Table 1.
AUC | Accuracy | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | ||
---|---|---|---|---|---|---|---|
The training datasets | SVM | 99.8 | 97.6 | 100 | 95.2 | 95.5 | 100 |
MLR | 98.0 | 92.9 | 95.2 | 90.5 | 90.9 | 95.0 | |
ADA | 94.0 | 85.7 | 90.5 | 81.0 | 82.6 | 89.5 | |
The testing datasets | SVM | 85.2 | 77.8 | 66.7 | 88.9 | 85.7 | 72.7 |
MLR | 84.0 | 72.2 | 66.7 | 77.8 | 75.0 | 70.0 | |
ADA | 68.5 | 66.7 | 66.7 | 66.7 | 66.7 | 66.7 |
SVM, support vector machine; MLR, multivariate logistic regression; ADA, AdaBoost; PPV, positive predictive value; NPV, negative predictive value.