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Abstract

Recent in vivo experiments have illustrated the importance of understanding the haemodynamics 

of heart morphogenesis. In particular, ventricular trabeculation is governed by a delicate 

interaction between haemodynamic forces, myocardial activity, and morphogen gradients, all of 

which are coupled to genetic regulatory networks. The underlying haemodynamics at the stage of 

development in which the trabeculae form is particularly complex, given the balance between 

inertial and viscous forces. Small perturbations in the geometry, scale, and steadiness of the flow 

can lead to changes in the overall flow structures and chemical morphogen gradients, including the 

local direction of flow, the transport of morphogens, and the formation of vortices. The immersed 

boundary method was used to solve the two-dimensional fluid-structure interaction problem of 

fluid flow moving through a two chambered heart of a zebrafish (Danio rerio), with a trabeculated 

ventricle, at 96 hours post fertilization (hpf). Trabeculae heights and hematocrit were varied, and 

simulations were conducted for two orders of magnitude of Womersley number, extending beyond 

the biologically relevant range (0.2–12.0). Both intracardial and intertrabecular vortices formed in 

the ventricle for biologically relevant parameter values. The bifurcation from smooth streaming 

flow to vortical flow depends upon the trabeculae geometry, hematocrit, and Womersley number. 

Wo. This work shows the importance of hematocrit and geometry in determining the bulk flow 

patterns in the heart at this stage of development.
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1. Introduction

Fluid dynamics is important to organogenesis in many systems. The advection and diffusion 

of morphogens as well as the haemodynamic forces generated are known to regulate 

morphogenesis (Patterson, 2005). Forces such as shear stress and pressure may be key 

components that activate developmental regulatory networks (Tarbell et al., 2005). These 

mechanical forces act on the cardiac cells, where the mechanical stimuli is then transmitted 

to the interior of the cell via intracellular signalling pathways, i.e. mechanotransduction. In 

terms of mixing, the magnitude, direction, and pulsatile behaviour of flow near the 

endothelial layer may influence receptor-ligand bond formation (Taylor et al., 1996) and 

enhance the mixing of chemical morphogens. Advection-driven chemical gradients act as 

epigenetic signals driving morphogenesis in ciliary-driven flows (Cartwright et al., 2009; 

Freund et al., 2012), and it is possible that flow-driven gradients near the endothelial surface 

layer also play a role in cardiogenesis and vasculogenesis.

The notion that flow is essential for proper vertebrate cardiogenesis is not a recent idea. It 

was first investigated by Chapman in 1918 when chicken hearts were surgically dissected 

during embryogenesis, and their resulting circulatory systems did not develop properly 

(Chapman, 1918). Moreover, the absence of erythrocytes at the initiation of the first heart 

beat and for a period of time later, supports the belief that the early developing heart does 

not pump for nutrient transport. These results suggest that the function of the embryonic 

heart is to aid in its own growth as well as that of the circulatory system (Burggren, 2004).

Later experiments show that obstructing flow in the venous inflow tract of developing hearts 

in vivo results in problems in proper chamber and valve morphogenesis (Hove et al., 2003; 

Stekelenburg-de Vos et al., 2003; Gruber & Epstein, 2004). For example, Gruber & Epstein 

(2004) found that irregular blood flow can lead to hypoplastic left heart syndrome (HLHS), 

where the ventricle is too small or absent during the remainder of cardiogenesis. Hove et al. 

(2003) observed that when inflow and outflow tracts are obstructed in 37 hours post 

fertilization (hpf) zebrafish, regular waves of myocardial contractions continue to persist and 

neither valvulogenesis, cardiac looping, nor chamber ballooning occur. Similarly, 

Stekelenburg-de Vos et al. (2003) performed a similar experiment in chicken embryos at a 

similar morphological stage of development, e.g. HH-stage 17 (Hamburger & Hamilton, 

1951; Martinsen, 2005), whereby the venous inflow tract was obstructed temporarily. They 

noticed that all haemodynamic parameters decreased initially, i.e. heart rate, peak systolic 

velocity, time-averaged velocity, peak and mean volumetric flow, and stroke volume. Only 

the heart rate, time-averaged velocity, and mean volumetric flow recovered near baseline 

levels.

Trabeculae are particularly sensitive to changes in intracardiac haemodynamics (Granados-

Rivero & Brook, 2012). Trabeculae are bundles of muscle that protrude from the interior 
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walls of the ventricles of the heart. The sensitivity of the trabeculae under varying 

mechanical loads is important when considering they may serve as important structures in 

which cellular mechanotransduction occurs. Trabeculation may also help regulate and 

distribute shear stress over the ventricular endocardium, enhance mixing and modify 

chemical morphogen gradients. Furthermore, the presence of trabeculation may contribute to 

a more uniform transmural stress distribution over the cardiac wall (Malone et al., 2007). 

Even subtle trabeculation defects arising from slight modifications in haemodynamics may 

magnify over time. As the mechanical force distribution changes due to the absence of 

normal trabeculae, Neuregulin signalling, along with other genetic signals, are disrupted, 

leading to further deviations from healthy cardiogenesis. For example, zebrafish embryos 

that are deficient in the key Neuregulin co-receptor ErbB2 display severe cardiovascular 

defects including bradycardia, decreased fractional shortening, and impaired cardiac 

conduction (Liu et al., 2010). Disrupted shear distributions in the ventricle leads to immature 

myocardial activation patterns, which perpetuate ventricular conduction and contractile 

deficiencies, i.e. arrhythmia, abnormal fractional shortening and possibly ventricular 

fibrillation (Reckova et al., 2003).

The fluid dynamics of heart development, particularly at the stage when the trabeculae form, 

is complex due to the balance of inertial and viscous forces. The Reynolds number, Re is a 

dimensionless number that describes the ratio of inertial to viscous forces in the fluid and is 

given as Re = (ρUL)/μ. In cardiac applications, μ is the viscosity of the blood, ρ is the 

density of the blood, U is the characteristic velocity (often chosen as the average or peak 

flow rate) and L is the characteristic length (often chosen as the diameter of the chamber or 

vessel). Another dimensionless parameter that is often used in describing cardiac flows is the 

Womersley number which is given by W o = 2πfL2
v , where f is the frequency of contraction 

and v = μ
ρ  is the kinematic viscosity. Note that the Wo describes the transient inertial force 

over the viscous force and is a measure of the importance of unsteadiness in the fluid. 

