Skip to main content
. 2021 Mar 4;12:645111. doi: 10.3389/fpls.2021.645111

TABLE 3.

Across population prediction accuracy of GS models.

Training populationa Test population Trait Modelb
GBLUP-A GBLUP-AD BB-A BB-AD BL-A BL-AD RKHS RF
105-ILs 275-F1s Petiole length 0.352 0.364 0.326 0.338 0.369 0.375 0.359 0.343
Leaf area 0.440 0.466 0.383 0.415 0.461 0.481 0.442 0.463
Brix 0.167 0.214 0.087 0.148 0.268 0.284 0.241 0.254
Fruit hardness 0.557 0.570 0.588 0.591 0.454 0.455 0.582 0.487
Pericarp color 0.430 0.413 0.438 0.425 0.412 0.403 0.435 0.400
275-F1s 105-ILs Petiole length 0.309 0.335 0.330 0.350 0.297 0.336 0.338 0.355
Leaf area 0.282 0.333 0.296 0.364 0.261 0.318 0.317 0.402
Brix −0.049 −0.024 −0.061 −0.036 −0.043 0.013 −0.029 0.021
Fruit hardness 0.497 0.517 0.522 0.543 0.482 0.501 0.499 0.467
Pericarp color 0.302 0.310 0.341 0.344 0.279 0.287 0.299 0.316

The accuracy was evaluated as a Pearson’s correlation coefficient between phenotypic and predicted values.a105-ILs, 105 inbred lines; 275-F1s, 275 test F1 hybrids.bGBLUP, Genomic best linear unbiased prediction; BB, Bayes B; BL, Bayesian Lasso; RKHS, Reproducing kernel Hilbert space regression; RF, Random forest.; -A, additive effect model; -AD, additive plus dominant effect model.