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Abstract

Phase is important for perceptual quality of speech. However, it seems intractable to directly 

estimate phase spectra through supervised learning due to their lack of spectrotemporal structure 

in it. Complex spectral mapping aims to estimate the real and imaginary spectrograms of clean 

speech from those of noisy speech, which simultaneously enhances magnitude and phase 

responses of speech. Inspired by multi-task learning, we propose a gated convolutional recurrent 

network (GCRN) for complex spectral mapping, which amounts to a causal system for monaural 

speech enhancement. Our experimental results suggest that the proposed GCRN substantially 

outperforms an existing convolutional neural network (CNN) for complex spectral mapping in 

terms of both objective speech intelligibility and quality. Moreover, the proposed approach yields 

significantly higher STOI and PESQ than magnitude spectral mapping and complex ratio masking. 

We also find that complex spectral mapping with the proposed GCRN provides an effective phase 

estimate.

Index Terms—

Complex spectral mapping; gated convolutional recurrent network; phase estimation; monaural 
speech enhancement

I. Introduction

Speech signals are distorted by background noise in daily listening environments. Such 

distortions severely degrade speech intelligibility and quality for human listeners, and make 

many speech-related tasks, such as automatic speech recognition and speaker identification, 

more difficult. Speech enhancement aims to remove or attenuate background noise from a 

speech signal. It is fundamentally challenging if the speech signal is captured by a single 

microphone at low signal-to-noise ratios (SNRs). This study focuses on monaural (single-

channel) speech enhancement.
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Monaural speech enhancement has been extensively studied in the speech processing 

community in the last decades. Inspired by the concept of time-frequency (T-F) masking in 

computational auditory scene analysis (CASA), speech enhancement has been formulated as 

supervised learning in recent years [36]. For supervised speech enhancement, a proper 

selection of the training target is important [38]. On one hand, a well-defined training target 

can substantially improve both speech intelligibility and quality. On the other hand, the 

training target should be amenable to supervised learning. Many training targets have been 

developed in the TF domain, and they mainly fall into two groups. One group is masking-

based targets such as the ideal ratio mask (IRM) [38], which define the time-frequency 

relationships between clean speech and noisy speech. Another is mapping-based targets such 

as the log-power spectrum (LPS) [44] and the target magnitude spectrum (TMS) [20], [12], 

which represent the spectral features of clean speech.

Most of these training targets operate on the magnitude spectrogram of noisy speech, which 

is computed from a short-time Fourier transform (STFT). Hence, typical speech 

enhancement systems enhance only the magnitude spectrogram and simply use the noisy 

phase spectrogram to resynthesize the enhanced time-domain waveform. The reason for not 

enhancing the phase spectrogram is two-fold. First, it was found that no clear structure exists 

in the phase spectrogram, which renders it intractable to directly estimate the phase 

spectrogram of clean speech [43]. Second, it was believed that phase enhancement is not 

important for speech enhancement [37]. A more recent study by Paliwal et al. [23], however, 

shows that accurate phase estimation can considerably improve both objective and subjective 

speech quality, especially when the analysis window for phase spectrum computation is 

carefully selected. Subsequently, various phase enhancement algorithms have been 

developed for speech separation. Mowlaee et al. [21] estimated the phase spectra of two 

sources in a mixture by minimizing the mean squared error (MSE). Krawczyk and 

Gerkmann [17] performed phase enhancement over voiced-speech frames while leaving 

unvoiced frames unaltered. Kulmer et al. [18] estimated the clean speech phase via the phase 

decomposition of the instantaneous noisy phase spectrum, followed by temporal smoothing. 

Objective speech quality improvements are achieved by these phase enhancement methods. 

Alternatively, phase information can be incorporated into T-F masking. Wang and Wang [39] 

trained a deep neural network (DNN) to directly reconstruct the time-domain enhanced 

signal using the noisy phase through an inverse Fourier transform layer. The results show 

that joint training of speech resynthesis and mask estimation improves perceptual quality 

while maintaining objective intelligibility. Another approach is the phase-sensitive mask 

(PSM) [5], which incorporates the phase difference between clean speech and noisy speech. 

The experimental results show that PSM estimation yields higher signal-to-distortion ratio 

(SDR) than only enhancing the magnitude spectrum.