During critical developmental stages such as cardiac looping and the formation of the 

trabeculae, Re ≈ 1 and Wo ≈ 1. In this regime, a number of fluid dynamic transitions can 

occur, such as the onset of vortical flow and changes in flow direction, that depend upon the 

morphology, size of the chambers and effective viscosity of the blood. The flow is also 

unsteady, and the elastic walls of the heart undergo large deformations.

Since analytical solutions are not readily available for complex geometries at intermediate 

Re, recent work has used computational fluid dynamics (CFD) to resolve the flow in the 

embryonic heart. For example, DeGroff et al. (2003) reconstructed the 3D surface of human 

heart embryo using a sequence of 2D cross-sectional images at stages 10 and 11, when the 

heart is mere valveless tube (Hill, 2017). The cardiac wall was fixed, and steady and 

pulsatile flows were driven through the chambers. They found streaming flows (particles 

released on one side of the lumen did not cross over or mix with particles released from the 

opposite side) without coherent vortex structures. Liu et al. (2007) simulated flow through a 

three-dimensional model of a chick embryonic heart during stage HH-21 (after about 3.5 

days of incubation) at a maximum Re of about 6.9. They found that vortices formed during 

the ejection phase near the inner curvature of the outflow tract. More recently, Lee et al. 
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(2013) performed 2D simulations of the developing zebrafish heart with moving cardiac 

walls. They found unsteady vortices develop during atrial relaxation at 20–30 hpf and in 

both the atrium and ventricle at 110–120 hpf. Goenezen et al. (2016) used subject-specific 

CFD to model flow through a model of the chick embryonic heart outflow tract.

The numerical work described above, in addition to direct in vivo measurements of blood 

flow in the embryonic heart (Hove et al., 2003; Vennemann et al., 2006), further supports 

that the presence of vortices is sensitive to changes in Re, morphology, and unsteadiness of 

the flow. Santhanakrishnan et al. (2009) used a combination of CFD and flow visualization 

in dynamically scaled physical models to describe the fluid dynamic transitions that occur as 

the chambers balloon, the endocardial cushions grow, and the overall scale of the heart 

increases. They found that the formation of intracardial vortices depended upon the height of 

the endocardial cushions, the depth of the chambers, and the Re. Their paper only considers 

steady flows in an idealized two-dimensional chamber geometry with smooth, stationary 

walls.

In this article, we quantify the kinematics of the two-chambered zebrafish heart at 96 hpf 

and use that data to construct both the geometry and prescribed pumping motion of a two-

chambered heart computational model. We use the immersed boundary method to solve the 

fluid-structure interaction problem of flow through a two-chambered pumping heart. The 

model we develop prescribes the pumping motion of the chambers, based on kinematic data 

taken from in vivo 2D cross-sectional temporally-sliced images of a zebrafish heart at 4 days 

post fertilization (dpf) from Liu et al. (2010). The goal of this paper is to discern bifurcations 

in the intracardial and intertrabecular flow structures due to scale (Wo), trabeculae height 

and hematocrit. We find a variety of interesting bifurcations in flow structures that occur 

over a biologically relevant morphospace. The implications of the work are that alterations 

in bulk flow patterns, and particularly the presence or absence of intracardial and 

intertrabecular vortices, will augment or reduce mixing in the heart, alter the direction and 

magnitude of flow near the endothelial surface layer, and potentially change chemical 

gradients of morphogens which serve as an epigenetic signal.

2. Numerical method

2.1 Model geometry

A simplified two dimensional geometry of a 96 hpf zebrafish’s two-chambered heart, 

containing trabeculae, was constructed using Fig. 1(a,b). The ventricle and atrium were 

idealized as an ellipse, with semi-major axis Va, and Aa, and semi-minor axis Vb and Ab, 

respectively. The atrioventricular canal (AV canal) connects the atrium and ventricle and is 

modelled as endocardial cushions, which move to occlude or promote flow through the heart 

chambers. The sinus venosus (SV) and bulbus arteriosus (BA) are modelled similarly. The 

width of the AV canal, SV and BA are given by wAV, wSV and wBA, respectively. The above 

parameters are labelled systole and diastole separately, e.g. the ventricular subscripts are 

given an exp label right before systole and are labelled con before diastole, while the atrial 

labels are opposite.
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Elliptical blood cells of uniform semi-major and semi-minor axis lengths, Ca and Cb, 

respectively, were included. The volume fraction, or hematocrit, was varied between [0%, 

25%]. Hematocrit increases linearly throughout development (Al-Roubaie et al., 2011) from 

0% to roughly 32% (Eames et al., 2010). The desired volume fraction of blood cells was 

calculated within the atrium, and the blood cells were spaced evenly apart within it. 

Moreover, as the ejection fraction is 60% (Forouhar et al., 2006), 60% of the number of 

blood cells in the atrium were spaced evenly within the ventricle. in vivo images from Liu et 

al. (2010) are shown in Fig. 2. Note that this placement of blood cells occurred immediately 

before diastole.

The trabeculae geometry was modelled using the following perturbed Gaussian-like 

function,

T(x) = ℎT 1 − x
rT

2
e− x

0.7rT
8
, (1)

where rT and hT are the radii and height of each trabecula, respectively, and x ∈ [−rT, rT]. 

Trabeculae are placed equidistant, as estimated from Fig. 1(a,b). The full geometry can be 

seen in Fig. 1. Each trabeculae in this model is filled with fluid that has same physical 

properties as the fluid elsewhere.

The blood cells were approximated as ellipses, using Figure 2 to estimate their length to 

width ratios, with respect to the size of the ventricle. The blood cells were held nearly rigid, 

as described in Section 2.2.

