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Abstract

We developed a novel method for QRS complex and P wave detection in the electrocardiogram 

(ECG) signal. The approach reconstructs two different signals for the purpose of QRS and P wave 

detection from the modes obtained by the complete ensemble empirical mode decomposition with 

adaptive noise, taking only those modes that best represent the signal dynamics. This approach 

eliminates the need for conventional filtering. We first detect QRS complex locations, followed by 

removal of QRS complexes from the reconstructed signal to enable P wave detection. We 

introduce a novel method of P wave detection from both the positive and negative amplitudes of 

the ECG signal and an adaptive P wave search approach to find the true P wave. Our detection 

method automatically identifies P waves without prior information. The proposed method was 

validated on two well-known annotated databases—the MIT BIH Arrythmia database (MITDB) 

and The QT database (QTDB). The QRS detection algorithm resulted in 99.96% sensitivity, 99.9% 

positive predictive value, and an error of 0.13% on all validation databases. The P wave detection 

method had better performance when compared to other well-known methods. The performance of 

our P wave detection on the QTDB showed a sensitivity of 99.96%, a positive predictive value of 

99.47%, and the mean error in P peak detection was less than or equal to one sample (4 ms) on 

average.
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I. Introduction

Electrocardiogram (ECG) signals are widely used for detection and diagnosis of various 

cardiac arrhythmias. The main advantage of ECG measurement is its noninvasiveness. 

Automatic detection of different arrhythmias from ECG signals has been a major research 

focus for the last few decades. While various algorithms have been developed, there 

continues to be a need for more accurate methods for detecting the QRS complex, P wave, 

and T wave from ECG data. Proper detection of QRS complex locations enables accurate 

estimation of heart rates (HR) and identification of abnormalities in heart rhythms (e.g. atrial 

fibrillation (AF), premature ventricular contraction (PVC), and premature atrial contraction 

(PAC)).

One of the major cardiac arrhythmias is atrial fibrillation (AF), which causes more than 

750,000 hospitalizations and contributes to 130,000 deaths each year [1], [2]. When AF 

occurs, it is characterized by irregular RR intervals and absence of P waves in the ECG. 

Using only the irregularity of RR intervals cannot accurately capture atrial fibrillation (AF) 

rhythm, especially in the presence of premature ventricular contraction (PVC) and premature 

atrial contraction (PAC) [3]. When PAC and PVC are present, discrimination of P waves can 

be used in conjunction with irregular RR intervals for even more accurate AF detection. 

Unfortunately, detection of a P waves is challenging due to the low amplitude and 

susceptibility of P waves to noise and motion artifact contamination, especially when ECG 

data are collected from wearable devices. Moreover, P wave morphology changes from 

subject to subject and depends on ECG lead placement. For example, P waves can be 

normal, inverted, or biphasic. Thus, automated detection of P waves is quite challenging, 

especially from wearable devices.

There have been several notable prior approaches to P wave detection. An adaptive filter-

based technique is proposed in [4], which can be easily implemented and does not require a 
priori information about the ECG signal. Unfortunately, this technique requires a reference 

signal. A low pass differentiation technique is proposed in [5], an approach that is robust to 

waveform variation. However, this method is sensitive to noise and its arbitrary threshold 

value used in this method sometimes leads to P wave detection error. The pattern 

recognition-based approach in [6] is overly sensitive to noise and has insufficient accuracy 

for clinical use. Other approaches include a neural network with wavelet transform to detect 

recurrent patterns in the ECG in [7], an evolutionary optimization-based approach [8], and a 

Bayesian approach in association with Gibbs sampler [9]. Most of these methods are 

computationally intensive and they require a large computer memory size, limiting utility for 

some wearable device applications. The extended Kalman filter (EKF) approach proposed in 

[10] has been found to be quite effective in P wave detection. However, this approach needs 

to initialize parameters associated with the algorithm and they may vary depending on the 

type of ECG signals. A differential evolution (DE) optimization strategy proposed in [11] 

has shown a good accuracy in P wave detection. However, this method is computationally 

expensive and phase assignment method described in this paper depends on accurate 

detection of R peaks, which may lead to problem when there are ectopic beats in ECG (e.g. 

PAC/PVC). Real time ECG delineation proposed in [12], [13] can detect P wave with a 
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reasonable accuracy but their performance degrade significantly with increased amount of 

noise.

Several methods have been proposed for QRS complex detection as well. These include 

wavelet transform methods [14]–[16], a derivative method [17], an adaptive filtering method 

[18], an empirical mode decomposition (EMD) method [19], a hidden Markov model 

approach [20], and a slope and amplitude method [21]. Many of these methods require prior 

information about the ECG and are not adaptive to fluctuations in the ECG amplitude. Some 

are computationally expensive, while many of them also require a training period. Most 

wavelet analysis is sensitive to intra-subject and inter-subject variations and fails to capture 

signal characteristics if waveforms do not match the chosen mother wavelet. Moreover, a 

simple EMD technique has a mode mixing problem.

In this paper we proposed an efficient method to detect QRS complexes and P waves using 

the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) 

method. Two separate signals are reconstructed for the QRS complexes and P waves, 

respectively, from different modes obtained by CEEMDAN decomposition. The QRS 

complexes and P waves are then detected from their respective signals. We used two well-

known manually annotated ECG databases for validation of our proposed method.

