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Abstract

Mobile mapping of air pollution has the potential to provide pollutant concentration data at 

unprecedented spatial scales. Characterizing instrument performance in the mobile context is 

challenging, but necessary to analyze and interpret the resulting data. We used robust statistical 

methods to assess mobile platform performance using data collected with the Aclima Inc. mobile 

air pollution measurement and data acquisition platform installed on three Google Street View 

cars. They were driven throughout the greater Denver metropolitan area between July 25, 2014 

and August 14, 2014, measuring ozone (O3), nitrogen dioxide (NO2), nitric oxide (NO), black 

carbon (BC), and size-resolve particle number counts (PN) between 0.3 μm and 5.0 μm diameter. 

August 6, 2014 was dedicated to parked and moving collocations among the three cars, allowing 

an assessment of measurement precision and bias. We used the median absolute deviation (MAD) 

to estimate instrument precision from outdoor, parked collocations. Bias was assessed by 

measurements obtained from parked cars using the standard deviation of median values over a 

collocated measurement period, as well as by Passing-Bablok regression statistics while the cars 

were moving and collocated. For the moving collocation periods, we compared the distribution of 

1-σ standard deviations among the 3 cars to the estimated distribution assuming only measurement 

uncertainty (precision and bias). The distribution of mobile measurements agreed well with the 
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theoretical uncertainty distribution at the lower end of the distribution for O3, NO2, and PN. We 

assert that the difference between the actual and theoretical distributions is due to real spatial 

variability between pollutants. The agreement between the parked car estimates of uncertainty and 

that measured during the mobile collocations (at the lower quantiles) provides evidence that on-

road collocation while parked could be sufficient for estimating measurement uncertainties of a 

mobile platform, even when extended to the moving environment.

Keywords
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1. Introduction

Measurements form the basis of our understanding of air pollution; scientists, regulators, 

and the public use these measurements to understand atmospheric chemistry, determine air 

quality levels, link concentrations to health effects, and evaluate advanced air quality 

models. Conventional measurement programs, including regulatory programs, are typically 

developed around one or more central monitoring sites within a given geographical area. 

These measurement networks provide regional (tens to hundreds of kilometers) to 

neighborhood (half a kilometer to 4 km) scale pollution information, although a limited 

network of micro scale (several meters to about one hundred meters) near-road air quality 

monitoring sites exist as well (40 C.F.R. 58, 2018). In the United States, local, state, and 

tribal air quality agencies measure air quality using well characterized regulatory grade 

instruments, typically with 1-hr to 24-hr time resolution. These measurements are spatially 

limited, and to some extent temporally limited, and do not capture the full variability of 

pollutant concentrations that exist in urban environments over fine spatial and temporal 

scales.

Size, cost, and power requirements associated with stationary monitoring sites prohibit 

widespread deployment of laboratory or regulatory grade air pollution measurement 

instrumentation to study spatial variability on sub-kilometer scales. New monitoring 

approaches, especially the use of mobile monitoring platforms, have the potential to fill this 

data gap by expanding spatial and temporal coverage of air pollution measurements across 

urban environments (Apte et al., 2017). On-road mobile monitoring studies have been used 

for computing on-road emission factors from vehicles (Park et al., 2011), studying the 

impacts of traffic interventions or roadside barriers (Wang et al., 2009; Hagler et al., 2012), 

identifying local sources (Apte et al., 2017), and general air quality surveying of urban areas 

(Wallace et al., 2009; Hu et al., 2012), including environmental justice neighborhoods (Apte 

et al., 2017). One efficient approach is to leverage existing fleet-based mobile platforms, 

such as public transit systems (Hagemann et al., 2014; Mitchell et al., 2018), Google Street 

View cars (Apte et al., 2017; Messier et al., 2018), or other fleet vehicles (Castell et al., 

2015; Kaivonen and Ngai, 2019).

The evolving capability for fleet-based mobile measurements requires researchers to 

determine the amount of data necessary, and the appropriate statistical methods needed, to 
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extract spatially representative trends from mobile monitoring data. Studies have tackled this 

challenge by performing multiple mobile passes for each spatial location and using robust 

spatial or temporal aggregation techniques to reduce the data and reveal spatial trends 

(Brantley et al., 2014). The uncertainty of the resulting spatial patterns is assessed 

statistically using the distribution of statistical parameters obtained from ensemble Monte 

Carlo subsampling of the dataset (Apte et al., 2017; Li et al., 2018; Van Poppel et al., 2013). 

Apte et al. (2017) found that, with 30 m median spatial aggregation, only 10–25 repetitions 

over a particular area generate reproducible results (with high precision and low bias) for 

nitric oxide, nitrogen dioxide, and black carbon.

Mobile monitoring data consists of a complex series of pollutant concentration data, with 

contributions from neighborhood-scale and regional background concentrations punctuated 

by spikes of pollution from nearby sources. Layered under the complexity of the actual 

concentrations is the instrument precision and, when comparing 2 or more platforms, 

potential measurement biases between platforms. Characterizing instrument performance in 

the mobile context is challenging. However, it is necessary to define quality assurance 

requirements for robust spatial data collection. Researchers must assess the uncertainty in 

the measurements, both in stationary and mobile environments, to routinely confirm 

platform comparability between different units (i.e. vehicles).

In this paper, we approach the mobile monitoring data analysis problem from a quality 

assurance perspective. Like previous studies, we use robust (outlier-resistant) data reduction 

techniques to simplify the datasets. However, we use these techniques to specifically isolate 

the uncertainty (i.e. precision and bias) between and among measurements obtained by the 

mobile platforms. Although most mobile monitoring studies perform some level of quality 

assurance, it is generally limited to laboratory-based calibration or collocation between 

parked cars and well-characterized stationary monitors. Measurements in a moving 

environment produce additional complications that are not necessarily addressed using these 

traditional methods but are necessary to assess instrument performance under on-road 

mobile conditions.

We analyzed data from a pilot study in July and August of 2014. This study used 3 identical 

mobile monitoring platforms integrated into fleet-based (Google Street View) cars. The 

study was performed in the Denver, CO metropolitan area to leverage the enhanced 

monitoring for the NASA-led DISCOVER-AQ field study (Crawford and Pickering, 2014). 

Science goals included understanding the performance of the mobile monitoring platforms, 

as well as exploring methods for assessing data quality and platform comparability. We 

focus on data from August 6, 2014, which was dedicated to stationary and driving collocated 

comparisons between the three mobile platforms. Through analysis of this data, we assess 

different statistical methods to understand mobile platform performance.

2. The summer 2014 measurement campaign in denver, Colorado

2.1. Mobile measurement platform

Three Google Street View cars (gasoline-powered Subaru Imprezas) were equipped with the 

Aclima mobile measurement and data acquisition platform (Aclima Inc., San Francisco, CA; 
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https://aclima.io). The Aclima platform provides data management, quality control, and real-

time visualization functions to facilitate extensive, routine mobile air quality measurements. 

In this study, the cars were equipped with high time resolution (0.5 hz or 1 hz data reporting 

rate) laboratory-grade air pollution monitors that measured ozone (O3), nitrogen dioxide 

(NO2), nitric oxide (NO), black carbon (BC), and size-fractionated particle numbers (PN). 