The dimensionless geometric model parameters are found in Table 1, which were scaled 

from measurements taken from Fig. 1(a,b). The radii, rT, and number of the trabeculae were 

constant in all numerical simulations, while the height of the trabeculae, hT, was varied.

2.2 Numerical method

The immersed boundary method (Peskin, 2002) was used to solve for the flow velocities 

within the geometric model from Section 2.1. The immersed boundary method has been 

successfully used to study the fluid dynamics of a variety of biological problems in the 

intermediate Reynolds number range, defined here as 0.01 < Re < 1000 (see, for example, 

(Jung, 2001; Tytell et al., 2010; Hershlag & Miller, 2011; Bhalla et al., 2013). The model 

consists of stiff boundaries that are immersed within an incompressible fluid of dynamic 

viscosity, μ and density, ρ. The fluid motion is described using the full 2D Navier–Stokes 

equations given as

ρ ∂u(x, t)
∂t + u(x, t) ⋅ ∇u(x, t) = − ∇p(x, t) + μΔu(x, t) + F(x, t) (2)

∇ ⋅ u(x, t) = 0, (3)

where u(x, t) = (u(x, t), ν(x, t)) is the fluid velocity, p(x, t) is the pressure, F(x, t) is the force 

per unit volume (area in 2D) applied to the fluid by the immersed boundary, i.e. two-
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chambered heart. The independent variables are the position, x = (x, y), and time, t. Equation 

(2) is equivalent to the conservation of momentum for a fluid, while (3) is a condition 

mandating that the fluid is incompressible.

The interaction equations between the fluid and the immersed structure are given by

F(x, t) = ∫ f(r, t)δ(x − X(r, t))dr (4)

U(X(r, t), t) = ∂X(r, t)
∂t = ∫ u(x, t)δ(x − X(r, t))dx, (5)

where X(r, t) gives the Cartesian coordinates at time t of the material point labelled by 

Lagrangian parameter r, f(r, t) is the force per unit area imposed onto the fluid by elastic 

deformations in the boundary, as a function of the Lagrangian position, r, and time, t. 
Equation (4) applies a force from the immersed boundary to the fluid grid through a delta-

kernel integral transformation. Equation (5) sets the velocity of the boundary equal to the 

local fluid velocity.

The regularized delta function used in (4) and (5) is defined as

δℎ(x) = δℎ(x)δℎ(y), (6)

where δℎ(x) = 1
ℎψ ( x

ℎ ) and ψ(r) is the four-point function described in Peskin (2002),

ψ(r) =

1
8(3 − 2 ∣ r ∣ + 1 + 4 ∣ r ∣ − 4r2) 0 ≤ ∣ r ∣ < 1
1
8(5 − 2 ∣ r ∣ + −7 + 12 ∣ r ∣ − 4r2) 1 ≤ ∣ r ∣ < 2
0 2 ≤ ∣ r ∣ .

(7)

This regularized delta function is used to both spread the force from the Lagrangian force 

density of the curvilinear mesh onto the Cartesian fluid grid, (4), and to interpolate the 

velocity onto the Lagrangian mesh based from the underlying local fluid velocity of the 

Cartesian grid, (5).

The force equations are specific to the application. In a simple case where a preferred 

motion or position is enforced, boundary points are tethered to target points via springs. The 

equation describing the force applied to the fluid by the boundary in Lagrangian coordinates 

is given by f(r, t) and is explicitly written as,

ftrgt(r, t) = ktarget (Y(r, t) − X(r, t)), (8)

where ktarget is the stiffness coefficient, and Y(r, t) is the preferred Lagrangian position of 

the target structure. In all simulations the motion of the two-chambered heart (atrium, the 

trabeculated ventricle, AV canal, SV and BA) was prescribed by applying a force 

proportional to the distance between location of the actual boundary and the preferred 
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position. The deviation between the actual and preferred positions can be controlled with the 

variable ktarget.

The blood cells’ deformations and movement was governed by fully coupled fluid-structure 

interaction and movement was not prescribed. Linear springs were used to model the 

flexibility of blood cells; however, the spring stiffnesses were large as only to allow 

negligible deformations. Springs were attached between both adjacent Lagrangian points as 

well as the Lagrangian point across from them. The forces applied to the fluid from 

deformations of the blood cells is given by

fspr(r, t) = kspring 1 − RL
‖XSL(r, t) − XM(r, t)‖ ⋅

xSL − xM
ySL − yM

, (9)

where XM and XSL give the positions in Cartesian coordinates of the master and slave nodes, 

respectively, kspring is the spring stiffness, and RL is the resting length of the spring. In this 

formulation, the master and spring node will undergo the same deformation force, but in 

opposite directions. Deformable blood cells have been modelled using immersed boundary 

framework previously (Crowl & Fogelson, 2009, 2011); however those studies were not in 

the vein of embryonic cardiac flows.

2.3 Prescribed motion of the two chambers

The motion of the two-chambered heart was modelled after a video taken using spinning 

disk confocal microscopy from Liu et al. (2010) of a wild-type zebrafish embryo at 96 hpf. 

The video’s images were acquired with a Nikon Te-2000u microscope (Nikon) at a rate of 

250 frames per second using a high-speed CMOS camera (MiCam Ultima, SciMedia) (Liu 

et al., 2010). Using the MATLAB software package DLTdv (Hedrick, 2008), the systolic and 

diastolic periods were determined by measuring maximum width and height of both the 

atrial and ventricular chambers. These results are shown in Fig. 3(a,b). The maximum width 

of the AV canal was also measured in pixels right before diastole, and found to be 25 pixels. 

Assuming the width of the AV canal is 42 μm (Forouhar et al., 2006), each single pixel 

corresponds to 1.68 μm. The converted height and widths in μm are found in Table 2. The 

average heights and radii of the trabeculae were found to be 20.96 μm and 7.29 μm, 

respectively.

One entire heart cycle was found to take place in approximately 27 frames. Assuming the 

heart beat frequency is 3.95 beats/s (Malone et al., 2007), each pumping cycle lasts ~ 0.25 s. 