The rest of the paper is organized as follows: in the Materials and Methods section, we 

describe our algorithms for QRS complex and P-wave detection. The performance of our 

algorithms and comparison with other established algorithms are presented in the Results 

section and perspectives are provided in the Discussion section. Finally, a summary of our 

findings is provided in the Conclusions section.

II. Material and Methods

A. Description of Datasets

Two well-known datasets have been used in this study to develop and validate the proposed 

QRS complex and P wave detection method.

1) MIT BIH Arrhythmia Database: The MIT-BIH arrythmia database consists of 48 

half-hours long datasets of two channel ambulatory ECG recordings which are obtained 

from 47 different subjects [22]. Out of 47 subjects 25 were male aged 32 to 89 and 22 were 

female aged 22 to 89 (ECG records 201 and 202 came from the same male subject). The 

source of the ECGs included in MITDB is a set of over 4000 long-term Holter recordings 

that were obtained by the Beth Israel Hospital Arrhythmia Laboratory between 1975 and 

1979, of which approximately 60 % were obtained from inpatients and rest were obtained 

from outpatients. 23 records of the database were chosen at random from this set with an 

intension to serve as a representative sample of the variety of waveforms and artifact that an 

arrhythmia detector might encounter in routine clinical use while remaining 25 records were 

selected from the same set to include complex ventricular, junctional, and supraventricular 

arrhythmias and conduction abnormalities. The recordings were digitized with a sampling 

frequency of 360 samples per second and resolution of 11 bits over a 11 mv range. Each 

recording contains two leads: modified limb lead II and one of V1, V2, V4 and V5 leads. 
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For each of the recording there are two or more cardiologist’s annotations. Finally, 

disagreements among the annotations were resolved to obtain a computer- readable 

reference annotations for each beat (approximately 110000 beats) which is included with the 

database. This database has been widely used for validation of QRS detection algorithms 

[23].

2) The QT Database: The QT Database includes ECGs which were chosen to represent 

a wide variety of QRS and ST-T morphologies. The QT Database contains 105 recordings 

which were primarily collected from some existing databases, including the MIT-BIH 

Arrhythmia Database, the European Society of Cardiology ST-T Database, and several other 

ECG databases collected at Boston’s Beth Israel Deaconess Medical Center [22], [24]. Some 

of the ECG records were also collected from holter recordings of patients who experienced 

sudden cardiac death during the recordings, and age-and-gender matched patients without 

diagnosed cardiac disease. All the recordings were sampled at 250 Hz. Each of the records 

has at least 30 beats annotated by cardiologists (ref1) who identified the beginning, peak and 

end of the P-wave, the beginning and end of the QRS-complex (the QRS fiducial mark, 

typically at the R wave peak, was given by an automated QRS detector), the peak and end of 

the T wave, and (if present) the peak and end of the U wave. The QTDB also includes an 

additional annotation performed by a second cardiologist (ref2) for 11 records out of total 

105. The remaining 94 records have only a single set of expert annotations.

3) The MIT-BIH Noise Stress Test Database: The MITBIH Noise Stress Test 

Database includes 12 half-hour ECG recordings and 3 half-hour recordings of noise in 

typical ambulatory ECG recordings[22], [25]. The noises include baseline wander, muscle 

artifact and electrode motion artifact which were made using physically active volunteers 

and standard ECG recorders, leads, and electrodes; the electrodes were placed on the limbs 

in positions in which subjects’ ECGs were not visible. Calibrated amounts of different levels 

of noise were added to the two clean ECG recordings (118,119) from the MIT-BIH 

Arrhythmia Database. Different levels of noise were added to each of the recordings to make 

6 different signals with different Signal-to-noise ratios (SNRs) (24, 18, 12, 6, 0, and 6 dB). 

All the ECG signals were sampled with a sampling frequency of 360 samples per second. 

The database contains beat annotations for each of the files.

B. EMD

Huang et al. [26] proposed the Hilbert-Huang transform, which is a signal processing tool 

that consists of two parts: EMD and the Hilbert transform. The latter is used to create an 

analytical signal from real-valued data. In EMD, a signal x (t) is decomposed into a few 

intrinsic mode functions (IMFs). All the IMFs satisfy two conditions: (i) the number of 

extrema and number of zero crossings must be equal or differ by at most one, and (ii) the 

mean value of the upper and lower envelops of a time series is zero. The IMFs can be 

extracted using an iterative algorithm called the sifting algorithm. The process is as follows.

1. Set r (t) = x (t)

2. Find local maxima and minima of r(t)

3. Find upper and lower envelops U(t) and L(t), respectively
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4. Calculate mean value of upper and lower envelopes

μ = U(t) + L(t)
2

5. Subtract the mean μ from the residue signal r(t)

IMF t = r t − μ

6. Update r(t), r (t) = r (t)− IMF(t) and go to step 2 and continue the process until 

the IMF satisfies conditions(i) and (ii).

This sifting process is continued until the stopping criteria is reached. The residue rK (t) after 

extraction of K IMFs becomes either an IMF or a monotonic function. Thus, the original 

signal x(t) can be reconstructed using all the IMFs and the final residue rK (t) is defined as 

follows:

χ t = ∑
k = 1

K
IMFk t + rK (t) (1)

where K is the number of IMFs.