The instruments pulled from a common manifold. Total flow through the manifold was 

between 7.0 and 7.5 L per minute (Table 1). The manifold’s inlet was centered several 

inches over the top of the windshield and faced towards the front of the car. O3, NO2, and 

NO concentrations are reported in parts per billion volume (ppbv), BC concentrations are 

reported in micrograms per cubic meter (μg m−3), and PN number concentrations are 

reported in number of particles per liter (L−1). PN was measured in six size classes based on 

aerodynamic diameter: PN0.3–0.5 (0.3–0.5 μm), PN0.5–1.0 (0.5–1.0 μm), PN1.0–2.0 (1.0–2.0 

μm), PN2.0–5.0 (2.0–5.0 μm), PN5.0–10.0 (5.0–10.0 μm), and PN10.0+ (10.0 μm and larger). 

Only the smaller four fractions (PN0.3–0.5, PN0.5–1.0, PN1.0–2.0, PN2.0–5.0) are analyzed in 

this paper. Due to instrument issues, BC was only measured on 2 of the 3 cars (Cars 1 and 

2). Instruments and methods are summarized in Table 1 and described in greater detail in the 

Supplemental Text (Sect. S1). A brief discussion of the differences between instrumental 

reporting rate and instrumental response time is also given in the Supplemental Information 

(Sect. S1).

2.2. Quality assurance of mobile monitoring data

We evaluated gas-phase instruments (O3, NO2, and NO) daily in the field and after the study 

in the Aclima laboratory. Flow rates were checked and remained within specifications 

throughout the study. Instrument responses to zero air were measured using a zero air 

cylinder and recorded. Daily span checks were performed for NO (360 ppbv) and O3 (80 

ppbv) using a dilution gas calibrator with a certified NO cylinder or a certified O3 generator, 

respectively. NO2 instruments relied on pre- study and post-study zero and single point 

calibrations, with only zero checks in the field. Daily calibrations (zero and span) were 

performed “through the probe” by connecting the calibration system to the sample inlet with 

a vented tee configuration. Internal instrument span and zero parameters were not adjusted 

in the field. Instead, a single study-wide zero offset value for each instrument (on each car) 

was determined and applied after the study. No post-hoc adjustment to instrument span 

values was necessary as the span values did not drift outside the manufacturer’s 

specifications over the course of the study.

Based on the span checks, the daily biases of the O3 instruments varied between 3% and 6% 

with a standard deviation of 5%. The daily biases of the NO instrument varied between 3% 

and 8% with a standard deviation of 6%. The NO gas standard had a concentration 

uncertainty of ±2% (EPA certified grade). Mass flow controllers in the dilution calibrator 

had a specified accuracy of ±3.6% at the conditions used. The O3 generator had a specified 

accuracy of ±1%. All gas cylinders were within date, and flow controllers and O3 generators 

had been certified less than three months prior to the study. Daily NO2 biases were not 

calculated due to technical problems performing NO2 span checks during the study. 

Thorough NO2 calibrations were performed at the beginning and end of the study. No drift 

was observed between these two calibrations.
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The PN and BC instruments relied on the manufacturer’s calibrations; no additional span 

checks were performed in the field. A high-efficiency particulate air (HEPA) filter was 

placed at the sampling inlet daily to monitor for and correct leaks in the particulate sampling 

manifold. The total flow rate at the inlet was measured daily and remained stable throughout 

the course of the study.

Aclima used an algorithm to calculate daily time shifts for individual instrument data 

streams, accounting for the differences between instrument sample transport times. The 

instruments’ responses were all aligned to the NO instrument, which had the fastest response 

time, and corrected to account for any delay in the sampling line. The response times of the 

instruments, sample flow rate, and relative positions in the sampling manifold were 

consistent with the degree of time-shifting. Daily time shifts for individual instruments 

ranged from 0.1 s to 12 s and were generally correlated with the flow rate of each instrument 

from the common manifold. Daily time shifts were consistent over the month-long study. 

Timestamps in the final, processed data reflect the time at which the sample air entered the 

inlet.

Aclima screened and removed invalid data from the final database. They flagged and 

removed periods when instruments were performing internal process operations (e.g. auto-

zeroing) or operating outside of instrument specifications. They monitored instrument 

diagnostics and invalidated data when the instrument reported anomalous diagnostic values 

or other flags or warnings. Research staff reviewed the data daily during the study and in 

depth afterwards. Data corresponding to periods when obvious issues were noted in field 

notes (such as a leak in the sampling manifold) were also removed from the final dataset. 

For the mobile collocated periods on August 6, 2014, over 95% for the 1-s data were 

considered valid for the PN variables, O3, and NO2. Over 90% of 1-s data were valid for NO 

and over 85% were valid for BC. The missing data for BC and NO2 is largely explained by 

the instrument’s internal zero routine, which accounts for about 15% and 3.3% of potential 

timepoints for BC and NO2, respectively.

We did not exclude data points reported outside the manufacturer’s specified range of the 

instruments. This accounted for a small fraction (<1%) of the total data. We consider this 

data essential to properly assessing the statistical distribution of the measurements. The 

analyses we present are based on either entire statistical distributions, in which case the 

higher end of the distribution can influence the rest of the distribution, or outlier-resistant 

robust statistics, in which the values of the high outliers (data above the calibration range of 

the instrument) do not impact the resulting statistics. Data points that lie outside the 

calibration range of the instruments have a lower accuracy than data within the calibration 

range, but still represent valid measurements of real concentrations. Exclusion of this data 

would artificially bias the resulting statistical distribution of the data. The inclusion of this 

data did not impact any of our results or interpretations.

2.3. Mapping region, study design, and sampling protocol

The three cars drove through the Denver, CO greater metropolitan area between July 25th, 

2014 and August 14th, 2014. Research staff gave route assignments to the professional 

drivers each day. Drivers drove with the normal flow of traffic. On August 6, 2014, the three 

Whitehill et al. Page 5

Atmos Environ X. Author manuscript; available in PMC 2021 October 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



cars remained near each other while driving, focusing on coordinated driving patterns. These 

patterns included side-by-side driving and one-behind-the-other driving. We designed the 

coordinated drives as a mobile collocation experiment to provide data for assessing platform 

performance. Drivers also parked the cars next to each other throughout the day as part of 

these driving patterns. Over the course of the day, the cars traversed diverse environments, 

including parks (Cherry Creek State Park), residential neighborhoods, arteries, and highways 

(Interstate 25 and Interstate 225). Maps of the routes are shown in the Supplemental 

Information (Fig. S1).

August 6, 2014 was a typical, partly cloudy summer day in Denver, CO. Meteorological data 

from the La Casa regulatory monitoring site (latitude: 39.77943°, longitude: 105.0052°) in 

Denver had temperatures that ranged from 15.5 °C (immediately before sunrise) to 29.5 °C 

(in the early afternoon). Mean windspeeds were 4.8 m s−1, with 1st quartile, median, and 3rd 

quartile windspeed values of 3.2 m s−1, 4.3 m s−1, and 5.8 m s−1. Wind direction fluctuated 

throughout the day. Additional meteorological information is available via the United States 

Environmental Protection Agency’s Air Quality System (AQS) database (https://

www.epa.gov/aqs) or on the 2014 DISCOVER-AQ Denver data archive (https://www-

air.larc.nasa.gov/missions/discover-aq/discover-aq.html).

