369 | 0.375 | 0.359 | 0.343 |
Leaf area | 0.440 | 0.466 | 0.383 | 0.415 | 0.461 | 0.481 | 0.442 | 0.463 | ||
Brix | 0.167 | 0.214 | 0.087 | 0.148 | 0.268 | 0.284 | 0.241 | 0.254 | ||
Fruit hardness | 0.557 | 0.570 | 0.588 | 0.591 | 0.454 | 0.455 | 0.582 | 0.487 | ||
Pericarp color | 0.430 | 0.413 | 0.438 | 0.425 | 0.412 | 0.403 | 0.435 | 0.400 | ||
275-F1s | 105-ILs | Petiole length | 0.309 | 0.335 | 0.330 | 0.350 | 0.297 | 0.336 | 0.338 | 0.355 |
Leaf area | 0.282 | 0.333 | 0.296 | 0.364 | 0.261 | 0.318 | 0.317 | 0.402 | ||
Brix | −0.049 | −0.024 | −0.061 | −0.036 | −0.043 | 0.013 | −0.029 | 0.021 | ||
Fruit hardness | 0.497 | 0.517 | 0.522 | 0.543 | 0.482 | 0.501 | 0.499 | 0.467 | ||
Pericarp color | 0.302 | 0.310 | 0.341 | 0.344 | 0.279 | 0.287 | 0.299 | 0.316 |
The accuracy was evaluated as a Pearson’s correlation coefficient between phenotypic and predicted values.a105-ILs, 105 inbred lines; 275-F1s, 275 test F1 hybrids.bGBLUP, Genomic best linear unbiased prediction; BB, Bayes B; BL, Bayesian Lasso; RKHS, Reproducing kernel Hilbert space regression; RF, Random forest.; -A, additive effect model; -AD, additive plus dominant effect model.