Williamson et al. [43] observed that, whereas phase spectrogram lacks spectrotemporal 

structure, both real and imaginary components of the clean speech spectrogram exhibit clear 

structure and thus are amenable to supervised learning. Hence they designed the complex 

ideal ratio mask (cIRM), which can reconstruct clean speech from noisy speech. In their 

experiments, a DNN is employed to jointly estimate the real and imaginary spectra. Unlike 

the algorithms in [21], [17] and [18], cIRM estimation can enhance both the magnitude and 

phase spectra of noisy speech. The results show that complex ratio masking (cRM) yields 
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better perceptual quality over IRM estimation while achieving slight or no improvement in 

objective intelligibility. Subsequently, Fu et al. [6] employed a convolutional neural network 

(CNN) to estimate the clean real and imaginary spectra from the noisy ones. The estimated 

real and imaginary spectra are then used to reconstruct the time-domain waveform. Their 

experimental results show that the CNN leads to a 3.1% improvement in short-time objective 

intelligibility (STOI) [29] and a 0.12 improvement in perceptual evaluation of speech quality 

(PESQ) [28] over a DNN. Moreover, they trained a DNN to map from the noisy LPS 

features to the clean ones. Their experimental results show that complex spectral mapping 

using a DNN yields a 2.4% STOI improvement and a 0.21 PESQ improvement over LPS 

spectral mapping using the same DNN.

In the last decade, supervised speech enhancement has benefited immensely from the use of 

CNNs and recurrent neural networks (RNNs). In [42], [41], [40] and [5], RNNs with long 

short-term memory (LSTM) are employed to perform speech enhancement. More recently, 

Chen et al. [1] proposed an RNN with four hidden LSTM layers to address speaker 

generalization of noise-independent models. They found that the RNN generalizes well to 

untrained speakers, and significantly outperforms a feedforward DNN in terms of STOI. In 

addition, CNNs have also been used for mask estimation and spectral mapping [7], [25], 

[11], [31]. In [25], Park et al. utilize a convolutional encoder-decoder network (CED) to 

perform spectral mapping. The CED achieves comparable denoising performance to a DNN 

and an RNN, while having much fewer trainable parameters. Grais et al. [11] proposed a 

similar encoder-decoder architecture. More recently, we proposed a gated residual network 

based on dilated convolutions, which has large receptive fields and thus can leverage long-

term contexts [31]. Convolutional recurrent networks (CRNs) benefit from the feature 

extraction capability of CNNs and the temporal modeling capability of RNNs. Naithani et al. 
[22] devised a CRN by successively stacking convolutional layers, recurrent layers and fully 

connected layers. A similar CRN architecture was developed in [46]. Recently, we integrated 

a CED and LSTMs into a CRN, which amounts to a causal system [32]. Moreover, 

Takahashi et al. [30] developed a CRN that combines convolutional layers and recurrent 

layers at multiple low scales.

In a preliminary study, we recently proposed a novel CRN to perform complex spectral 

mapping for monaural speech enhancement [33]. This CRN was based on the architecture in 

[32]. Compared with the CNN in [6], the CRN yields higher STOI and PESQ, and is more 

computationally efficient. In this study, we further develop the CRN architecture and 

investigate complex spectral mapping for monaural speech enhancement. Our extensions to 

[33] include the following. First, each convolutional or deconvolutional layer is replaced by 

a corresponding gated linear unit (GLU) block [4]. Second, we add a linear layer on top of 

the last deconvolutional layer to predict the real and imaginary spectra.

The rest of this paper is organized as follows. In Section II, we introduce monaural speech 

enhancement in the STFT domain. In Section III, we describe our proposed approach in 

detail. Experimental setup is provided in Section IV. In Section V, we present and discuss 

experimental results. Section VI concludes this paper.
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II. Monaural Speech Enhancement in the STFT Domain

Given a single-microphone mixture y, monaural speech enhancement aims to separate target 

speech s from background noise n. A noisy mixture can be modeled as

y[k] = s[k] + n[k], (1)

where k is the time sample index. Taking the STFT on both sides, we obtain

Y m, f = Sm, f + Nm, f, (2)

where Y, S and N represent the STFT of y, s and n, respectively, and m and f index the time 

frame and the frequency bin, respectively. In polar coordinates, Eq. (2) becomes

Y m, f eiθYm, f = Sm, f eiθSm, f + Nm, f eiθNm, f, (3)

where |·| denotes the magnitude response and θ. the phase response. The imaginary unit is 

represented by ‘i’. The target magnitude spectrum (TMS) of clean speech (i.e. commonly-

used |Sm,f|) is a commonly-used training target in typical spectral mapping based approaches 

[20], [12]. In these approaches, a mapping from noisy features such as the noisy magnitude |

Ym,f| to the target magnitude is learned. The estimated magnitude |Ŝm,f| is then combined 

with the noisy phase θYm, f to resynthesize the waveform. Fig. 1(a) depicts the phase 

spectrogram of a speech signal, where the phase values are wrapped into the range of (−π, 

π]. With the wrapping, the phase spectrogram looks rather random. An unwrapped version 

of the phase spectrogram leads to a smoother phase plot in Fig. 1(b), where the phase values 

are corrected by adding multiples of ±2π when absolute phase jumps between consecutive 

T-F units are greater than or equal to π. One can observe that both plots exhibit no clear 

structure. Therefore, it would be intractable to directly estimate the phase spectrum through 

supervised learning.