3. Statistical analysis methods

The measurement platform recorded 1 hz data for NO2, NO, BC, PN0.3–0.5, PN0.5–1.0, 

PN1.0–2.0, and PN2.0 −5.0, and 0.5 hz data for O3. We extracted and processed the data using 

the R statistical computing environment (R Core Team, 2017) and we used the ggplot2 R 

library (Wickham, 2016) to produce visualizations. The GPS coordinates were used to 

calculate car-versus-car distances for every 1 s data point using the algorithm of Karney 

(2013), as implemented in the geosphere R library (Hijmans, 2017).

We subdivided the dataset for August 6, 2014 into three categories: stationary collocated 

(SC), mobile collocated (MC), and other. We only evaluate the SC and MC periods in this 

paper. We visually assessed the car speed, latitude and longitude, and car-versus-car 

distances, as well as changes in those parameters, to determine which category to group 

sampling periods into. Periods were classified as SC if the car speed was less than or equal 

to 0.1 m s−1 for a period of 5 min or longer and car-versus-car distances were within 30 m 

and constant. We identified 14 SC periods on August 6, 2014 (Table S1). Six of these 

periods were near 2265 South Kalamath Street, Denver, Colorado, two were in Cherry Creek 

State Park (Englewood, Colorado), two were near 970 Yuma Street, Denver, Colorado, and 

the remaining 4 were at various locations in Denver, Colorado and Englewood, Colorado 

(Table S1). We classified periods when the distances were varying but generally within 100 

m and the speed was varying as mobile collocation (MC) periods. We identified seven MC 

periods on August 6, 2014 (Table S2, Fig. S1), with the first one starting at 6:55 local time 

(Mountain Daylight Time, MDT) and the last one ending at 22:27 local time.

3.1. Method for assessing platform uncertainty from stationary collocation periods

We used the data from the 14 SC periods on August 6, 2014 (Table S1) to assess 

measurement uncertainty. We decomposed the measurement uncertainty into two 
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components: a random component termed precision and a systematic component termed 

bias. The precision component is comprised of all factors that cause random variations in the 

measurements about a mean value (e.g. instrument noise) and is directly measured for each 

instrument and each period. Bias, on the other hand, is estimated by the differences between 

measurements obtained by the three identical platforms and the mean value of the three 

platforms. We also calculate the uncertainty due to bias, which we estimate as the standard 

deviation of the car-specific biases for all three cars.

Consider the case where an instrument measures a constant pollutant concentration for an 

extended period. In this situation, the standard deviation of the measurement over that period 

provides a measure for the 1 s instrument precision. Because the concentration is assumed to 

be constant, the instrument’s response time (Table 1) will not impact the 1 s precision, which 

will be dominated by factors such as electronic noise or random thermal fluctuations. 

Assuming no bias, we expect the measured values to be normally distributed around the 

mean concentration. Now, put that same instrument on a car, and put that car on a road. The 

variations measured by that on-road instrument now includes both the instrument precision 

as well as variability in ambient concentrations. Assessing precision in an on-road 

environment may overestimate the true precision if there is variability in ambient 

concentrations during the measurement period.

To reduce the impact of ambient variability on our precision estimates, we calculated the 

precision using a robust, median-based estimator for standard deviation, the median absolute 

deviation (MAD). We apply a scale factor of 1.4826 to the MAD values (Leys et al., 2013), 

where 1.4826 is the ratio of the standard deviation and the median absolute deviation for a 

normal distribution. This scaling factor assumes that the instrument precision is normally 

distributed. The scaled MAD value (σ-MAD) is sensitive to the center (roughly 50%) of the 

distribution and robust against extreme values. Using σ-MAD instead of the standard 

deviation removes the influence of occasional pollution spikes and reduces, but does not 

eliminate, the impact of high frequency and low frequency variability in external 

concentrations during the measurement period. As a robust estimator for standard deviation, 

σ-MAD values provide a reasonable estimate for 1 s (or 2 s for O3) instrument 1σ precision. 

The combination of 3 cars and 14 SC periods produced 42 σ-MAD values for each measured 

species (28 for BC and 39 for O3). Some of the stationary collocation periods occurred on 

busy roads or near other potential sources, so even a robust estimator such as MAD may 

overestimate the instrument precision. To further insulate our estimate from high-variability 

cases, we use the median of the set of σ-MAD values for each species as the study-wide 

estimate for the instrument precision, σprecision, for that species.

To calculate car-specific biases, we first calculated the median measurement value of each 

species for each car and period. We then took the difference between the median value for 

that car (for that period) and the mean of the median values for all three cars (for that 

period). This gave us a period-specific estimate of bias for each car. We obtained a study-

wide estimate of bias for each car (Bias1 for car 1, Bias2 for car 2, Bias3 for car 3) by taking 

the median of the period-specific biases for that car. Differences in instrumental response 

time will not impact the bias calculations, since they are made under the assumption of a 
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constant concentration and rely on a statistical measure of central tendency for a long 

measurement time period.

To obtain the estimated uncertainty due to the biases (for all three cars) for each period, we 

computed the standard deviation of the 3 car-specific, period-specific biases for each period. 

A study-wide estimate of the uncertainty due to bias (σbias) was computed as the median of 

the 14 period-specific uncertainties due to bias.

We thus reduced the data to a single estimate of measurement precision (σprecision) and a 

single uncertainty due to bias (σbias) for each species. We estimated our total measurement 

uncertainty (σtotal) as the square root of the sum of the squared random (σprecision) and 

systematic (σbias) uncertainties. Calculated mean, median, standard deviation, and scaled 

MAD values for each parameter, car, and SC period are given as a supplemental table (Table 

S3).

3.2. Regression for assessing bias during mobile collocation periods

We evaluated systematic differences between measurements from each pair of cars for the 

mobile collocation (MC) periods using regression analysis. The 7 MC periods range in 

duration from 40 min to 75 min (Table S2). Typical regression analyses, including ordinary 

least squares, orthogonal, and Deming regressions, are strongly influenced by outliers. 

Preliminary analyses using these techniques gave poor results, especially for species with 

highly skewed distributions (such as NO). Many outlier points are due to near source 

ambient concentration variability on the scale of car-versus-car distances rather than 

systematic measurement differences. Therefore, we decided to use a robust, median-based 

regression method for assessing potential car-versus-car biases during the MC periods.

The Passing-Bablok regression (Passing and Bablok, 1983) provides a robust, symmetric, 

and non-parametric method for assessing instrument comparability in the presence of high 

degrees of random variations. We used this method to assess systematic variations between 

pairs of cars in the presence of ambient spatial variability in the measurements. The validity 

of this approach assumes (1) collocated cars will measure the same background 

concentrations in the absence of hyperlocal pollution plumes, and (2) the influence of the 

hyperlocal pollution plumes will be randomly distributed between the cars over the course of 

the 366 min (21960 s) of mobile collocated data. Assumption (1) is supported by the 

observation that pollutants tend to deviate from consistent baseline (background) values. 