Each heart chamber undergoes four phases during each cycle: a rest period at the end of 

contraction, a period of expansion, a rest period at the end of expansion, and a period of 

contraction. The average percentage and duration of each phase are given in Table 3.

The prescribed motion of the two-chamber hearts was performed by interpolating between 

different phases of the heart cycle. This is illustrated in Fig. 4 which show the beginning of 

each phase. Phase 1: the ventricle rests after contraction and the atrium rests after expansion. 

The AV canal goes from fully occluded to 10% occlusion. Phase 2: The diastolic phase when 

the ventricle expands while the atrium contracts. Phase 3: the ventricle rests after expansion 

and the atrium rests after contraction. The AV canal becomes fully occluded state. Phase 4: 
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The systolic phase, when the ventricle contracts and the atrium expands. Note we model the 

time in each phase after the ventricle motion, only. Moreover, note in each phase the volume 

within each trabeculae remains the same.

The actual motion of the heart is driven by changing the preferred position of the target 

points. Each phase transition used the following interpolation function,

Xtarget = Xcurrent + gj(t) [Xnext − Xcurrent],

where Xcurrent is the current phase (X, Y)- positions of the Lagrangian structure, and Xnext 

are the (X, Y)-coordinates for the next phase of the heart cycle. Note that the target position, 

Xtarget, is Y(r, t) from (8). This initializes a penalty force to drive the Lagrangian structure 

towards its preferred position at each time-step, where the preferred position is the 

interpolated position between the current phase and next phase, shown in Fig. 4. The 

interpolation function, gj(t) is defined below,

gj(t) =

c1
t

TPj

2
t < t1

c3
t

TPj

3
+ c4

t
TPj

2
+ c5

t
TPj

+ c6 t1 ≤ t ≤ t2

−c2
t

TPj
− 1

2
+ 1 t > t2,

(10)

where TPj is the total time for Phase j. Equation (10) was chosen to enforce continuous 

accelerations between phases. The coefficients {ck}k = 1
6  are given in Table 4 and the 

durations of each phase are reported in Table 5.

To determine the Wo within the heart, we take characteristic values for zebrafish embryonic 

hearts between 4 and 4.5 dpf and match our dimensionless model parameters accordingly. 

The characteristic frequency, f  was measured in vivo, and the characteristic length, L, was 

taken as the height of the ventricle right before systole. The Wo was then calculated as

W o = L 2π ⋅ f ⋅ ρ
μ = 0.77, (11)

where f = 3.95 s−1 (Malone et al., 2007), ρ = 1025 kg/m3 (Santhanakrishnan & Miller, 2011), 

μ = 0.0015 kg/(m ⋅ s) (Al-Roubaie et al., 2011;Mohammed et al., 2011), and 

L = = 2V bexp = 0.188 mm from DLTdv analysis. Note that the properties of embryonic blood 

are different to measure during embryogenesis and so ρ  and μ are only approximately 

correct.

The characteristic velocity, V, was taken as the average of the minimum and maximum 

velocity measured in vivo. The dimensionless frequency may then be calculated as
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f = L
V

⋅ f = 0.1, (12)

where V = 0.75 cm/s (Hove et al., 2003).

For the mathematical model, the parameters were chosen to keep the dimensionless 

frequency fixed at f = 1.0. The Wo was varied by changing the kinematic viscosity, ν = μ/ρ. 

The computational parameters are reported in Table 5. For the simulations, the Wosim is 

calculated using a characteristic length of 2Vbexp and characteristic velocity is set to the 

maximum velocity in the AV canal during diastole. Since the pumping motion is prescribed, 

the maximum velocity in the AV canal remains close to constant, regardless of Wo. The 

simulations were performed for Wosim = {0.2, 0.5, 1.0, 2.0, 4.0, 8.0, 12.0}. The stiffnesses of 

the target points were chosen to minimize the deviations from the preferred position. The 

same stiffness was used in all simulations, regardless of Wosim, across all of the two 

chamber geometry, including the trabeculae, AV, SV and BA, but explicitly excluding the 

flexible blood cells.

We used an adaptive and parallelized version of the immersed boundary method, IBAMR 

(Griffith et al., 2007; Griffith, 2014). IBAMR is a C++ framework that provides 

discretization and solver infrastructure for partial differential equations on block-structured 

locally refined Eulerian grids (Berger & Oliger, 1984; Berger & Colella, 1989) and on 

Lagrangian (structural) meshes. IBAMR also includes infrastructure for coupling Eulerian 

and Lagrangian representations.

The Eulerian grid on which the Navier–Stokes equations were solved was locally refined 

near the immersed boundaries and regions of vorticity, e.g. (15), with a threshold of ∣ω∣ > 

0.05. This Cartesian grid was organized as a hierarchy of four nested grid levels, and the 

finest grid was assigned a spatial step size of dx = D/1024, where D is the length of the 

domain. The ratio of the spatial step size on each grid relative to the next coarsest grid was 

1:4. The temporal resolution was varied to ensure stability. Each Lagrangian point of the 

immersed structure was chosen to be D
2048  apart (twice the resolution of the finest fluid grid). 

The fluid flow between the SV, AV and BA was resolved, as those canals are never fully 

occluded, and there are sufficient Cartesian grid widths, e.g. at least 40 mesh widths, 

separating the sides during 90% occlusion, the maximum occlusion in this model.

3. Results

In this article, we describe the bulk flow structure within a two-chambered embryonic heart 

containing both trabeculae and blood cells. Velocity fields and pressure were all initialized at 

zero and the prescribed motion of the atrium and ventricle induced all subsequent fluid 

motion, with no assumed inflow or outflow conditions. The Wo is varied from 0.2 to 12, and 

the trabecular heights are varied from half to twice the biologically relevant case. Note that 

we consider Wo beyond the biologically relevant range for embryonic zebrafish to gain 

insight into why hearts may change shape and pumping properties as they grow in 

developmental or evolutionary time. We consider trabeculae heights outside of the 
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biologically relevant range to gain insights into whether or not physical factors constrain the 

developing heart to this region of the morphospace.