From an alternative perspective, the STFT of a speech signal can be expressed in Cartesian 

coordinates. Hence, Eq. (2) can be rewritten into

Y m, f
(r) + iY m, f

(i) = Sm, f
(r) + Nm, f

(r) + i Sm, f
(i) + Nm, f

(i) , (4)

where the superscripts (r) and (i) indicate real and imaginary components, respectively. In 

[43], the cIRM is defined as

M = Y (r)S(r) + Y (i)S(i)

Y (r) 2 + Y (i) 2 + iY (r)S(i) − Y (i)S(r)

Y (r) 2 + Y (i) 2 , (5)

where the indices m and f are omitted for simplicity. The enhanced spectrogram can be 

derived by applying an estimate of the cIRM M to the noisy spectrogram:

S = M × Y , (6)

where the multiplication ‘×’ above is a complex operator.
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Additionally, we extend signal approximation (SA) [15]. SA performs masking by 

minimizing the difference between the spectral magnitude of clean speech and that of 

estimated speech. The loss for cRM-based signal approximation (cRM-SA) is defined as:

SA = cRM × Y − S 2 , (7)

where |·| represents the complex modulus, i.e. the absolute value of a complex number.

As shown in Fig. 1(d) and 1(e), both real and imaginary spectrograms exhibit clear 

spectrotemporal structure, akin to the magnitude spectrogram (Fig. 1(c)) and thus amenable 

to supervised learning. Therefore, we propose to learn the spectral mapping directly from the 

real and imaginary spectra of noisy speech (i.e. Y(r) and Y(i)) to those of clean speech(i.e. 

S(r) and S(i)), as in [6]. Subsequently, the estimated real and imaginary spectra are combined 

to recover the time-domain signal.

It should be noted that Williamson et al. [43] claimed that directly predicting the real and 

imaginary components of the STFT via a DNN is not effective. However, we find that 

complex spectral mapping consistently outperforms magnitude spectral mapping, complex 

ratio masking, and complex ratio masking based signal approximation in both STOI and 

PESQ metrics, with a well-designed neural network architecture. For convenience, we refer 

to the training target used in complex spectral mapping, i.e. S(r) and S(i), as the target 

complex spectrum (TCS).

III. System Description

A. Convolutional Recurrent Network

In [32], we have developed a convolutional recurrent network, which is essentially an 

encoder-decoder architecture with LSTMs between the encoder and the decoder. 

Specifically, the encoder comprises five convolutional layers, and the decoder five 

deconvolutional layers. Between the encoder and the decoder, two LSTM layers model 

temporal dependencies. The encoder-decoder structure is designed in a symmetric way: the 

number of kernels progressively increases in the encoder and decreases in the decoder. To 

aggregate the context along the frequency direction, a stride of 2 is adopted along the 

frequency dimension in all convolutional and deconvolutional layers. In other words, the 

frequency dimensionality of feature maps is halved layer by layer in the encoder and 

doubled layer by layer in the decoder, which ensures that the output has the same shape as 

the input. Additionally, skip connections are utilized to concatenate the output of each 

encoder layer to the input of the corresponding decoder layer. In the CRN, all convolutions 

and deconvolutions are causal, so that the enhancement system does not use future 

information. Fig. 2 illustrates the CRN architecture in [32] for spectral mapping in the 

magnitude domain.

B. Gated Linear Units

Gating mechanisms control the information flows throughout the network, which potentially 

allows for modeling more sophisticated interactions. They were first developed for RNNs 
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[14]. In a recent study [34], Van den Oord et al. adopted an LSTM-style gating mechanism 

for the convolutional modeling of images, which led to a masked convolution:

y = tanh x * W1 + b1 ⊙ σ x * W2 + b2
= tanh v1 ⊙ σ v2 , (8)

where v1 = x * W1 + b1 and v2 = x * W2 + b2. W’s and b’s denote kernels and biases, 

respectively, and σ the sigmoid function. Symbols * and ⊙ represent convolution operation 

and element-wise multiplication, respectively. The gradient of the gating is

∇ tanh v1 ⊙ σ v2 = tanh′ v1 ∇v1 ⊙ σ v2
+σ′ v2 ∇v2 ⊙ tanh v1 , (9)

where tanh′(v1), σ′ (v2) ∈ (0, 1), and the prime symbol denotes differentiation. The gradient 

gradually vanishes as the network depth increases due to the downscaling factors tanh′(v1) 

and σ′(v2). To mitigate this problem, Dauphin et al. [4] introduced GLUs:

y = x * W1 + b1 ⊙ σ x * W2 + b2
= v1 ⊙ σ v2 . (10)