Assumption (2) is assumed to be true based on the large number of data points and the 

pseudo-stochastic nature of the on-road environment. Drivers intentionally switched relative 

positions (i.e. which car was in front) regularly to prevent a consistent bias in measurements 

during the drives. For a given pollutant, the statistical distribution of each car had a similar 

shape (i.e. a similar statistical distribution), which supports the assumption (2), that one car 

was not always closer to primary pollutant sources than the other car (which would result in 

a skewed distribution for that car relative to the others). If these two assumptions hold true, 

the resulting regression statistics represent systematic differences (i.e. bias) between 

measurements obtained by the cars, even in the presence of occasional ambient 

concentration differences. Passing-Bablok regressions used the deming R library (Therneau, 

2018).
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3.3. Separating measurement uncertainty and ambient variability while driving

Analysis methods described up until this point have focused on assessing uncertainty, 

reducing data to estimates of precision and bias during SC periods (Section 3.1) and bias 

during the MC periods (Section 3.2). To understand the relationship between measurement 

uncertainty and on-road variability of pollutants during the MC periods, we took the 

standard deviation (σ1sec,MC) and the coefficient of variation (CV, standard deviation divided 

by the mean) of the measurements from the 3 cars for each time-paired 1 s period in the 

mobile collocated dataset (approximately 21960 data points) that had at least two valid 

measurements. Each time-paired 1 s period may have ≤3 valid measurements depending on 

the number of cars and instruments with valid data for any specific 1 s period. 2 s periods 

were used for O3 due to the 2 s data reporting time of the O3 instruments.

We use σ1sec, MC and CV rather than robust estimators because we are interested in 

assessing the whole variability (versus just the central tendency), and because the dataset for 

each σ1sec, MC or CV is small (N = 2 or 3). We calculated the normalized distribution and the 

complementary cumulative distribution functions (CCDF) for the σ1sec,MC and CV values 

for each parameter. The standard deviation provides an assessment of the absolute variability 

in concentrations in the region covered by the 3 cars at that point in time, whereas the CV 

provides an assessment of the relative variability.

Measured distributions of σ1sec,MC are compared to distributions assuming only normally-

distributed uncertainty equal to σtotal (Section 3.1). We computed 3 sets of 22,000 normal 

random variables (with a mean of 0 and a standard deviation of σtotal) for each parameter 

and calculated the standard deviation of each set of 3 variables (i.e. calculated 22,000 

standard deviations of 3 normal random variabls each). 22,000 is the approximate number of 

1 s data points in the MC dataset, and is a large enough value that the resulting distributions 

approximate a normal distribution well. We only used 2 sets for BC, as only 2 cars had valid 

BC measurements. The distribution of the standard deviation values represent the expected 

distribution of σ1sec,MC values assuming all cars were measuring the same concentrations 

and that all differences between the cars were due to measurement uncertainty (σtotal) rather 

than real concentration differences. Comparison of the expected uncertainty distribution to 

the measured σ1sec,MC distribution allows us to compare the σ1sec,MC distributions to those 

predicted from uncertainty alone, and by extension better understand the ambient variability 

on car-to-car distance scales.

Uncertainty distributions are displayed as CCDFs. The value of the CCDF at a given 

uncertainty value (σX on the horizontal axis) is the empirical probability that a randomly 

chosen point from the generating dataset will have an uncertainty value less than σX. If the 

empirical σ1sec,MC CCDF distribution matches that of σtotal, the differences in measured 

values between the cars can be attributed to measurement uncertainties. However, if the 

empirical distribution is higher than the σtotal distribution, this suggests that some fraction of 

the measured differences are greater than that predicted by the measurement uncertainty 

alone and are likely due to spatial variability in pollutant concentrations between the cars.
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4. Results and discussion

4.1. Range and distribution of pollutants during mobile measurements on aug 6, 2014

Although our focus is on the differences between the collocated measurements, the 

distribution of the measurements themselves provides an important context. Table 2 lists 

quantile distributions of pollutants during the MC periods. The middle 90% of 

measurements (Q05 to Q95, where Qxx is the 0.xx quantile or xxth percentile) have scale 

factors (Q95/Q05) of about 36, 104, 9, and 18 for BC, NO, NO2, and O3, respectively. BC 

and NO vary more than NO2 and O3 on a relative scale and are skewed towards higher 

values. The middle 90% of PN measurements scale with particle size, with Q95/Q05 = 3, 5, 

8, and 17 for PN0.3–0.5, PN0.5–1.0, PN1.0–2.0, and PN2.0–5.0, respectively. We have found Q05, 

Q50, and Q95 to be more useful summary descriptors of the data distribution than minimum, 

mean, and maximum values due to the small number of extreme outlier points in most 

species distributions.

Table 2 also lists the distributions of car-versus-car distances, which provides a reference for 

the length scales used in the MC comparability analysis (Sections 4.4–4.6). For the 1–2 and 

2–3 car pairs, 1 s car-to-car distances are <25 m over 50% of the time and <75 m over 95% 

of the time. Car 1–3 distances were slightly larger, but still <45 m over 50% of the time and 

<110 m over 95% of the time. Given the difficulty with staying close together while driving 

with traffic, we consider the cars to be collocated for the entirety of the MC periods, even 

with a small number (<1%) of car-to-car distances > 200 m. Collocation generally refers to 

measurements taken within meters of each other, but such strict constraints were impossible 

in a moving environment. Recognition of the possibility for real spatial variability on the 

order of the car-to-car distances, especially in the dynamic on-road environment, drove our 

decision to focus on robust statistical measures (e.g. median, MAD, Passing-Bablok 

regression, quantile distributions). Previous studies (Brantley et al., 2014) demonstrated that 

simple robust statistics, such as medians or rolling medians, can provide results equivalent to 

(or superior to) more complex statistical measures.

Fig. 1 illustrates the distribution of the pollutant measurements during the combined MC 

periods. O3 (Fig. 1A) and NO2 (Fig. 1B) both have a polymodal distribution, reflecting the 

diurnal variability in regional O3 and NO2 concentrations, although the O3 distribution 

appears relatively uniform in the 0 ppbv–60 ppbv range, with several peaks at lower (0–20 

ppbv) and higher (40–60 ppbv) values. The NO (Fig. 1C) and BC (Fig. 1D) distributions 

appear to be lognormal, with peak density towards the low end of the distribution and long 

tails at the higher end of the distribution. This reflects lower background levels for NO and 

BC, with significant primary (peak) values from local or mobile source emissions. This 

contrasts with NO2 and O3, which have diurnally varying background values and less 

pronounced peak values.

The four PN size fractions (Fig. 1E – H) have similar distribution shapes, which appear 

somewhat normal at lower concentrations but with long, lognormal-like tails towards higher 

concentrations. This distribution reflects background concentrations at the lower end of the 

distribution with contributions from primary emission plumes at the upper end. PN0.3–0.5 

values begin above 0 (at approximately 104 L−1), suggesting significant background levels of 
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PN0.3–0.5 even under clean conditions. The lower tail of the PN0.5–1.0 distribution also 

indicates non-zero background values of PN0.5–1.0. With the PN1.0–2.0 and PN2.0–5.0 

distributions, the main hump of the distribution terminates close to (or intersects with) 0 L−1, 

indicating that under clean conditions the background concentrations of PN1.0–2.0 and 

PN2.0–5.0 are relatively small compared with peak concentrations. This is consistent with the 

size-scaling of Q95/Q05 ratios for PN that was noted above.