Streamlines and vorticity plots are used to show the direction of flow and mixing within the 

heart. We are interested in the direction of flow since endothelial cells are known to sense 

and respond to not only the magnitude of flow but also to its direction (Wang et al., 2013; 

Heuslein et al., 2014). We are also interested in the direction of flow near the cardiac wall 

since it may alter the advection of morphogens or other signaling agents (Turing, 1952; Dan 

et al., 2005; Wartlick et al., 2009; Howard et al., 2011). The streamline and vorticity graphs 

were generated using VisIt visualization software (Childs et al., 2012). When interpreting 

streamlines, please note that a neutrally buoyant, small particle in the fluid will follow the 

streamline. The streamlines are drawn by making a contour map of the stream function, 

since the stream function is constant along the streamline. The stream function, ψ(x, t), in 

2D is defined by the following equations:

u(x, t) = ∂ψ(x, t)
∂y (13)

v(x, t) = − ∂ψ(x, t)
∂x (14)

The vorticity, ω, is the curl of the velocity field and describes the local rotation of the fluid.

ω = ∇ × u . (15)

Figure 5 shows the vorticity within the two-chambered heart at different times during one 

period of the heart cycle, T. The trabeculae heights were fixed at the biological scale and no 

blood cells were simulated. Five different Wo were considered, Wo = {0.5, 1.0, 4.0, 8.0, 

12.0}. Note that the biologically relevant case is Wo = 0.77, which falls between the Wo = 

0.5 and Wo = 1.0 cases. From the vorticity plots, it is clear there is not much difference in 

vortical flow between these cases, either during disatole or systole. Furthermore, vortices do 

not form within the atrium during atrial filling. As Wo increases to Wo = 4.0, two distinct 

intracardial vortices form, and after systole, a remnant vortex is still present in the ventricle. 

Two vortices form within the atrium during filling. The higher Wo > 4 cases, show similar 

vortex existence; however, the ventricular and atrial vortices that form during diastole and 

systole, respectively, move within the chamber. Moreover, in the Wo = 12.0 case, distinct 

vortices are observed between trabeculae, and some minor vortex shedding appears as high 

speed flow moves over the trabeculae. It is clear as Wo increases, intracardial and 

intertrabecular mixing also increases. The Wo of adult zebrafish and larger vertebrates is 

above 4 (Santhanakrishnan & Miller, 2011), and this suggest that the role of the trabeculae 

in the adult may be different than it is during development. It is also interesting to note that 

adult hearts across the animal kingdom operating at Wo < 4 typically lack trabeculae.

Battista et al. Page 10

Math Med Biol. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Forces along the endocardial surface and trabeculae were calculated using the target point 

deformation force model, given by (8), and broken into the tangential and normal 

components. All forces are reported as dimensionless quantities.

It is clear from Fig. 6 that the region that experiences the largest force is on the left side of 

the ventricle, e.g. the side opposite to the bulbus arteriosus, when diastole finishes. Next we 

examined the the average magnitude of the force over a trabeculae over one heart cycle for 

Wo = 0.8, see Fig. 6b. During one heart beat, there appears to be three local extrema in the 

magnitude of the force for trabeculae #3, #4, #5, two local maxima and one local minimum. 

To decipher what forces were dominant, we computed the average magnitude of the normal 

and tangential components of the force on the trabeculae, as illustrated in Fig. 6c. The 

analysis shows that the normal component of the force dominates for trabeculae #3, #4, #5. 

Moreover, two local maxima and one local minimum are observed for the normal 

component of the force, averaged over the heartbeat. One local maximum appears for the 

tangential component of the force for Wo = 0.8.

Furthermore, for trabecula #3, a scaling study was performed for Wo ranging from 0.5 to 

12.0. Figure 6d depicts the average magnitude of the force over one heartbeat cycle for 

trabecula #3. The analysis yielded similar functional behaviour, compared with the 

analogous case in Fig. 6b, for Wo ≤ 3. For Wo > 3, there is a clear bifurcation where the 

average force magnitude no longer displays three local extrema, but instead appears to 

monotonically increase to an asymptotic maximum over one heartcycle.

3.1 Effects of trabeculae height

Figure 7 shows closed streamlines for Wo = {0.5, 1.0, 4.0} and trabecular heights ranging 

from half to twice the biologically relevant size. No blood cells were added to the 

simulations, and the trabeculae radii and locations were fixed, keeping them equidistant 

along the ventricular chamber. The analysis was performed within the ventricle immediately 

after diastole finishes, e.g. the ventricle stops expanding.

In the h0.5x case, i.e. half the biologically relevant height, some small vortices appear to form 

between trabeculae, as seen by the closed streamlines. These closed loops are small relative 

to the intertrabecular spacing. Note also that the flow velocities between the trabeculae are 

also quite small, see Fig. 8, which illustrates the magnitude of velocity for simulations of 

varying Wo for biologically relevant trabeculae heights. Large intracardial vortices are 

clearly present in all cases, and the size and strength of these vortices grow as Wo increases.

As the trabeculae height increases, the intertrabecular vortices grow larger. The intracardial 

vortices remain approximately the same size as height increases. Note also that the 

intracardial vortex pair becomes more asymmetric as the trabeculae increase in height. 

Moreover, in the h1.5x and h2x cases, as Wo increases intertrabecular vortices become larger 

and increase in number (note that these regions still represented relatively slow flow).

The intracardial vortices both spin in opposite directions, e.g. the vortex to the left rotates 

counterclockwise while the vortex on the right spins clockwise. Therefore, the 

intertrabecular vortices on the left side of the ventricle, which form near the head of the 
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trabeculae, spin clockwise, and vice versa on the opposite side of the ventricle. Furthermore, 

there is a somewhat stagnant region opposite to the AV canal, where the two vortices 

diverge, and hence no large intertrabecular vortices form, as compared to different 

intertrabecular regions in the same simulation. There are small vortices that form in the 

intertrabecular region opposite to the AV canal in the h0.5x cases; however, as the trabeculae 

increase in height in the Wo = 0.5 and Wo = 1.0 cases, this region becomes scarce of vortical 

flow, while there remains a small amount in the Wo = 4.0 case.