The gradient of the GLUs

∇ v1 ⊙ σ v2 = ∇v1 ⊙ σ v2 + σ′ v2 ∇v2 ⊙ v1 (11)

includes a path ∇v1 ⊙ σ(v2) without downscaling, which can be regarded as a multiplicative 

skip connection that facilitates the gradients to flow through layers. A convolutional GLU 

block (denoted as “ConvGLU”) is illustrated in Fig. 3(a). A deconvolutional GLU block 

(denoted as “DeconvGLU”) is analogous, except that the convolutional layers are replaced 

by deconvolutional layers, as shown in Fig. 3(b).

C. Model Complexity Reduction via a Grouping Strategy

Model efficiency is important for many real-world applications. Mobile phone applications, 

for example, require real-time processing with low latency. In these applications, high 

computational efficiency and a small memory footprint are necessary. Gao et al. [9] have 

recently proposed a grouping strategy to improve the efficiency of recurrent layers while 

maintaining their performance. This grouping strategy is illustrated in Fig. 4. In a recurrent 

layer, both the input features and the hidden states are split into disjoint groups, and intra-

group features are learned separately within each group, as shown in Fig. 4(b). The grouping 

operation substantially reduces the number of inter-layer connections and thus the model 

complexity. The inter-group dependency, however, cannot be captured. In other words, an 

output only depends on the input in the corresponding feature group, which may 

significantly degrade the representation power. To alleviate this problem, a parameter-free 

representation rearrangement layer between two successive recurrent layers is employed to 

rearrange the features and hidden states, so that the inter-group correlations are recovered 

(Fig. 4(c)). In order to elevate the model efficiency, we adopt this grouping strategy for the 

LSTM layers in our model. We find that this strategy improves the enhancement 

performance with a proper group number.
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D. Network Architecture

This study extends the CRN architecture in [32] (see Fig. 2) to perform complex spectral 

mapping. The resulting CRN additionally incorporates GLUs and thus amounts to a gated 

convolutional recurrent network (GCRN). Fig. 5 depicts our proposed GCRN architecture. 

Note that the real and imaginary spectrograms of noisy speech are treated as two different 

input channels as in [6]. As shown in Fig. 5, the encoder module and the LSTM module are 

shared across the estimates of real and imaginary components, while two distinct decoder 

modules are employed to estimate real and imaginary spectrograms, respectively. The design 

of such an architecture is inspired by multi-task learning [19], [45], in which multiple related 

prediction tasks are jointly learned with information shared across the tasks. For complex 

spectral mapping, the estimation of the real component and that of the imaginary component 

can be considered as two related subtasks (see [43]). Therefore, parameter sharing is 

expected to achieve a regularization effect between the subtasks, which may lead to better 

generalization. Moreover, the learning may be encouraged by parameter sharing, particularly 

when two subtasks are highly correlated. On the other hand, excessive parameter sharing 

between subtasks could discourage the learning, especially when the two subtasks are 

weakly correlated. Therefore, the proper choice of parameter sharing may be important for 

the performance. In [33], we investigated four different parameter sharing mechanisms. 

Among them, sharing the encoder module and the LSTM module while not sharing the 

decoder module leads to the best performance.

In this study, we assume that all signals are sampled at 16 kHz. A 20-ms Hamming window 

is utilized to produce a set of time frames, with a 50% overlap between adjacent time 

frames. We use 161-dimensional spectra, which corresponds to a 320-point STFT (16 

kHz×20 ms).

Table I provides details of our proposed network architecture. The input size and the output 

size of each layer are given in the featureMaps × timeSteps × frequencyChannels format. In 

addition, the layer hyperparameters are specified in the (kernelSize, strides, outChannels) 

format. Note that the number of feature maps in each decoder layer is doubled by skip 

connections. Rather than using the kernel size of 2×3 (time × frequency) in [32], we use the 

kernel size of 1×3, which we found does not degrade the performance. Each convolutional or 

deconvolutional GLU block is successively followed by a batch normalization [16] operation 

and an exponential linear unit (ELU) [3] activation function. A linear layer is stacked on top 

of each decoder to project the learned features to the real or imaginary spectrograms.