C. Ceemdan Algorithm

One of the major problems of EMD is called ‘mode mixing.’ For example, in the presence of 

disparate amplitude oscillations in the original signal, similar oscillations are also observed 

in the different modes. In order to overcome this problem, a new method called the 

Ensemble Empirical Mode Decomposition (EEMD) was proposed in [27], where EMD is 

performed over an ensemble of the signal plus Gaussian white noise (GWN). However, 

EEMD suffers from other issues. For example, different realizations of the signal plus GWN 

may lead to a different number of modes and the reconstructed signal may also contain the 

residual noise.

These issues led to the development of the Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (CEEMDAN) [28]. The CEEMDAN algorithm starts 

by assuming ηj (.) is the operator that produces the j-th mode obtained by EMD for a given 

signal. Then, the CEEMDAN algorithm is organized as follows:

1. Decompose N realizations x (t) + β0wi(t) by EMD and calculate their first mode. 

Then the first IMF of CEEMDAN is given by

IMF1(t) = 1
N ∑

i = 1

N
IMF1

i (t)

2. Calculate the first residue r1(t) using

r1(t) = x(t) − IMF1(t)
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3. Decompose realizations r1 (t) + β1η1(wi(t)) where i = 1, 2, 3, …, N and find their 

first mode. Then the second IMF can be computed as follows

IMF2(t) = 1
N ∑

i = 1

N
η1 r1(t) + β1η1 wi(t)

4. For k = 2, …, K calculate the k-th residue using

rk(t) = rk − 1(t) − IMFk − 1(t)

5. Decompose realizations rk (t) + βkηk(wi(t)) i = 1, 2, 3, …, N and compute their 

first EMD mode to get the (k+1) th IMF as

IMFk + 1(t) = 1
N ∑ i = 1

N η1 r1(t) + βkηk wi(t)

6. Go back to step 4 for new k.

This above procedure is performed until the stopping criteria is achieved. With a total K 

number of modes and final residue rK (t), the original signal can be reconstructed as follows:

x(t) = ∑
k = 1

K
IMFk(t) + rK(t) (2)

The βk parameter in CEEMDAN allows one to select a different signal-to-noise ratio (SNR) 

at each stage, so it can be adaptive. It has been suggested in [27] to use low amplitude noise 

for data dominated by high frequency signals and vice versa. It has been shown that 

CEEMDAN produces a smaller number of modes compared to EEMD.

D. Description of Algorithm

Fig. 1 shows a flowchart representation of the proposed methodology to detect QRS 

complexes and P waves. The different stages of the proposed methodology consist of: 

preprocessing, CEEMDAN decomposition, different signal reconstructions for QRS and P 

wave detection, QRS detection, QRS complex removal for P wave detection, P wave 

detection from both negative and positive sides of the signal, and adaptive combining of P 

waves detected from two sides to find the true P waves. The detailed descriptions of each 

step are given in the following subsections.

1) Preprocessing: In this stage baseline drift is removed from the raw ECG and the 

signal is standardized to zero mean and unit standard deviation. For baseline drift removal 

we use two moving window median filters with window sizes of 200 ms and 600 ms. The 

ECG signal is passed through these two different moving window median filters and then the 

average of the two outputs is subtracted from the original signal. The moving window 

median filtering method has been found quite effective in removing baseline wander [29]. 

Fig. 2 shows ECG signals after performing median filtering on the subject (Sel32) from the 

QTDB database.
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2) Decomposition of ECG Using Ceemdan: The preprocessed ECG signal is 

decomposed into a few modes using CEEMDAN. Fig. 3 shows an ECG signal for the 

subject Sel16273, and all the modes obtained using CEEMDAN decomposition. This figure 

clearly shows that the first few modes contain the high frequency components of the signal 

while the last few modes carry the low frequency information of the signal. Therefore, the 

first few modes are primarily used for QRS detection. It should be noted that the first mode 

(second row) mostly consists of noise. Thus, we use modes 2–5 to reconstruct the signal for 

QRS complex detection, and all the modes except the first mode are used to reconstruct the 

signal for subsequent P-wave detection. As the first mode of CEEMDAN carries the high 

frequency component and exhibits characteristics of high-frequency noise, reconstruction of 

the signal by leaving out the first mode improves the SNR significantly. Consequently, 

further filtering of the signal is not needed. Figs. 4(b) and 4(c) show reconstructed signals 

for QRS and P-wave detection, respectively. The reconstructed signal for the QRS complex 

contains mostly high frequency components that resemble QRS components. This kind of 

reconstruction is very advantageous for QRS detection, especially when large-amplitude T 

waves are present since T Waves can be falsely detected as QRS complexes by many 

algorithms. Fig. 4(b) shows the reconstructed signal for QRS complex detection. It should be 

noted that even though there are many long spiky T waves present in the original ECG, they 

are highly suppressed in the reconstructed signal. Fig. 4(c) shows the signal reconstruction 

for P-wave detection, which ignores the first mode in order to have a better SNR; thus, the P 

waves are more prominent than they are in the raw ECG signal. For this subject (Sele0110), 

the P waves are of low amplitude and are obscured in the raw ECG, but become more 

prominent after reconstruction.

3) QRS Detection: The reconstructed signal yR(t) from modes 2–5 of CEEMDAN 

decomposition is divided into two signals ypos(t) and yneg (t), i.e.

yR t = ypos t + yneg t , (3)

where

ypos(t) =
yR(t); yR(t) > 0
0;  Otℎerwise 

(4)

Similarly,

yneg(t) =
yR(t); yR(t) < 0
0;  Otℎerwise 

(5)

An automatic threshold is next computed for both signals ypos(t) and yneg(t) using a similar 

approach [16], where a histogram of local maxima is calculated for both signals.