3.2 Effects of hematocrit

Figure 9 shows the effect that the addition of blood cells has in flow patterns over a range of 

Wo. In these simulations, trabeculae height, radii, and spacing were fixed. Trabeculae 

heights were modelled at the biologically relevant size. The analysis was performed within 

the ventricle immediately at the completion of diastole.

In the case of Wo = 0.5, it is clear the addition of blood cells alters the flow pattern within 

the ventricle. When VF = 5%, the flow resembles that of the analogous case with no 

hematocrit as seen in Fig. 7; however, as hematocrit is increased to VF = 15%, the flow 

patterns are very different. For VF = 5%, 15%, there are still coherent right or clockwise 

rotating vortices (shown as the closed streamlines) that form on the right side of the 

ventricle. The right vortex stretches directly above the AV canal and the left vortex is 

reduced. For VF = 25%, coherent intracardial vortices are not evident. For larger Wo (Wo = 

1, 4), the coherent intracardial vortex pair is observed even for higher hematocrit.

In general as Wo increases, the intracardial vortices become more well-defined, e.g. vortical 

flow is smoother. However, in all cases hematocrit still affects vortical flow patterns 

intracardially as well as intertrabecularly. Moreover, in these simulations it is clear that after 

diastole, no blood cells have moved between trabeculae, but rather stay within the middle of 

the chamber, regardless of volume fraction of Wo. These results suggest that for larger adult 

vertebrates, when the relative size of the blood cells would also be smaller, the presence of 

blood cells does not dramatically change the bulk flow. The blood cells do appear to affect 

the formation of coherent intracardial vortices at this stage of development when Wo = 0.5 – 

1.

3.3 Fluid mixing

As a rough approximation of the rotation and mixing in the fluid, we calculated that 

spatially-averaged vorticity in the ventricle. Figure 10 (a,b) give the spatially-averaged fluid 

vorticity on the left and right side of the ventricle, respectively, immediately after diastole, as 

a function of Wo for VF = {0%, 5%, … , 25%}. It is evident that there is a non-linear 

relationship between spatially-averaged vorticity and Wo. Furthermore, the overall net sign 

of the spatially-averaged vorticity is positive in the left side of the ventricle, while it is 

opposite on the right side. Moreover, the presence of blood cells does not appear to 

significantly affect the spatially-averaged fluid vorticity for Wo ≤ 1, although it does affect 

the generation of a coherent vortex pair.

We report the spatially-averaged vorticity at different times during an entire heartbeat in 

each side of the ventricle in Fig. 11. The spatially averaged vorticity was calculated for Wo = 
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{0.5, 0.8, 1.5, 8.0} (note the biologically relevant case is Wo 0.8) for hematocrit, VF = {0%, 

5%, 15%, 25%}. When Wo ≤ 1.5, there is a clear peak before diastole ends (the vertical 

dotted line), while for Wo = 8.0, the peak occurs the moment when diastole ends. Note also 

that the width of this peak is larger for Wo = 8.0 when inertia dominates.

In general as hematocrit increases, so does the spatially-averaged vorticity. Locally, the 

presence of blood cells act to increase vorticity in either direction through their tumbling 

motion, and this enhancement is not captured in the spatial average.

Although all Eulerian variables are initialized at zero, the resulting flow fields are not 

suspected to dramatically change between the first and subsequent heart cycles in the 

biologically relevant Wo regime. This is due to the high relative viscosity. For cases with Wo 

> 1, the flow fields in subsequent cycles may differ; however, as Figs 5, 7, 9, 10 and 11 

illustrate, there is not much difference in the dynamics between the lower Wo ≤ 1 cases. 

Note that in Fig. 9, the streamline analysis shows large differences between the Wo = 0.5 and 

Wo = 1 cases; however, the location of the blood cells are almost equivalent. The reason for 

the difference in streamlines is due to low velocities in the Wo = 0.5 case. Furthermore, the 

explicit streamlines in Fig. 9 are sensitive due to initial placement of the blood cells; 

however, the reason for the analysis is to highlight that there is different net fluid dynamic 

effects due to the addition of blood cells in cardiac models in heart development, more than 

the exact streamlines observed.

4. Conclusions

Two-dimensional immersed boundary simulations were used to solve for the fluid motion 

within an idealized two-chambered pumping heart. The presence of blood cells, trabeculae, 

and the relative importance of unsteady effects (e.g. the Wo) were considered. The geometry 

models an idealized embryonic zebrafish heart at 4 dpf, and the motion of the chambers was 

approximated from the kinematic analysis of video taken from a wild type embryonic 

zebrafish. The main results of the study are as follows: (1) without the presence of blood 

cells, a large vortex pair forms in the ventricle during filling; (2) with the presence of blood 

cells at lower Wo, a coherent vortex pair is not formed; (3) for Wo > 4, intertrabecular 

vortices form and vorticity separates from the trabeculae (suggesting the effect of the 

trabeculae is different in adult vertebrates than in embryos); (4) the presence of blood cells 

enhances spatially averaged vorticity in the ventricle, which peaks during diastole; (5) the 

presence of blood cells does not significantly alter the forces felt by the endocardial cells 

and (6) the majority of force is felt by the trabeculae on the outer region of the ventricle.

As mentioned above, an oppositely spinning large intracardial vortex pair forms for all Wo 

considered, here for Wo > 0.2. The vortex on the left spins counterclockwise, while the 

vortex on the right spins clockwise. This distinction becomes important when considering 

the formation of vortices between trabeculae. Larger intertrabecular vortices form for 

simulations with taller trabeculae. Furthermore, when the trabeculae height was 1.5x or 2x 
the biologically relevant height in the Wo = 4 case, stacked vortices formed between 

trabeculae; the top vortex spinning opposite to that of the closest intracardial vortex, while 

the vortex near the base spinning opposite to that. With the addition of blood cells, coherent 
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intracardial vortices do not form when Wo < 4 and VF ≤ 15%; however, intertrabecular 

vortical flow patterns were not significantly changed as blood cells were not advected into 

these regions.