IV. Experimental Setup

A. Data Preparation

In our experiments, we evaluate the proposed models on the WSJ0 SI-84 training set [26] 

which includes 7138 utterances from 83 speakers (42 males and 41 females). We set aside 

six (3 males and 3 females) of these speakers untrained for testing. In other words, we train 

the models with 77 remaining speakers. Of the utterances from the 77 training speakers, we 

hold out 150 randomly selected utterances to create a validation set with a factory noise 

(called “factory1”) from the NOISEX-92 dataset [35] at −5 dB SNR. For training, we use 
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10,000 noises from a sound effect library (available at https://www.sound-ideas.com), which 

has the total duration of about 126 hours. For testing, we use two highly nonstationary 

noises, i.e. babble (“BAB”) and cafeteria (“CAF”), from an Auditec CD (available at http://

www.auditec.com).

Our training set contains 320,000 mixtures, and its total duration is about 500 hours. 

Specifically, to create a training mixture, we mix a randomly selected training utterance with 

a random segment from the 10,000 training noises. The SNR is randomly sampled from {−5, 

−4, −3, −2, −1, 0} dB. Our test set comprises 150 mixtures that are created from 25×6 

utterances of the 6 untrained speakers. We use three SNRs for the test set, i.e. −5, 0 and 5 

dB.

B. Baselines and Training Methodology

We compare our proposed approach with five baselines. We first train a CRN to map from 

the magnitude spectrogram of noisy speech to those of clean speech [32] (denoted as “CRN 

+ TMS”). The estimated magnitude is combined with noisy phase to resynthesize the 

waveform. In the second baseline (denoted as “CRN-RI + TMS”), the same CRN is 

employed to map from the real and imaginary spectrograms of noisy speech to the 

magnitude spectrogram of clean speech. Third, a CNN is trained to perform complex 

spectral mapping as in [6]. It has four convolutional layers with 50 kernels and the kernel 

size of 1×25, followed by two fully connected layers with 512 units in each layer. Parametric 

rectified linear units (PReLUs) [13] are employed in all layers except for the output layer. In 

the output layer, 322 (161×2) units with linear activations are used to predict the real and 

imaginary spectra. Fourth, we train our proposed GCRN to predict the cIRM. Note that the 

real and imaginary components of the cIRM may have a large range in (−∞, +∞), which 

may complicate cIRM estimation. Therefore, we compress the cIRM with the following 

hyperbolic tangent as suggested in [43]:

O(x) = K 1 − e−C ⋅ M(x)

1 + e−C ⋅ M(x) , (12)

where x denotes r or i, indicating the real and imaginary components, respectively. During 

inference, the estimate of the uncompressed mask can be recovered as follows:

M(x) = − 1
C log K − O(x)

K + O(x) , (13)

where O(x)
 denotes the GCRN output. We set K=10 and C=0.1 as in [43]. Fifth, we train the 

same GCRN with the cRM-SA as the training target.

The models are trained using the AMSGrad optimizer [27] with a learning rate of 0.001. We 

use the mean squared error (MSE) as the objective function. The minibatch size is set to 4 at 

the utterance level. Within a minibatch, all training samples are padded with zeros to have 

the same number of time steps as the longest sample. The best models are selected by cross 

validation.
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V. Experimental Results and Analysis

A. Results and Comparisons

Comprehensive comparisons among different models and training targets are shown in 

Tables II, III and IV for −5 dB, 0 dB and 5 dB SNR, respectively, in terms of STOI and 

PESQ. The numbers represent the averages over the test samples in each test condition. The 

best scores in each test condition are highlighted by boldface. KS denotes the kernel size in 

the time direction and G the group number in the grouped LSTM layers. Note that G=1 

means that grouping is not performed. We first compare our proposed GCRN architecture 

with different group numbers using the TCS as the training target, as shown in the last four 

rows of Tables II, III and IV. It can be observed that G=1, G=2, G=4 and G=8 yield similar 

results in terms of both metrics, which suggests the effectiveness of the grouping strategy.

Moreover, our proposed GCRN model substantially outperforms the CNN (KS=1) in [6]. At 

−5 dB SNR, for example, the proposed GCRN with G=2 improves STOI by 13.14% and 

PESQ by 0.47 over the CNN. With a kernel size of 1×25, the CNN only captures the 

contexts along the frequency direction, without learning temporal dependencies. In contrast, 

our proposed GCRN accounts for both the frequency and temporal contexts of speech. We 

investigate the effects of temporal contexts for the CNN in [6] by simply using different 

kernel sizes in the time direction. Specifically, we use four different kernel sizes, i.e. 2×25, 

3×25, 4×25 and 5×25, aside from the original version (i.e. 1×25) in [6]. Note that these 

kernels operate only on the current and past time frames, which amounts to causal 

convolutions. With four convolutional layers, these CNNs correspond to different temporal 

context window sizes of 5, 9, 13, and 17 frames, respectively. As shown in Tables II, III and 

IV, a larger context window size yields higher STOI but slight or no improvements in PESQ.