Fig. 5 shows a histogram of local maxima for ypos(t). This figure shows that the QRS 

amplitude is the most prominent and separable from the other waveforms. From each 

histogram, a centroid is calculated using the following formula:
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C =
∑i = 1

N xiyi

∑i = 1
N yi

(6)

where, xi is the signal magnitude (either ypos (t) or yneg (t)) and yi is the distribution values 

of signals. Finally, the thresholds are defined as T1 = α1Cpos and T2 = α2CNeg, where Cpos 

and Cneg are the centroids of the histograms computed using the local maxima of ypos(t) and 

yneg (t), respectively. In our algorithm we chose α1 = α2 = 1 for QRS detection.

Once the thresholds are computed, we search for local maxima in both ypos(t) and yneg(t) 
that are greater than their respective thresholds. Thus, we generate R-peak candidates from 

both sides. Then, we combine R-peak candidates in a single array and sort in ascending 

order. Finally, we remove false R peaks by applying the following criteria:

1. If two consecutive R peaks are so close that the heart rate (HR) is above 250 

bpm, we discard the one with lower amplitude and choose the one with greater 

amplitude as an R peak.

2. R peaks that are close and consequently lead to a HR of 150 to 250 bpm, are 

taken as true R peaks if and only if they satisfy the amplitude threshold of 60% 

of the mean of R-peak amplitudes.

Fig. 6 shows some of the critical cases where our algorithm can successfully detect QRS 

complexes. Fig. 6(a) shows the case of a spiky long T wave, which sometimes causes false 

positives for many existing algorithms. Fig. 6 (b) and (c) show the case where there are 

inconsistent R peaks with low amplitude and high baseline wandering. In each of the cases, 

the proposed method detected R peaks without any false positives.

4) P Wave Detection: As stated in the previous section, for P wave detection we 

reconstruct the signals by taking all modes from CEEMDAN except the first. This is because 

a P wave amplitude is usually low compared to a QRS complex and it is affected by the 

filtering procedure. After QRS locations have been determined, the QRS complexes and the 

first half of each RR interval are removed from the reconstructed signal for P wave 

detection.

Then we divide the signal into two separate signals which contain positive and negative 

portions of the original signal, respectively. Then we generate P peak candidates from both 

sides using a similar approach as the QRS detection in the previous section (except α1 = α2 

= 0.5). Finally, we extract true P peak locations using an adaptive heuristic method which is 

described as follows:

1. Identify the P peak candidates within each RR interval from both positive and 

negative sides.

2. Calculate the PR interval for each candidate and find the deviation from the 

average PR interval of the previous M (in our case M = 10) P waves.

3. If, for any candidate, the deviation goes above a threshold (±20samples), it is 

discarded.
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4. If more than one candidate satisfies the threshold, the one which has the smallest 

deviation is taken as the true P peak unless, for each of them, deviations are very 

low (e.g. ± 8samples). In the latter case, the one that has the smallest deviation 

from the average amplitude of the previous M P waves is taken as the true P 

peak.

The main advantage of this P wave detection algorithm is that a P wave is detected from 

both sides (positive and negative) and then they are combined adaptively to find the true P 

wave. When we detect a P wave from the positive side, the negative amplitudes of the signal 

are not considered. Thus, if there is any spiky negative peak in the negative side of the 

signal, which is most likely due to noise, it will not affect the P wave detection, and similarly 

for the negative side. Finally, we combine P wave candidates adaptively so that the falsely 

detected peaks get filtered out in this process. Fig. 5 shows sample outputs of our P wave 

detection algorithm on the subject Sel16272. The red dots in the upper plot represent P 

peaks detected from the positive side and the green dots represent the P peak candidates 

detected from the negative side. Fig. 7 (b) shows the true P peaks that are detected after 

adaptive combining of the P wave candidates.

One other advantage of our algorithm is that we can automatically classify P wave types. For 

example, if the P waves are normal, we get consistent P peaks from the positive side, while 

for inverted P waves we get consistent P peaks from the negative side. In the case of biphasic 

P waves, we get P peaks from both sides. Fig. 6 shows P peak candidates in three different 

cases (normal, inverted and biphasic). Here, red and green dots represent P peaks detected 

from positive and negative sides, respectively. As we can see, when there are normal P 

peaks, we get consistent P peak candidates from the positive side (a) and when there are 

inverted P waves we get P peak candidates from the negative side (b). In the case of biphasic 

P waves we obtain consistent P peak candidates from both the positive and negative sides 

(c).

E. Validation

For validation of our algorithm we used the MIT-BIH arrhythmia database (MITDB) and the 

QT database (QTDB), which are both publicly available. We used the MITDB for QRS 

detection validation only and the QTDB for both QRS and P wave detection validation.

In order to make a fair comparison of our proposed method with the published methods, we 

only used the first channel of each recording for QRS detection. It should be noted that we 

excluded the ventricular flutter beats present in recording 207, as mentioned in other works 

[15]. For QRS complex detection in QTDB, we used 80 recordings (86,989 beats) and for P 

wave detection, we used 97 annotated recordings (3,194 beats). For QRS detection on 

QTDB, again, we only used the first channel in order to compare our algorithm with the 

published works. For P wave detection we only considered those data where annotations 

were available. In the case of P wave detection, we considered the detected P wave as a true 

positive only if it was within the annotated boundary of P onsets and offsets. As already 

mentioned previously, QTDB has only 11 records for which there are two different set of 

annotations. The rest of the records have only one set of annotations (ref1). Therefore, in 

order to be consistent, we only used the first annotations. Our proposed algorithm for P wave 
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detection works for only one lead while the annotations were performed using all available 

leads. Therefore, in order to compare our automatic P wave detection with the manual 

annotations, we get P peak location using both channels and finally for each point we chose 

the channel that gives less deviation from manual annotations in P peak position.