The apparent “sawtooth” pattern in the PN2.0–5.0 distribution (and, to a lesser degree, the 

PN1.0–2.0 distribution) is an artifact of the reporting resolution of the PN instrument 

compared to the scale at which the figure is plotted. The instrument only reports particle 

number counts at a specific, size-dependent resolution. For the smaller size fractions, the 

range of particle counts (hundreds to thousands of counts per liter) is large relative to the 

reporting resolution (between one and ten counts per liter). However, for larger size 

fractions, the reporting resolution (on the order of ten counts per liter) is similar to the range 

of measured particle counts (about 100 counts per liter or less for most of the 

measurements). This causes a quantized or pixelated (versus continuous) distribution, which 

causes the jagged shape shown in Fig. 1.

4.2. Temporal variability and pollutant relationships

Pollutant distributions (Section 4.1) provide context for assessing measurement uncertainty; 

the structure of those distributions in time reveals additional insight into the nature of the 

measurements. Time series of all seven MC periods (Fig. 2, Fig. S2 – S7) were assessed 

visually. Period MC-05 (Fig. 2) demonstrates several observations about the dataset. There 

are periods of both low variability and high variability, with the latter generally associated 

with roads having higher traffic volumes. NO, BC, and PN vary significantly on short 

timescales (less than 10 s), but also show more persistent elevations in concentration (e. g. 

13:15–13:20). These patterns reflect the observation that NO, BC, and PN can be emitted 

from or produced by mobile sources in the highly dynamic traffic environment.

Peaks in NO2 and O3 variations tend to be broader in time, consistent with NO2 and O3 

concentrations being due predominantly to secondary formation chemistry, although direct 

emissions of NO2 occur from diesel engines. The O3 and NO2 instruments have a slower 

response time than the other instruments (several seconds versus less than 1 s, Table 1), 

which could cause temporal smoothing of the O3 and NO2 data. NO2 and O3 do vary on 

timescales of several seconds, however, and demonstrate how dynamic the on-road 

environment is for pollutants that have relatively stable concentrations in clean ambient 

environments (e.g. O3). Peaks in NO and NO2 usually correspond to decreases in O3 of 

similar magnitude and duration, highlighting the importance of rapid NO titration of O3 (NO 

+ O3 → NO2 + O2) in the on-road environment.

The NO2 and NO pairing provide information about NOX on different time scales. NO2 

displays broad trends, likely reflective of a slower removal rate than NO and the longer 

response time of the NO2 monitor. In contrast, NO is often a series of sharp peaks on top of 

a low and stable baseline. NO peaks are due to short-duration emissions and are quickly 

removed by dilution and oxidation. The quick response time (<1 s) of the NO instrument and 

the high degree of NO variability provides a highly dynamic picture of the local 
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environment. Together, the simultaneous measurement of NO and NO2 can provide details 

on NOX partitioning and reactivity on different spatial and temporal scales.

PN0.3–0.5 is elevated from 13:00–13:05, suggesting a source or accumulation of smaller 

particles into that size range, although increases in other PN size ranges are observed 

concurrently. In contrast, 13:45–13:50 shows significant elevations of the larger PN size 

fractions (PN1.0–2.0 and PN2.0–5.0) relative to baseline noise compared to the smaller size 

fractions (PN0.3–0.5). There are several NO and BC peaks in the latter event. This could be a 

pollution plume from heavy duty diesel traffic, with possible contributions from road dust or 

other environmental factors. Although we could not unambiguously distinguish unique 

sources based on the concentration data alone, these timeseries indicate the contributions 

from a variety of different sources that vary in relative emissions of NO, BC, and the 

different PN size fractions.

4.3. Measurement uncertainty in pollutant concentrations derived during stationary 
collocation periods

Collocation of instruments in the ambient environment is a standard practice for assessing 

comparability of different methods, or even the internal precision for replicates of the same 

method. Collocation is based on the premise that the instruments measure from the same 

airmass, and thus observe the same concentrations. We used robust analysis methods to 

allow for a collocation experiment under near-road and on-road conditions. The nature of 

collocation in near source environments, particularly on road environments, does not comply 

with the “collocation = same concentration” assumption. This is especially true at the large 

inlet-to-inlet distances (meters to tens of meters) that measuring in moving traffic 

necessitated. We chose to use the median absolute deviation as a robust estimator for 

standard deviation, although other robust estimators (such as the interquartile range) likely 

work as well.

Period and car specific median and σMAD values from stationary collocated measurements 

(Table S3) are used to calculate study-wide estimates for the random (σprecision) and 

systematic (σbias) measurement uncertainties for each species (Table 3). These are 

conservative estimates of the uncertainty within each measurement (σprecision) and between 

collocated measurements (σbias) and do not assess the absolute accuracy of the 

measurements. Unlike the signed car-specific biases (Bias1, Bias2, Bias3), which provide the 

direction (positive or negative) of the bias for each car, σbias is a positive value that estimates 

the magnitude of the measurement uncertainty due to the systematic biases for all 3 cars.

With all of the pollutants except O3, the uncertainty due to measurement precision is a larger 

fraction of the total measurement uncertainty than that from measurement bias. Bias 

between the cars, caused by factors such as calibration errors, are smaller than the precision 

of the individual measurements (i.e. σprecision > σbias), boosting our confidence in the 

comparability of the data obtained from the three cars. The instruments and cars are 

identical, interchangeable, and effectively indistinguishable for the purposes of mobile air 

pollution measurement. Confirmation of car comparability is critical for creating a scalable 

system of mobile measurements but has been limited in previous studies (e.g. Apte et al., 
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2017). The precision and bias during the SC analysis provides a foundation for exploring the 

comparability in the mobile environment (Section 4.6).

Ozone is the exception to the observation that σprecision > σbias. A potential issue can be seen 

visually in Fig. 2, where O3 from Car 2 appears systematically low during part of MC-05. 

This was observed to a lesser extent in MC-01, MC-02, and MC-03, but not significantly 

during the other periods. Car 2 also has a systematic negative bias relative to the other cars 

during the SC periods (Table 3). It is possible that the ozone concentrations observed during 

some of the SC and MC periods were adversely affected by reduced reagent gas (N2O) flow 

supplied to the analyzer (Supplemental Information). Although efforts were made to flag 

and remove affected data, we only screened data when justified by specific notes or other 

instrument-specific indicators. For quality assurance reasons, we did not remove data that 

looked suspicious or incorrect without specific documentation justifying the removal of that 

data. Following the Denver study, improvements to the reagent gas supply system has 

essentially eliminated this issue for all future studies.

4.4. Systematic differences between cars during combined mobile collocations

Although we assessed instrument performance under stationary conditions (Section 4.3), we 

are most interested in ensuring that the measurements from different cars are comparable in 

a mobile environment. To do that, we assessed the bias between the cars during the 

combined mobile collocation periods using robust (Passing-Bablok) regression analysis. 