With the cRM-SA as the training target, our proposed GCRN yields significantly better 

STOI and PESQ than the same GCRN with the cIRM. Going from the cRM-SA to the TCS 

further improves both metrics. Take, for example, the −5 dB SNR case. The proposed 

GCRN (G=1) with the cRM-SA yields a 3.68% STOI improvement and a 0.09 PESQ 

improvement compared with the estimated cIRM. An additional 2.28% STOI improvement 

and an additional 0.08 PESQ improvement are achieved by the estimated TCS. An example 

of spectrograms of clean speech, noisy speech, and enhanced speech by the GCRN with the 

cIRM, the cRM-SA and the TCS as training targets, are shown in Fig. 8. We can see that 

some speech components are lost in the spectrogram of enhanced speech by the estimated 

cIRM or cRM-SA. In contrast, enhanced speech by the estimated TCS exhibits more similar 

spectrotemporal modulation patterns to clean speech and less distortion than the enhanced 

speech by the estimated cIRM or cRM-SA.

We now compare spectral mapping in the magnitude domain and the complex domain. As 

shown in Tables II, III and IV, “CRN + TMS” and “CRN-RI + TMS” utilize the same model 

and training targets, but different input features. Using the real and imaginary spectra of 

noisy speech as the features yields slightly better STOI and PESQ than using the noisy 

magnitude spectra. Our proposed approach (denoted as “GCRN + TCS”), which utilizes the 

TCS as the training target, significantly improves STOI and PESQ over “CRN-RI + TMS”. 
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For example, “GCRN + TCS (G=2)” improves STOI by 4.21% and PESQ by 0.1 over 

“CRN-RI + TMS” at −5 dB SNR.

To further demonstrate the effectiveness of complex spectral mapping, we additionally train 

two LSTM models with the TMS and the TCS, respectively. Both LSTM models have four 

stacked LSTM hidden layers with 1024 units in each layer, and a fully connected layer is 

used to estimate the TMS and the TCS, with a softplus activation function [10] and a linear 

activation function, respectively. As shown in Tables II, III and IV, complex spectral 

mapping produces consistently higher STOI and PESQ than magnitude spectral mapping.

In addition, SNR improvements (ΔSNR) over the unprocessed mixtures are shown in Fig. 6. 

One can observe that our proposed approach produces larger SNR improvements than the 

baselines, with which a more than 12 dB SNR improvement is achieved at −5 dB. Fig. 7(a) 

shows the numbers of trainable parameters in different models, and Fig. 7(b) the numbers of 

floating-point fused multiply-adds that are performed to process one time frame. With the 

grouping strategy, our proposed model achieves higher efficiency than the CRN in [32], in 

terms of both computational costs and memory consumption. The CNN in [6] has much 

fewer trainable parameters but higher computational costs than the CRN in [32]. With G⩾4, 

our proposed GCRN has a comparable number of parameters to the CNN, but is 

considerably more efficient computationally.

We also compare our proposed approach with two recent time-domain speech enhancement 

approaches: AECNN-SM (autoencoder CNN with STFT magnitude loss) [24] and FCN 

(fully convolutional network) [8]. Additionally, we train a non-causal version of the GCRN 

(denoted as “Bi-GCRN”), where the LSTM layers in the middle are replaced by 

bidirectional LSTM layers accordingly. The comparisons are presented in Table V, in which 

the numbers represent the averages over the two test noises. We can see that, the GCRN 

improves STOI by 1.19% over the AECNN-SM at −5 dB, while the GCRN and the 

AECNN-SM produce similar STOI at 0 dB and 5 dB. In terms of PESQ, the AECNN-SM 

consistently outperforms the GCRN. It should be noted that, the AECNN-SM approach uses 

a much larger time frame size (i.e. 2048) than that in our approach (i.e. 320), which is likely 

beneficial to the AECNN-SM. It can be also observed that our approach substantially 

outperforms the FCN in both STOI and PESQ. Moreover, the Bi-GCRN yields significantly 

higher STOI and PESQ than the GCRN. This is not surprising as future frames clearly 

contain information useful for speech enhancement.

B. Evaluation of Phase Estimation

The phase of a speech signal is degraded by background noise if the noise has a different 

phase, as is the case in general. This is illustrated in Fig. 9(a). The degradation becomes 

more severe when the noise is dominant in the mixture (Fig. 9(b)). Therefore, the phase error 

tends to be greater in lower SNR conditions. Thus phase enhancement becomes important 

when the SNR is low.