In order to asses QRS detection performance, we calculated the total number of false 

positives (FP), false negatives (FN), and true positives (TP) and defined the following 

parameters.

Sensitivity (se) = TP
TP + FN × 100% (7)

Positve Predictivity (PPV )
= TP

TP + FP × 100% (8)

Accuracy = TP
TP + FP + FN × 100% (9)

F1 = 2 × PPV × Se
PPV + SE (10)

III. Results

The performance of our proposed QRS and P wave detection methods are given in Tables 1 

and 2, respectively. For QRS detection the entire data were used to evaluate the algorithm’s 

performance.

For the MITDB, our proposed QRS detector has the highest sensitivity (99.96%) among the 

published works. The PPV and percentage of error are 99.89% and 0.15%, respectively. 

Most of the false positives were due to spiky high frequency noise and low amplitude R 

peaks. For the QTDB, our proposed algorithm is again found to be the most accurate in QRS 

detection among the published works. In the QTDB, the QRS detector has a sensitivity of 

99.97%, positive predictivity (PPV) of 99.93%, and error rate of 0.11%. It is found to be 

very effective in detecting QRS complexes even when there are some challenging scenarios 

including a low amplitude QRS complex and in the presence of tall and spiky T waves.

For P wave detection evaluation, we compared our proposed method with other published 

methods in terms of sensitivity (Se), positive predictivity (PPV), detection accuracy, F1 

score, and mean (m) and standard deviation of the difference between annotated time and the 

algorithm’s detected time for P peaks. Table 2 shows the performance of P-wave detection 

for the proposed algorithm. Our P wave detection method has a sensitivity of 99.75%, PPV 

of 99.47%, accuracy 99.22%, and F1 score of 99.61%. Overall performance of the proposed 

P wave detection method was better than any other published P wave detection algorithm, as 

shown in Table 2.
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A. Noise

In order to evaluate the performance of the proposed algorithm under noisy conditions, we 

applied our proposed method on MIT-BIH Noise Stress Test Database. Again, to be 

consistent we used only lead II for QRS complex detection. Table 3 shows performance of 

our QRS complex detection method and comparison with the performance of one other 

reported work [11]. It can be seen from the table that proposed method has detected QRS 

detection with pretty high accuracy even in significantly noisy conditions. The sensitivity of 

QRS detection remains fairly constant but PPV value decreases slightly as noise level 

increase (e.g. after 6 dB SNR). This is for the fact that increased amount of noise leads to 

more false positives.

IV. Discussion

The detection of QRS complex and P wave from the ECG signal are very useful for 

identification of different cardiac arrythmias (e.g. Afib, PAC, PVC etc.). In this work we 

proposed a novel method which can accurately detect QRS complex and P wave in ECG 

signal. This paper introduced the idea of detecting QRS complex and P wave from both 

negative and positive amplitude of ECG signals, and an adaptive P wave search approach 

which significantly improved the detection performance especially for P wave detection. The 

major challenge in QRS complex detection appears when there are very low amplitude QRS 

complex which are difficult to detect or long spiky T wave which are falsely detected as R 

peak sometimes. Our idea of QRS complex detection from both sides ensures the detection 

of even very low amplitude QRS complex. Also, our reconstruction strategy from 

CEEMDAN decomposition provides significant advantages against long spiky T wave as 

shown in fig. 3. Major advantages of using CEEMDAN is that it is data driven whereas 

wavelets transformation is sensitive to intra-subject and inter-subject variations. Even though 

EMD can be little bit faster than CEEMDAN and can be used for decomposing the ECG 

signal as well, its ‘mode mixing’ problem makes it less suitable for this purpose.

Detection of P wave is more challenging compared to QRS complex as the amplitude of P 

wave is very low and contaminated by different noises. Different methods like Differential 

evolution strategy [11], extended Kalman filter [10], wavelet transform [13], low pass 

differentiation (LPD) [5], phase free stationary wavelet transform [31], Gaussian mesa 

function models and nonlinear probability estimator [32] have been proposed to detect P 

wave from ECG signals. Even though some of them showed pretty good accuracy in P wave 

detection, they are computationally expensive, while many of them requires prior 

information about ECG and need training period. Besides, most of P wave detection 

algorithm were tested on normal sinus rhythm. Therefore, whenever they are applied on 

some ECGs with arrhythmias where there should be no P wave (e.g. Afib), they always 

detect so many P waves falsely due to noise. The proposed method uses adaptive P wave 

search where only consistent P waves are taken as true P waves. This process filters out 

wrongly detected P waves. Thus, proposed P wave detection can be potentially used to 

differentiate AF subjects from non-AF subjects especially when there are PAC/PVC subjects 

which have similar irregularity in RR interval like AF subjects but contains P waves with 
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every regular beat. A slight modification in the P wave detection algorithm can be applied to 

detect multiple P waves in ECGs (e.g. Atrial flutter).