Table 4 shows the slope and intercept for each car pair and pollutant, as well as the Pearson 

correlation (r). Comparison of regression lines with the distribution of points (shown as a 

density of points) is shown in Fig. S8 for several species. Slopes for O3, NO2, NO, PN0.5–1.0, 

and PN1.0–2.0 are all within 10% of 1.0, and the intercepts are smaller in magnitude than the 

stationary estimates of uncertainty due to bias (σbias, Table 3). We consider a slope variation 

of up to 10% to be a reasonable criteria for comparability in this situation given the high 

variability in concentrations and the potential for meter-scale concentration variability in the 

collocated mobile measurements. For these five pollutants, the cars meet this comparability 

criteria in the mobile environment.

PN0.3–0.5 and PN2.0–5.0 have slopes that deviate up to 15% and 28% from 1.0, respectively. 

In addition, the 3–1 car pair had a PN0.3–0.5 intercept larger than the estimated intercar bias 

(σbias, Table 3). Visual inspection of the pollutant timeseries (Fig. S2 – S7) does not reveal 

significant systematic variability between the different cars. Scatterplots of Car 1 PN0.3–0.5 

versus that of Car 2 (Fig. S8J) and Car 3 (Fig. S8K), however, show deviations from the 1:1 

line in the highest density trend region. Therefore, it is possible that a 13%–15% systematic 

bias does exist for Car 1 relative to Cars 2 and 3 for PN0.3–0.5. This is consistent with the 

bias estimate from the SC periods (bias1 in Table 3), which suggest that Car 1 is 

systematically low. We were unable to determine the source of the potential systematic bias. 

The PN instrument was calibrated by the manufacturer and we did not have sufficient 

equipment on-site to confirm the calibration except for the zero. It is possible that one 

instrument was calibrated on the low end of the manufacturer’s specification range (10%), 

whereas the other two were on the higher end. It is also possible that minor differences in the 

inlets might also have caused one to have higher wall losses than others. Given the large 
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range of measurements and the difficulty with accurate size-fractionated particle number 

measurements, we do not consider a 15% discrepancy to have significant impact on our 

results.

Several factors make it challenging to assess the PN2.0–5.0. These factors include the high 

degree of baseline noise, low precision relative to signal (Tables 2 and 3), and large “step 

size” between subsequent measurements (discussed in Section 4.1).

BC shows a large (>50%) systematic bias, with Car 2 reading about 56% higher than Car 1 

(Table 4). Continued use of these same instruments post-Denver showed a 52% difference 

between the instruments, which was corrected by reducing the higher-reading instrument by 

52% to be consistent with the lower-reading instrument (Apte et al., 2017). The two BC 

instruments used in this study are the same two instruments used in Apte et al. (2017), where 

the higher reading instrument (in Car 2 in this study) was determined by the manufacturer to 

be biased high, whereas the lower reading instrument was determined to be accurate. We 

choose to scale the Car 2 BC to be consistent with Car 1 for the remainder of the paper 

(Sections 4.5 and 4.6) by dividing all Car 2 value by 1.56. The scale factor of 1.56 is based 

on the Passing-Bablok slope between BC measurements in Car 2 versus Car 1 (Table 4). We 

repeated the SC analysis with the scaled value and show that scaling the Car 2 BC 

measurements significantly reduces the car-versus-car bias (σbias) by almost a factor of 3 

(BC* in Table 3). The scaled BC value is denoted BC* to distinguish it from the raw BC 

measurement.

4.5. Car-versus-car measurement relative variability

To explore the car-versus-car measurement variability of the different pollutants, we 

computed the coefficient of variation (CV) for each set of time-paired 1 s measurements 

during the MC periods where at least 2 cars reported data. The percentage of time-paired 1 s 

measurements with CVs below 10%, 20%, and 50% for each pollutant are shown in Fig. 3. 

NO, BC*, and the larger PN size classes (PN1.0–2.0 and PN2.0–5.0) had the highest degree of 

relative variability (i.e. highest fraction of CV pairs above 50%). NO, BC (and BC*), 

PN1.0–2.0, and PN2.0–5.0 all have low baseline concentrations (e.g. Fig. 2), and NO and BC 

have higher Q95/Q05 ratios than NO2 and O3, indicating a larger relative range of variability 

in pollutant concentrations.

The large difference in relative variability between NO and BC* versus NO2 and O3 is 

consistent with the expected pollutant behavior between these two groups. NO and BC both 

have low background concentrations and are emitted as primary emissions from mobile 

sources. This results in sharp peaks in the pollutant measurements as the car and the mobile 

source pass near each other, providing the potential for a large range of concentrations. O3 is 

predominantly a secondary species formed from photochemical reactions of NOX and 

VOCs, but is titrated quickly near combustion sources by NO. NO2 can be both a primary 

and a secondary pollutant but has a significantly longer lifetime than NO in the presence of 

O3. Evidence for the different behavior of NO and BC versus NO2 and O3 comes from Fig. 

1, with NO and BC having approximately lognormal distributions, whereas NO2 and O3 are 

closer to a uniform distribution. O3 and NO2 have higher background concentrations and 

lower peak concentrations than NO and BC. Combined with the longer response time of the 
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O3 and NO2 instruments, this explains why most (>60%) of the CV values for O3 and NO2 

are less than 20%, whereas only about 24%–26% of NO and BC* CV values are below 20%.

The shape of the absolute PN distributions are similar for all four PN size fractions (Fig. 1). 

However, the PN0.3–0.5 and PN0.5–1.0 size fractions never read values of zero – there is 

always some background concentration of PN0.3–0.5 and PN0.5–1.0. In contrast, both 

PN1.0–2.0 and PN2.0–5.0 have measured values at or near 0 L−1. This means that the relative 

variability in PN (compared against a lower quantile, such as Q05) will be higher for larger 

size fractions than smaller size fractions, scaling similarly to the Q95/Q05 ratios. Differences 

in relative variability between the smaller and larger PN size fractions could be due to higher 

inherent variability in larger size fractions than smaller size fractions (due to the influence of 

source factors such as road dust or brake or tire wear) but may also be due to differences in 

background concentrations and low concentrations in these size ranges.

4.6. Car-versus-car variability during MC periods

We have summarized the pollutant distributions from the MC periods (Section 4.1), derived 

insight from a visual inspection of the timeseries (Section 4.2), and computed estimates of 

precision and bias from SC periods (Section 4.3). Robust regression analysis (Section 4.4) 

provided some constraints on biases among the cars while moving. While providing a useful 

screening tool for assessing potential bias, additional insights were needed to understand the 

performance of the measurements while the cars were moving relative to the variability in 

ambient pollutant concentrations.

We assessed the distribution of pollutant variability for the MC periods through the CCDFs, 

which are presented in Fig. 4 as solid lines. These distributions are shown alongside a 

theoretical distribution assuming no ambient variability, with only measurement uncertainty. 

We assume that the theoretical distribution of the measurement uncertainty for each car is 

normally distributed around the true concentration, with a standard deviation of σtotal (Table 

3).