Complex spectral mapping provides a phase estimate by solving the following two equations 

with two unknowns:
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S(r) = S cos θS (14)

S(i) = S sin θS , (15)

where Ŝ(r) and Ŝ(i) are the network outputs. To evaluate the estimated phase, we adopt two 

phase measures. The first is the phase distance (PD) between the target spectrogram S and 

the estimated spectrogram Ŝ, defined in [2]:

PD(S, S) = ∑
m, f

|Sm, f|
∑m′, f′ |Sm′, f′|

∠ Sm, f, Sm, f , (16)

where ∠(Sm,f, Ŝm,f) ∈ [0°, 180°] represents the angle between Sm,f and Ŝm,f. The phase 

distance can be regarded as a weighted average of the angle between the corresponding T-F 

units, where each T-F unit is weighted by the magnitude of the target spectrogram to 

emphasize the relative importance of the unit. The second measure quantifies the effects of 

the estimated phase by comparing the time-domain signals resynthesized using three kinds 

of phases: the noisy phase, the estimated phase and the clean phase. These phases are 

combined with three different magnitudes: the noisy magnitude, the enhanced magnitude by 

the CRN estimator in [32], and the clean magnitude.

We evaluate two estimated phases, which are calculated from the spectrogram enhanced by 

our proposed approach (i.e. “GCRN + TCS (G=1)”) and from that by “GCRN + cIRM 

(G=1)”. Tables VI and VII present the phase distance between clean and noisy spectrograms 

(P D(S, Y)) and between clean and enhanced spectrograms (P D(S, Ŝ)) on the babble noise 

and the cafeteria noise, respectively. The numbers represent the means and the standard 

deviations of the test samples in each test condition. One can observe that complex spectral 

mapping improves the phase in every condition. On the cafeteria noise at −5 dB, for 

example, the phase distance is improved by 8.246° on average. Moreover, “GCRN + TCS 

(G=1)” yields consistently better phases than “GCRN + cIRM (G=1)”, in terms of the phase 

distance.

Comparisons of the signals resynthesized from the noisy phase, the estimated phase, and the 

clean phase are presented in Tables VIII, IX and X, respectively. As shown in Tables VIII, 

both the objective intelligibility and the perceptual quality are improved by only enhancing 

the phase while keeping the noisy magnitude unaltered. For example, the phase estimated by 

“GCRN + TCS (G=1)” improves STOI by 1.38% and PESQ by 0.12 over the noisy phase at 

−5 dB SNR. The clean phase yields an additional 2.05% STOI improvement and an 

additional 0.1 PESQ improvement at −5 dB. From Table IX, we can observe that enhancing 

the phase can further improve STOI and PESQ over only enhancing the magnitude, 

especially in low-SNR conditions (e.g. −5 dB) where phase is severely degraded. With the 

clean magnitude, the estimated phases improve both STOI and PESQ over the noisy phase, 

as shown in Table X. In addition, the phase estimated by “GCRN + TCS (G=1)” produces 

consistently higher STOI and PESQ than the phase estimated by “GCRN + cIRM (G=1)”.
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The above evaluations also suggest that the use of noisy phase is a significant limitation of 

conventional approaches that perform no phase enhancement. Our complex spectral 

mapping provides an effective phase estimation and avoids the use of the noisy phase.

VI. Concluding Remarks

In this study, we have proposed a new framework for complex spectral mapping using a 

convolutional recurrent network, which learns to map from the real and imaginary 

spectrograms of noisy speech to those of clean speech. It provides simultaneous 

enhancement of magnitude and phase responses of noisy speech. Inspired by multi-task 

learning, the proposed approach extends a newly-developed CRN, and yields a causal, and 

noise- and speaker-independent algorithm for monaural speech enhancement. Our 

experimental results demonstrate that complex spectral mapping with our proposed model 

significantly improves STOI and PESQ over magnitude spectral mapping, as well as 

complex ratio masking and complex ratio masking based signal approximation. In addition, 

our proposed model substantially outperforms an existing CNN for complex spectral 

mapping. Moreover, we incorporate a grouping strategy into recurrent layers to substantially 

elevate model efficiency while maintaining the performance.

Our proposed approach also provides a phase estimate, which is demonstrated to be closer to 

the clean phase than the noisy phase. From another perspective, we find that the estimated 

phase yields noticeably higher STOI and PESQ than the noisy phase when combined with 

the noisy magnitude or the enhanced magnitude.