The idea of detecting QRS complex and P wave from positive and negative amplitude 

signals, removing false QRS complex using different criteria and using adaptive P wave 

search approach, improves the detection performance under noisy conditions. The 

performance of our QRS complex detection algorithm on the MIT-BIH Noise Stress Test 

Database shows that it can detect QRS complex with a pretty good accuracy even in noisy 

conditions.

The proposed method showed good performance for both QRS complex and P wave 

detection. QRS detection, on a total of 196,430 annotated beats (including both MITDB and 

QTDB), resulted in a sensitivity of 99.96%, PPV of 99.9%, and percentage of error of 

0.13%. For P wave detection, our algorithm showed better performance than most other 

compared methods. The proposed algorithm for P wave detection resulted in a sensitivity of 

99.75% with a mean P peak detection error of approximately one sample (4 ms) and 

standard deviation less than or equal to 3 samples. Our approach also showed effective P 

wave detection for different P wave types (i.e. normal, inverted and biphasic). Moreover, the 

adaptive search for true P peaks used in this work was effective in reducing the number of 

false positives to a great extent.

There are few limitations in our proposed method which we observed so far. One limitation 

is that we chose typical peak value around the P wave as the P peak which may not be 

necessarily true always. We think this can be one reason why mean and standard deviation of 

P peak detection error is slightly worse than some of the published works. Secondly, even 

though our QRS detection achieved highest sensitivity (99.96%) among the published works 

in MITDB, it also detected more false positives (122) than some of the published methods. 

One possible reason for this can be that we developed our QRS and P wave detection 

algorithm based on QTDB, and while evaluating performance on MITDB we did not tune 

our algorithm any further.

V. Conclusion

In this paper we presented a CEEMDAN-based QRS and P wave detector. Reconstruction of 

the signals for QRS and P wave detection using different subsets of modes from CEEMDAN 

allowed better detection of these waveforms. We introduced the idea of P wave detection 

from both sides (positive and negative) and adaptive P peak search, which also enabled 

significant improvement in P-wave detection accuracy when compared to other published 

algorithms. We validated our QRS detection on a total of 196,430 annotated beats and P 

wave detection on 3,194 beats. In both cases, we obtained promising results. In many cases, 

especially in P wave detection, our algorithm performed significantly better than the 

published algorithms. Moreover, we showed that our P wave detection algorithm can 

identify different types of P waves and automatically differentiate them. Future studies 

should apply our novel algorithm to improve arrhythmia detection, for example P wave 

detection can potentially be used to differentiate irregular RR intervals as atrial fibrillation 

(if no P waves are present) or premature atrial or ventricular beasts (irregular beats among 
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normal sinus beats with P waves), or estimation of PR intervals used for diagnosis of either 

AV delay, AV block, or ventricular pre-excitation.

Acknowledgments

This work was supported by NIH under Grant R01 HL136660.

Biographies

MD BILLAL HOSSAIN received the B.S. degree in electrical and electronic engineering 

from the Bangladesh University of Engineering and Technology. He is currently pursuing 

the Ph.D. degree with the University Connecticut, Storrs, CT, USA.

SYED KHAIRUL BASHAR received the B.S. degree in electrical and electronic 

engineering from the Bangladesh University of Engineering and Technology. He is currently 

pursuing the Ph.D. degree with the University of Connecticut, Storrs, CT, USA.

ALLAN J. WALKEY is currently an Assistant Professor of medicine with the Boston 

University School of Medicine. His research interests involve cardiac complication of 

critical illness, critical care epidemiology, and comparative effectiveness research 

methodology.

DAVID D. MCMANUS is currently an Associate Professor of medicine with the University 

of Massachusetts Medical School, Worcester, MA, USA. His clinical interests include 

arrhythmia ablation, brady and tachyarrhythmias, and cardiac devices.

KI H. CHON received the B.S. degree in electrical engineering from the University of 

Connecticut, Storrs, CT, USA, the M.S. degree in biomedical engineering from the 

University of Iowa, Iowa City, and the M.S. degree in electrical engineering and the Ph.D. 

degree in biomedical engineering from the University of Southern California, Los Angeles. 

He is currently the John and Donna Krenicki Chair Professor and the Head of biomedical 

engineering with the University of Connecticut.

He is a Co-Founder of Mobile Sense Technologies, which is located at the TIP Center, 

Farmington, CT, USA. The company has recently been granted both NIH and NSF SBIR 

grants. He is a Fellow of the American Institute of Medical and Biological Engineering and 

HOSSAIN et al. Page 13

IEEE Access. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the International Academy of Medical and Biological Engineering. He has chaired many 

international conferences, including his role as the Program Co-Chair for the IEEE EMBS 

Conference in NYC, in 2006, and as the Conference Chair for the 6th International 

Workshop on Biosignal Interpretation in New Haven, CT, USA, in 2009. Hewas an 

Associate Editor of the IEEE TRANSACTIONSON BIOMEDICAL ENGINEERING, from 

2007 to 2013.

References

[1]. January CT et al., “2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial 
Fibrillation: Executive Summary: A Report of the American College of Cardiology/American 
Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society,” J. Am. 
Coll. Cardiol, vol. 64, no. 21, pp. 2246–2280, 12. 2014.

[2]. Mozaffarian D et al., “Heart disease and stroke statistics–2015 update: a report from the American 
Heart Association,” Circulation, vol. 131, no. 4, pp. e29–322, 1. 2015. [PubMed: 25520374] 

[3]. Chong JW, Esa N, McManus D, and Chon K, “Arrhythmia Discrimination using a Smart Phone,” 
IEEE J. Biomed. Health Inform, pp. 1–1, 2015.