Note that the presence or absence of vortices alter the magnitude and direction of flow near 

the endocardial wall as well as the mixing patterns within the ventricle. When an intracardial 

vortex forms, the direction of the flow changes. The presence of two large intracardial 

vortices forms a stagnation point on the opposite side of the ventricle to the AV canal. Also, 

the presence of intertrabecular vortices changes the direction of the flow between trabeculae; 

not all intertrabecular regions have the formation of these vortices. In such cases, the 

direction of flow between different trabeculae will move in different directions. Since 

endothelial cells are known to sense and respond to changes in both magnitude and direction 

of flow (Heuslein et al., 2014), the formation and motion of intracardial and intertrabecular 

vortices may be important epigenetic signals.

For the biologically relevant parameter choices, Wo between 0.5 and 1.0, it is clear that the 

addition of blood cells significantly affects the formation of coherent vortices. This 

illustrates the importance of considering hematocrit when conducting fluid dynamics studies 

at this stage of development. Furthermore, this study demonstrates that small changes in 

viscosity, scale, morphology and hematocrit can influence bulk flow properties in the 

embryonic heart. This presents an interesting challenge since each of these parameters are 

continuously changing during heart morphogenesis. In addition, estimating the effective 

viscosity and hematocrit of the embryonic blood is nontrivial.

Moreover, 2D simulations are used as there is no highly resolved data available of the 3D 

morphology of the trabeculae at this developmental stage. As compared to adult mammalian 

cardiac trabeculae, the trabeculae in zebrafish at this stage are more bump-like, rather than 

elongated hoops. At biologically relevant Wo of these embryonic hearts, the importance of 

the 3D geometry for vortex shedding and vortex stretching will be minimum. We present a 

first step approach to the modelling of trabeculae, in which, future 3D studies can use as a 

basis of comparison. Furthermore, the benefits of 2D model make it feasible for large 

parameter sweeps, e.g. Wo sweeps, hematocrit sweeps, and trabeculae morphology sweeps, 

that 3D simulations would not allow for computational efficiency.

The results of this article demonstrate the importance of scale, morphology and the presence 

of blood cells in determining the bulk flow patterns through the developing heart. This is 

important because there is a strongly coupled relationship between intracardial 

haemodynamics, genetic regulatory networks, and cardiac conduction (Hu & Clarke, 1989; 

Hove et al., 2003; Bartman et al., 2004; Scherz et al., 2008; Culver & Dickinson, 2010; 

Santhanakrishnan & Miller, 2011; Garita et al., 2011; Granados-Rivero & Brook, 2012; 

Jamison et al., 2013; Chen et al., 2014; Samsa et al., 2015). Besides contractions of the 

myocardial cells, which in turn drive blood flow, haemodynamics are directly involved in 

proper pacemaker and cardiac conduction tissue formation (Tucker et al., 1988). Moreover, 

shear stress is found to regulate spatially dependent conduction velocities within the 

myocardium (Reckova et al., 2003). Myocardial contractions are also required for 

trabeculation (Samsa et al., 2015). It is important to note that changes in the conduction 
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properties of the embryonic heart will also affect the intracardial shear stresses and pressures 

and patterns of cyclic strains.

The cyclic stresses and strains of the cardiomyocytes can also help shape the overall 

architecture of the trabeculated ventricle. The dynamics of these strains depend upon the 

intracardial fluid dynamics. For example, greater resistant to flow will induce larger cyclic 

stresses and possibly reduced cyclic strains. It is known that cyclic strains initiate 

myogenesis in the cellular components of primitive trabeculae (Garita et al., 2011). Since 

trabeculation first occurs near peak stress sites in the ventricle, altering blood flow may 

directly produce structural and morphological abnormalities in cardiogenesis. Previous work 

focusing on haemodynamic unloading in an embryonic heart has resulted in disorganized 

trabeculation and arrested growth of trabeculae (Bartman et al., 2004; Sankova et al., 2010; 

Peshkovsky et al., 2011). On the other hand, embryos with a hypertrabeculated ventricle also 

experience impaired cardiac function (Peshkovsky et al., 2011)

The exact mechanisms of mechanotransduction are not yet clearly understood (Weinbaum et 

al., 2003; Paluch et al., 2015). Biochemical signals are thought to be propagated throughout 

a pipeline of epigenetic signaling mechanisms, which may lead to a regulation of gene 

expression, cellular differentiation, proliferation, and migration (Chen et al., 2014). In vitro 
studies have discovered that endothelial cells can detect shear stresses as low as 0.2 dyn/cm2 

(Olesen et al., 1988) resulting in up or down regulation of gene expressions. Embryonic 

zebrafish hearts around 36 hpf are believed to undergo shear stresses of ~ 2 dyn/cm2 and 

shear stresses of ~ 75 dyn/cm2 by 4.5 dpf (Hove et al., 2003). Shear stresses in the ~8–15 

dyn/cm2 range are known to cause cytoskeletal rearrangement (Davies et al., 1986). 

Mapping out the connection between fluid dynamics, the resulting forces, and the 

mechanical regulation of developmental regulatory networks will be critical for a global 

understanding of the process of heart development.
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Fig. 1. 
(a, b) Snapshots of an embryonic zebrafish’s ventricle at 96 hpf right using spinning disk 

confocal microscopy. The snapshots were taken right before its diastolic and systolic phase, 

respectively. The protrusions into the ventricular chamber are trabeculae. Dashed lines show 

the minor and major axes. Images are from Tg(cmlc2:dsRed)s879; Tg(flk1:mcherry)s843 

embryos expressing fluorescent proteins that label the myocardium and endocardium, 

respectively (Liu et al., 2010). The red fluoresces the myocardium, while the green 

fluoresces the endocardium. (c, d) illustrate the computational geometry right before diastole 

and systole, respectively. The computational geometry, as shown in (e), includes the two 

chambers, the atrium (bottom chamber) and ventricle (top chamber), the atrioventricular 
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canal connecting the chambers and the bulbus arteriosus and sinus venosus, which all have 