We interpret the portion of Fig. 4 where the empirical CCDFs overlap with the theoretical 

distribution as periods when the variability in the measurements among the cars could be 

attributable to uncertainty in the measurements. This represents about 70% of the variability 

for O3, 65% for NO2, 15% for NO, and essentially none for BC*. For PN size fractions, the 

overlapping regions range from 30% (PN0.5–1.0) to 90% (PN1.0–2.0), with no apparent 

relationship between the particle size and the associated variability due to uncertainty. The 

region above this overlap region represents measured variability larger than what can be 

explained by σtotal, and thus represents ambient spatial variability on car-to-car distance 

scales.

If we consider that all the variability is caused by measurement uncertainties and that our 

estimates of measurement uncertainties from the stationary environment (Section 4.3) extend 

into the mobile environment, the empirical CCDF should line up exactly with the theoretical 

distribution. Any actual differences in true values between collocated measurements (i.e. 

ambient variability) will cause the CCDF to lie above the theoretical distribution.
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In general, the empirical distributions agree reasonably well with the theoretical distributions 

at lower values, which provides confidence for our estimates of uncertainty based on the 

stationary collocated periods (σtotal). For PN1.0–2.0 (and, to a lesser degree, O3 and NO2), the 

theoretical distribution predicts larger uncertainties at lower quantiles than the empirical 

distribution. Assuming the overlapping values reflect periods when the cars were measuring 

the same concentrations, the theoretical distribution appears to be overestimating the 

empirical distribution. This may indicate that our method for assessing the uncertainty for 

the stationary collocated periods is overestimating the uncertainty observed in the mobile 

environment.

The lack of overlap for BC* could suggest that our stationary estimate of uncertainty for 

black carbon underestimates the uncertainty in the mobile environment. Although there is 

generally strong correspondence between the theoretical and empirical distributions at lower 

values, they diverge at higher values for all species. The divergence is faster for NO, but 

even more spatially homogeneous species (O3 and NO2) show divergence over 30% of the 

time. We interpret the region of divergence as periods when the cars were measuring 

ambient variability in pollutant concentrations due to localized pollution sources (i.e. plumes 

from mobile sources). Our interpretation of the relationships between the empirical and 

theoretical distributions is consistent with the expectation that ambient variability will be 

highest for the predominantly primary pollutants (BC and NO) and lowest for the 

predominantly secondary pollutants (O3 and NO2), with PN having intermediate values 

(except for PN1.0–2.0, in which the uncertainty may be overestimated).

The CCDF figures plots (Fig. 4) should not be over-interpreted. We use this comparison to 

assess the high-level relationship between the stationary uncertainty estimates, the 

uncertainty while the cars are moving, and the measured ambient variability, but are cautious 

to not over-interpret the data. However, a first-order analysis suggests that stationary 

estimates of measurement uncertainty are overly conservative for O3, NO2, and PN when 

extended to the mobile environment. Possible reasons for this are discussed in the following 

section (Section 4.7).

4.7. Sensitivity of measurement uncertainty to assumptions and methodology

There are several factors that would lead to an overly conservative estimate of measurement 

uncertainty from the stationary collocated periods using our methodology. The first is bias 

that arises from the nature of the collocation. When two or three cars are stationary and 

collocated, any positional biases between the cars will be carried through the collocation 

period. Examples of possible biases are relative position of the cars compared to a busy 

street or intersection, or the relationship between the car positions and eddies formed by the 

local urban microenvironment. When the cars are moving during the MC periods, any 

position biases are averaged out by the constant motion of the cars through space. Because 

all the collocated cars are in motion, they are all sampling a much larger volume of air 

during the same sample period, and their relative positions in space are constantly shifting. 

There will be positional biases for individual (or groups of) 1 s sampling periods during the 

mobile collocation periods, such as when one sampling car passes closer to a high-emitting 

vehicle than the other sampling cars. However, such intermittent biases will average out 
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towards a typically less biased comparison in a mobile setting, versus the stationary 

collocations, where any positional biases are likely to be persistent throughout the entire 

sampling period.

Another possible explanation for the SC-based overestimate of the MC uncertainty is that 

the statistical methods used to estimate the SC uncertainties are overly conservative. The 

median, MAD, and Passing-Bablok regression statistics are all based heavily (or entirely) on 

the median, or 50th percentile. In a balanced distribution, such as when we are comparing 

two cars, we expect outliers or near-source events to be distributed equally between the two 

cars. Thus, by focusing on the center of the distribution (i.e. the median), we ignore the 

outliers on both sides and zero in on the region where the cars should be measuring the same 

values. This allows us to use the median-based Passing-Bablok regression to compare car 

pairs even in the presence of a high degree of random scatter (or, in this case, extreme near-

source pollutant measurements for one car but not the other).

The impact of the assumptions made in Section 4.3 to use σ-MAD to calculate the SC 

uncertainties are complex. The σ-MAD values were similar to the typical standard deviation 

values in most cases, especially for less variable pollutants (such as O3 and NO2), with 

several exceptions in each case due to ambient variability during the collocation period 

(Table S3). In terms of σ-MAD as a robust estimator for precision, it will be most immune to 

short-duration spikes in pollution over a constant background, which would have a large 

impact on standard deviation but would not impact σ-MAD. σ-MAD is more sensitive to 

slowly varying background levels, which may be expected in ambient air over a 20–60 min 

measurement period. If ambient levels of the pollutant being measured vary during the 

measurement period, that will inflate the time-integrated σ-MAD value over the idealized 1 s 

estimates. Because the MC car comparisons are 1 s car-versus-car comparisons, differences 

will be isolated to measurement uncertainties and spatial variability. For the time-integrated 

σ-MAD values calculated in Section 4.3, differences can be due not only to measurement 

uncertainties and spatial variability, but also time-varying ambient concentrations during the 

measurement period.

The additional decision we made in Section 4.3 that impacted our estimated theoretical 

distributions in Fig. 4 was to use the median σ-MAD value for the 14 SC periods (times 2 or 

3 cars). The median was again chosen to be a robust estimate for the central tendency of the 

group of measurements. In this case, however, perhaps the choice of the median was biasing 

the estimate high. If we are considering just the measurement uncertainty due to instrument 

precision, the minimum σ-MAD value may have been a better estimate. If we accept the 

assertion that σ-MAD provides a good estimate for instrument precision under ideal 

circumstances, it would be challenging for the instrument to produce results better than its 

inherent precision (and thus to produce σ-MAD value below the precision). Therefore, all 

measured σ-MAD values must be greater than or equal to the precision. It is possible, 

however, for σ-MAD to be higher than the inherent precision, such as in the case of a time-

varying background concentration during the measurement period. Although choosing the 

minimum σ-MAD value for each parameter would have increased the sensitivity to potential 

errors on the low end, choosing a lower percentile (such as the 10th or 25th percentile) 
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instead of the 50th percentile may have provided a more realistic estimate of the 

measurement uncertainty that would transfer better to the MC periods.

We choose to retain the median-σ-MAD based estimate for the present purposes because it is 

conservative. For quality assurance purposes, we consider reporting a conservative estimate 

of uncertainty to be superior to underestimating errors and forming erroneous conclusions. 