[4]. Thakor NV and Zhu YS, “Applications of adaptive filtering to ECG analysis: noise cancellation 
and arrhythmia detection,” IEEE Trans. Biomed. Eng, vol. 38, no. 8, pp. 785–794, 8. 1991. 
[PubMed: 1937512] 

[5]. Laguna P, Jané R, and Caminal P, “Automatic detection of wave boundaries in multilead ECG 
signals: validation with the CSE database,” Comput. Biomed. Res. Int. J, vol. 27, no. 1, pp. 45–
60, 2. 1994.

[6]. Trahanias P and Skordalakis E, “Syntactic Pattern Recognition of the ECG,” IEEE Trans Pattern 
Anal Mach Intell, vol. 12, pp. 648–657, 1990.

[7]. Sternickel K, “Automatic pattern recognition in ECG time series,” Comput. Methods Programs 
Biomed, vol. 68, no. 2, pp. 109–115, 5 2002. [PubMed: 11932027] 

[8]. Dumont Ast J, Hernández AI, and Carrault G, “Improving ECG beats delineation with an 
evolutionary optimization process,” IEEE Trans. Biomed. Eng, vol. 57, no. 3, pp. 607–615, 3. 
2010. [PubMed: 19171513] 

[9]. Lin C, Mailhes C, and Tourneret J-Y, “P- and T-wave delineation in ECG signals using a Bayesian 
approach and a partially collapsed Gibbs sampler,” IEEE Trans. Biomed. Eng, vol. 57, no. 12, pp. 
2840–2849, 12. 2010. [PubMed: 20851787] 

[10]. Sayadi O and Shamsollahi MB, “A model-based Bayesian framework for ECG beat 
segmentation,” Physiol. Meas, vol. 30, no. 3, pp. 335–352, 2. 2009. [PubMed: 19242046] 

[11]. Panigrahy D and Sahu PK, “P and T wave detection and delineation of ECG signal using 
differential evolution (DE) optimization strategy,” Australas. Phys. Eng. Sci. Med, vol. 41, no. 1, 
pp. 225–241, 3. 2018. [PubMed: 29484531] 

[12]. Bote JM, Recas J, Rincón F, Atienza D, and Hermida R, “A Modular Low-Complexity ECG 
Delineation Algorithm for Real-Time Embedded Systems,” IEEE J. Biomed. Health Inform, vol. 
22, no. 2, pp. 429–441, 3. 2018. [PubMed: 28222005] 

[13]. Rincón F, Recas J, Khaled N, and Atienza D, “Development and Evaluation of Multilead 
Wavelet-Based ECG Delineation Algorithms for Embedded Wireless Sensor Nodes,” IEEE 
Trans. Inf. Technol. Biomed, vol. 15, no. 6, pp. 854–863, 11. 2011. [PubMed: 21827976] 

[14]. Ghaffari A, Homaeinezhad MR, Khazraee M, and Daevaeiha MM, “Segmentation of Holter ECG 
Waves Via Analysis of a Discrete Wavelet-Derived Multiple Skewness–Kurtosis Based Metric,” 
Ann. Biomed. Eng, vol. 38, no. 4, pp. 1497–1510, 4. 2010. [PubMed: 20087769] 

[15]. Martinez JP, Almeida R, Olmos S, Rocha AP, and Laguna P, “A wavelet-based ECG delineator: 
evaluation on standard databases,” IEEE Trans. Biomed. Eng, vol. 51, no. 4, pp. 570–581, 4. 
2004. [PubMed: 15072211] 

[16]. Yochum M, Renaud C, and Jacquir S, “Automatic detection of P, QRS and T patterns in 12 leads 
ECG signal based on CWT,” Biomed. Signal Process. Control, vol. 25, pp. 46–52, 3. 2016.

HOSSAIN et al. Page 14

IEEE Access. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[17]. Arzeno NM, Deng Z-D, and Poon C-S, “Analysis of First-Derivative Based QRS Detection 
Algorithms,” IEEE Trans. Biomed. Eng, vol. 55, no. 2, pp. 478–484, 2. 2008. [PubMed: 
18269982] 

[18]. Arbateni K and Bennia A, “Sigmoidal radial basis function ANN for QRS complex detection,” 
Neurocomputing, vol. 145, pp. 438–450, 12. 2014.

[19]. Xing H and Huang M, “A New QRS Detection Algorithm Based on Empirical Mode 
Decomposition,” in 2008 2nd International Conference on Bioinformatics and Biomedical 
Engineering, 2008, pp. 693–696.

[20]. de Lannoy G, Frenay B, Verleysen M, and Delbeke J, “Supervised ECG Delineation Using the 
Wavelet Transform and Hidden Markov Models,” in 4th European Conference of the 
International Federation for Medical and Biological Engineering, 2009, pp. 22–25.

[21]. Pan J and Tompkins WJ, “A Real-Time QRS Detection Algorithm,” IEEE Trans. Biomed. Eng, 
vol. BME-32, no. 3, pp. 230–236, 3. 1985.