endocardial cushions, which can occlude cardiac flow, as well as flexible blood cells.
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Fig. 2. 
(a, b) Snapshots of an embryonic zebrafish’s ventricle at 96 hpf right using spinning disk 

confocal microscopy. The snapshots were taken right before systole and diastole, 

respectively. The protrusions into the ventricular chamber are trabeculae and blood cells are 

fluorescing red (Liu et al., 2010).
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Fig. 3. 
(a, b) Illustrate the maximum distance for the height and width (in pixels) respectively, in the 

atrium and ventricle of a 4 dpf embryonic zebrafish heart from Liu et al. (2010).
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Fig. 4. 
We describe four phases of each heart cycle. Note that the position at the beginning of each 

phase is shown. Phase 1: the ventricle rests after contraction and the atrium rests after 

expansion. The AV canal goes from fully occluded to 10% occlusion. Phase 2: The diastolic 

phase when the ventricle expands while the atrium contracts. Phase 3: the ventricle rests 

after expansion and the atrium rests after contraction. The AV canal becomes fully occluded 

state. Phase 4: The systolic phase, when the ventricle contracts and the atrium expands.
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Fig. 5. 
Vorticity analysis performed for the case of biologically sized trabeculae and varying Wo at 

different time points during one heart cycle.

Battista et al. Page 24

Math Med Biol. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
(a) Illustrating the indexing of trabeculae (b) Plot illustrating the average magnitude of the 

force on chosen trabeculae over the course of one heart cycle for Wo = 0.8, the biologically 

relevant case. (c) Plot showing the average magnitude of the tangential and normal forces at 

each time, for chosen trabeculae, during one heart cycle for Wo = 0.8. (d) A plot illustrating 

the average magnitude of force at each time-step for Wo ranging from 0.5 (half the 

biologically relevant case) to 12.0.
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Fig. 7. 
Streamline analysis for Wo = {0.5, 1.0, 4.0} and trabecular heights from half to twice the 

biologically relevant size. The analysis was performed within the ventricle immediately after 

diastole finishes and when the ventricle stops expanding.
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Fig. 8. 
Magnitude of velocity colourmaps, corresponding to simulations of varying Wo for 

biologically relevant trabeculae height. The images were taken immediately after diastole, 

when the ventricle stops expanding.

Battista et al. Page 27

Math Med Biol. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Streamline analysis for Wo = {0.5, 1.0, 4.0} and hematocrit of VF = {5%, 15%, 25%}. The 

analysis was performed within the ventricle immediately after diastole finishes and the 

ventricle ceases its expansion.
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Fig. 10. 
(a, b) Illustrate the average fluid vorticity on the left and right side of the ventricle, 

respectively, immediately after diastole, as a function of Wo. It is clear there is a non-linear 

relationship between the spatially-averaged vorticity and biological scale, given by Wo.
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Fig. 11. 
Plots of the spatially-averaged magnitude of vorticity for Wo = {0.5, 0.8, 1.5, 8.0} for VF = 

{0%, 5%, 15%, 25%}. The vertical dotted line indicates when diastole ends. For every case 

of Wo, the higher the hematocrit, the more spatially-averaged vorticity magnitude is induced.
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Table 1

Table of dimensionless geometric parameters used in the numerical model. The non-dimensionalization was 
done by dividing by Vaexp. The height of trabeculae, hT, were varied for numerical experiments

Parameter Symbol Value

Contracted ventricle semi-major axis Vacon 0.80

Contracted atrium semi-major axis Aacon 0.68

Contracted ventricle semi-major axis Vrmcon 0.64

Contracted atrium semi-major axis Abcon 0.76

Expanded ventricle semi-major axis Vaexp 1.00

Expanded atrium semi-major axis Aaexp 0.88

Expanded ventricle semi-major axis Vbexp 0.84

Expanded atrium semi-major axis Abexp 1.02

Contracted AV-canal width wAVcon 0.02

Contracted bulbus arteriosus width wBAcon 0.015

Open AV-canal width wAVexp 0.34

Open bulbus arteriosus width wBAexp 0.29

Sinus venosus width wsv 0.2

Blood cell semi-major axis Ca 0.050

Blood cell semi-major axis Cb 0.025

Trabeculae radii rT 0.06

Trabeculae height hT {0, 0.09, 0.18, 0.27, 0.36}
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Table 2

The morphological parameters in physical units as computed from the kinematic analysis.

Ventricular parameters Atriuml parameters Trabecular parameters

Parameter Max.length (μm) Parameter Max. length (μm) Parameter Length (μm)

V acon
89.20 Aaexp

98.11 r T 7.29

V bcon
70.84 Abexp

113.11 ℎT 20.97

V aexp
111.98 Aacon

76.59

V bexp
93.78 Abcon

84.10
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Table 3

Average percentage and duration of each phase during the heart cycle obtained from kinematic analysis.

Ventricular phases Atrial phases

Phase % of period Time (s) Phase % of period Time (s)

Rest after contraction 20.7 0.05 Rest after expansion 20.7 0.05

Expansion 24.0 0.06 Contraction 24.0 0.06

Rest after expansion 7.9 0.02 Rest after contraction 2.2 0.01

Contraction 47.4 0.12 Expansion 53.1 0.13

Math Med Biol. Author manuscript; available in PMC 2021 March 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Battista et al. Page 34

Table 4

Table of polynomial coefficients for the interpolating function, gj(t)

Parameter Value

c1 2.739726027397260

c2 2.739726027397260

c3 −2.029426686960933

c4 3.044140030441400

c5 −0.015220700152207

c6 0.000253678335870
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Table 5

Table of temporal parameters used in the interpolating function, gj(t)

Phase 1 Phase 2

Parameter Time Parameter Time

TP 0.207 × Period TP 0.240 × Period

t1 0.05 × TP1 t1 0.07 × TP2

t2 0.95 × TP1 t2 0.93 × TP2

Phase 3 Phase 4

Parameter Time Parameter Time

TP 0.079 × Period TP 0.474 × Period

t1 0.05 × TP3 t1 0.04 × TP4

t2 0.95 × TP3 t2 0.96 × TP4
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