Based on our results, it appears that measurement uncertainty estimates from collocated 

mobile monitoring platforms while stationary extend conservatively into the mobile 

environment. Although we cannot generalize beyond the current study, this finding has the 

potential to simplify quality assurance for future multi-platform and fleet-based mobile air 

quality monitoring studies. Stationary collocated analyses appear to be sufficient to estimate 

the uncertainty in measurements in the mobile environment, even when the concentration 

ranges in the mobile environment is significantly larger.

5. Conclusions

We report results from a mobile monitoring study in Denver, Colorado during the summer of 

2014. Quality assurance considerations were included as part of study design, instrument 

selection, data collection, and data analysis. Air pollutants were measured using accurate, 

high time resolution (1 hz, or 0.5 hz for O3), research grade instrumentation. Daily zero 

checks (and span checks for O3 and NO) ensured that the instruments remained with the 

manufacturer’s specification, with resulting zero values and instrument-specific biases 

within EPA-recommended guidelines for air quality measurement. In addition, our statistical 

peak alignment method, essential to ensure data points have accurate timestamps, were 

consistent with values calculated based on the manifold specifics providing confidence in 

our methodology. The quality assurance practices resulted in a robust dataset of collocated 

measurements for evaluating statistical techniques for assessing precision, bias, and 

variability in a mobile environment.

The uncertainty was evaluated under collocated stationary conditions and then applied to 

car-versus-car variability in measurements during the mobile collocated driving periods. We 

found that O3, NO2, PN0.3–0.5, PN0.5–1.0, PN1.0–2.0, and PN2.0–5.0 all produced absolute 

variability distributions similar to estimates based on precision and bias alone for lower 

values, suggesting that the lower 40%–80% of the observed variability can be partially 

attributed to measurement or instrument uncertainty. The stationary collocated estimates of 

uncertainty were based on medians and median absolute deviations and seemed to 

overestimate the uncertainty observed in the mobile collocation periods. We hypothesize that 

this overestimate could be due to differences between the stationary and mobile 

environments, differences between the way the two uncertainty estimates were evaluated, or 

choices made in estimating the stationary uncertainty.

Periods when the mobile variability distribution reflects the stationary uncertainty likely 

represent local on-road and near-road background conditions with some influence from 

regional background or from diffuse pollution emission plumes measured simultaneously by 

instruments in all three cars. The upper 20–60% of the distribution showed a divergence 

between estimates of variability due to measurement uncertainty and the observed ambient 
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variability in pollutant concentrations. These points cannot be attributed to measurement 

uncertainties and likely represent true ambient variability over car-to-car distance length 

scales, such as near-source short-duration plume sampling.

The correspondence between the stationary uncertainty estimates and mobile distributions at 

lower values provides evidence that uncertainty estimates derived from stationary 

performance evaluations transfer well to the mobile environment under the conditions tested. 

Robust statistical measures that account for the occasional (~20%) outlier points are 

especially powerful in separating the uncertainty statistics from measurements containing 

ambient variability. This observation, once evaluated under a larger range of conditions, may 

provide a method to simplify quality assurance approaches for future fleet-based (or other 

multi-platform) mobile monitoring campaigns. Appropriate instrument selection, a well-

planned experimental design, a solid quality assurance project plan, and the use of 

appropriate statistical techniques are all important components of a successful mobile 

monitoring study. The use of robust statistical metrics for constraining uncertainty can 

provide a powerful technique for assessing mobile monitoring data. As mobile fleet-based 

monitoring advances in the future, it will provide regulators and the community extensive 

data about hyperlocal air quality. This data, if interpreted with the appropriate statistical 

techniques, will be used to improve air quality and exposure modeling, as well as providing 

the public with real-time, actionable information to lower exposure and reduce health-based 

risk to air pollution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Relative distribution of pollutant concentration measurements from the mobile collocation 

period. The upper <1% of the distributions are trimmed from the figures to better illustrate 

the lower 99% of the distributions. All values are scaled to the maximum value.
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Fig. 2. 
Representative pollutant timeseries from period MC-05, showing (A) O3, (B) NO2, (C) NO, 

(D) BC, (E) PN0.3–0.5, (F) PN0.5–1.0, (G) PN1.0–2.0, and (H) PN2.0–5.0, for the three cars (two 

cars for BC). The y axis is truncated arbitrarily to enable a better representation of baseline 

variations in pollutants rather than focusing on a few minor high-lying outlier points.
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Fig. 3. 
Percentage of mobile collocated data points with a coefficient of variation below 0.1 (10%), 

0.2 (20%), and 0.5 (50%), showing the relative degree of variability for different measured 

pollutants.
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Fig. 4. 
Complementary cumulative distribution function (CCDF) of standard deviation values from 

1 s (2 s for O3) measurements of the three collocated cars during MC periods, for (A) ozone, 

(B) nitrogen dioxide, and (C) nitric oxide, (D) BC, (E) PN0.3–0.5, (F) PN0.5–1.0, (G) 

PN1.0–2.0, and (H) PN2.0–5.0. Dashed lines represent theoretical values assuming that all the 

variability was caused by the uncertainties calculated in Section 4.3.
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Table 2

Quantile distribution of pollutants during MC period, with data from all 3 cars combined (i.e. we concatenated 

the datasets from all 3 cars without distinguishing between the cars). The distribution of car-to-car distances is 

also given.

Parameter Q05 Q25 Q50 Q75 Q95 Q99

BC (μg∙m3) 0.21 0.73 1.41 2.72 7.54 23.9

NO (ppbv) 1.80 9.60 26.6 58.8 188.0 424.8

NO2 (ppbv) 5.10 12.7 21.1 29.1 44.6 64.7

O3 (ppbv) 2.90 9.7 25.6 42.5 53.5 57.4

PN0.3–0.5 (L−1) 12163 15702 19305 24116 35243 57844

PN0.5–1.0 (L−1) 720 1123 1575 2098 3751 7206

PN1.0–2.0 (L−1) 63 127 190 275 506 996

PN2.0–5.0 (L−1) 21 63 105 169 359 741

Distance, 1–2 (m) 6.3 12.8 23.2 38.0 75.4 108.4

Distance, 1–3 (m) 10.2 21.7 42.7 66.8 108.1 176.1

Distance, 2–3 (m) 6.8 14.0 24.8 38.5 72.3 155.0
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Table 3

Estimate of uncertainty in 1 s (2 s for O3) measurements due to random (σprecision) and systematic (σbias) 

uncertainties during the 14 stationary collocation periods.

Parameter σprecision Bias1 Bias2 Bias3 σbias σtotal

O3 (ppbv) 2.3 1.8 −2.5 1.5 2.8 3.6

NO2 (ppbv) 2.3 −0.5 −0.9 1.4 1.5 2.7

NO (ppbv) 5.9 0.2 −0.5 0.0 2.0 6.2

BC (μg∙m−3) 0.52 −0.11 0.11 0.21 0.56

1
BC* (μg∙m−3)

0.42 0.05 −0.05 0.08 0.43

PN0.3–0.5 (L −1) 1300 925 −752 −87 991 1635

PN0.5–1.0 (L−1) 251 14 3 −24 31 253

PN1.0–2.0 (L−1) 93 9 1 −6 11 94

PN2.0–5.0 (L−1) 64 13 −7 −7 12 65

1
BC* is black carbon after correction for the systematic bias in Car 2 (Section 4.4).
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