[22]. Goldberger Ary L et al., “PhysioBank, PhysioToolkit, and PhysioNet,” Circulation, vol. 101, no. 
23, pp. e215–e220, 6. 2000. [PubMed: 10851218] 

[23]. Moody GB and Mark RG, “The impact of the MIT-BIH Arrhythmia Database,” IEEE Eng. Med. 
Biol. Mag, vol. 20, no. 3, pp. 45–50, 5 2001. [PubMed: 11446209] 

[24]. Laguna P, Mark RG, Goldberg A, and Moody GB, “A database for evaluation of algorithms for 
measurement of QT and other waveform intervals in the ECG,” in Computers in Cardiology 
1997, 1997, pp. 673–676.

[25]. Moody GB, Muldrow WE, Mark RG., “A noise stress test for arrhythmia detectors. Computers in 
Cardiology 1984;,” Comput. Cardiol 1984, vol. 11, pp. 381–384.

[26]. Huang Norden E et al., “The empirical mode decomposition and the Hilbert spectrum for 
nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci, 
vol. 454, no. 1971, pp. 903–995, 3. 1998.

[27]. Wu Z and Huang NE, “Ensemble empirical mode decomposition: a noise-assisted data analysis 
method,” Adv. Adapt. Data Anal, vol. 01, no. 01, pp. 1–41, 1. 2009.

[28]. Torres ME, Colominas MA, Schlotthauer G, and Flandrin P, “A complete ensemble empirical 
mode decomposition with adaptive noise,” in 2011 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), 2011, pp. 4144–4147.

[29]. Awodeyi AE, Alty SR, and Ghavami M, “Median Filter Approach for Removal of Baseline 
Wander in Photoplethysmography Signals,” in 2013 European Modelling Symposium, 2013, pp. 
261–264.

[30]. Qin Q, Li J, Yue Y, and Liu C, “An Adaptive and Time-Efficient ECG R-Peak Detection 
Algorithm,” Journal of Healthcare Engineering, 2017. [Online]. Available: https://
www.hindawi.com/journals/jhe/2017/5980541/. [Accessed: 14-May-2019].

[31]. Bashar SK, Noh Y, Walkey AJ, McManus DD, and Chon KH, “VERB: VFCDM-Based 
Electrocardiogram Reconstruction and Beat Detection Algorithm,” IEEE Access, vol. 7, pp. 
13856–13866, 2019. [PubMed: 31741809] 

[32]. Li Cuiwei, Zheng Chongxun, and Tai Changfeng, “Detection of ECG characteristic points using 
wavelet transforms,” IEEE Trans. Biomed. Eng, vol. 42, no. 1, pp. 21–28, 1. 1995. [PubMed: 
7851927] 

[33]. Hamilton PS and Tompkins WJ, “Quantitative Investigation of QRS Detection Rules Using the 
MIT/BIH Arrhythmia Database,” IEEE Trans. Biomed. Eng, vol. BME-33, no. 12, pp. 1157–
1165, 12. 1986.

[34]. Afonso VX, Tompkins WJ, and N. TQ and, “ECG beat detection using filter banks,” IEEE Trans. 
Biomed. Eng, vol. 46, no. 2, pp. 192–202, 2. 1999. [PubMed: 9932341] 

[35]. Lenis G, Pilia N, Oesterlein T, Luik A, Schmitt C, and Dössel O, “P wave detection and 
delineation in the ECG based on the phase free stationary wavelet transform and using 
intracardiac atrial electrograms as reference,” Biomed. Tech. (Berl), vol. 61, no. 1, pp. 37–56, 2. 
2016. [PubMed: 26136298] 

[36]. Dubois R, Maison-Blanche P, Quenet B, and Dreyfus G, “Automatic ECG wave extraction in 
long-term recordings using Gaussian mesa function models and nonlinear probability 

HOSSAIN et al. Page 15

IEEE Access. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.hindawi.com/journals/jhe/2017/5980541/
https://www.hindawi.com/journals/jhe/2017/5980541/


estimators,” Comput. Methods Programs Biomed, vol. 88, no. 3, pp. 217–233, 12. 2007. 
[PubMed: 17997186] 

[37]. Moody GB, and Mark RG., “Development and evaluation of a 2-lead ECG analysis program,” 
The Proceeding Computer in Cardiology, pp. 185–188,1982.

HOSSAIN et al. Page 16

IEEE Access. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Schematic diagram of proposed methodology
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Fig. 2. 
Output of preprocessing stage using subject sel32m (highly affected by baseline wandering). 

(a) ECG with baseline wander. (b) Preprocessed ECG signal
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Fig. 3. 
CEEMDAN decomposition of preprocessed ECG. The first row is the ECG signal which is 

decomposed into modes.
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Fig. 4. 
Reconstructed signals for QRS and P wave detection for subject Sele0110. (a) Raw ECG 

signal. (b) Reconstructed signal for QRS complex detection. (c) Reconstructed signal for P 

wave detection
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Fig. 5. 
Histogram of local maxima of ypos for subject Sel16273
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Fig. 6. 
QRS complex detection on. (a) Subject Sele0110 (QTDB). (b) Subject 228m (MITDB). (c) 

Subject 210m (MITDB)
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Fig. 7. 
Example of P wave detection on subject Sel16272. (a) P peak candidates from positive and 

negative side (red and green dots respectively). (b) P peaks after adaptive true peak search.
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Fig. 8. 
P wave candidates detected for different types of P waves. (a) Normal P wave. (b) Inverted P 

wave. (c) Biphasic P wave (Red dot represents P-wave candidates from positive side and 

green dot represents P-wave candidates from the negative side.)
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