It should be noted that clean speech can be perfectly recovered from the target complex 

spectrogram. We believe that the GCRN-based approach with complex spectral mapping 

represents a significant step towards producing high-quality enhanced speech in adverse 

acoustic environments and practical applications. In future studies, we plan to extend our 

approach to multi-channel speech enhancement, in which accurate phase estimation is likely 

more important.
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Fig. 1. 
(Color Online). Illustration of phase, magnitude, real and imaginary spectrograms of a 

speech signal. The magnitude, as well as the absolute values of the real and imaginary 

spectrograms, is plotted on a log scale.
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Fig. 2. 
Illustration of the CRN for spectral mapping in [32]. The CRN comprises three modules: an 

encoder module, an LSTM module and a decoder module. ‘Conv’ denotes convolution and 

‘Deconv’ deconvolution.
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Fig. 3. 
Diagrams of a convolutional GLU block and a deconvolutional GLU block, where σ denotes 

a sigmoid function.
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Fig. 4. 
(Color Online). Illustration of the grouping strategy for RNNs.
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Fig. 5. 
Network architecture of the proposed GCRN for complex spectral mapping. More details are 

provided in Table I.
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Fig. 6. 
ΔSNR in dB over the unprocessed mixtures for −5, 0 and 5 dB. The approaches are (i) CRN 

+ TMS [32], (ii) CRN-RI + TMS, (iii) GCRN + cIRM (G=1), (iv) GCRN + cRM-SA (G=1), 

(v) CNN + TCS [6], (vi) GCRN + TCS (G=1), (vii) GCRN + TCS (G=2), (viii) GCRN + 

TCS (G=4) and (ix) GCRN + TCS (G=8).
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Fig. 7. 
The numbers of trainable parameters (a) and floating-point fused multiply-adds per time 

frame (b) in different models. The unit in both parts is million. The models are (i) CRN [32], 

(ii) CNN [6], (iii) GCRN (G=1), (iv) GCRN (G=2), (v) GCRN (G=4) and (vi) GCRN (G=8), 

respectively.

Tan and Wang Page 22

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
(Color Online). Illustration of the real (top) and imaginary (bottom) spectrograms of clean 

speech, noisy speech, enhanced speech by cRM, enhanced speech by estimated cRM-SA, 

and enhanced speech by estimated TCS. The absolute values of the real and imaginary 

spectrograms are plotted on a log scale.
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Fig. 9. 
Illustration of phase error under different conditions.
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TABLE I

Proposed GCRN architecture, where T denotes the number of time frames in the spectrogram.

layer name input size hyperparameters output size

conv2d_glu_1 2 × T × 161 1 × 3, (1, 2), 16 16 × T × 80

conv2d_glu_2 16 × T × 80 1 × 3, (1, 2), 32 32 × T × 39

conv2d_glu_3 32 × T × 39 1 × 3, (1, 2), 64 64 × T × 19

conv2d_glu_4 64 × T × 19 1 × 3, (1, 2), 128 128 × T × 9

conv2d_glu_5 128 × T × 9 1 × 3, (1, 2), 256 256 × T × 4

reshape_1 256 × T × 4 - T × 1024

grouped_lstm_1 T × 1024 1024 T × 1024

grouped_lstm_2 T × 1024 1024 T × 1024

reshape_2 T × 1024 - 256 × T × 4

deconv2d_glu_5 (× 2) 512 × T × 4 1 × 3, (1, 2), 128 128 × T × 9

deconv2d_glu_4 (× 2) 256 × T × 9 1 × 3, (1, 2), 64 64 × T × 19

deconv2d_glu_3 (× 2) 128 × T × 19 1 × 3, (1, 2), 32 32 × T × 39

deconv2d_glu_2 (× 2) 64 × T × 39 1 × 3, (1, 2), 16 16 × T × 80

deconv2d_glu_1 (× 2) 32 × T × 80 1 × 3, (1, 2), 1 1 × T × 161

linear (× 2) 1 × T × 161 161 1 × T × 161

concat 1 × T × 161 (× 2) - 2 × T × 161
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TABLE II

Comparisons of different approaches in STOI and PESQ at −5 dB SNR.

Metrics STOI (in %) PESQ

Noises BAB CAF Avg. BAB CAF Avg.

Unprocessed 58.51 57.16 57.84 1.54 1.45 1.50

LSTM + TMS 75.65 73.15 74.40 1.94 1.94 1.94

LSTM + TCS 79.84 76.38 78.11 2.04 1.96 2.00

CRN + TMS [32] 77.10 74.49 75.80 1.99 2.00 2.00

CRN-RI + TMS 77.81 75.26 76.54 2.03 2.02 2.03

GCRN + cIRM (G=1) 75.97 73.53 74.75 1.95 1.93 1.94

GCRN + cRM-SA (G=1) 79.90 76.96 78.43 2.06 2.00 2.03

CNN + TCS (KS=1) [6] 67.45 67.77 67.61 1.58 1.74 1.66

CNN + TCS (KS=2) 67.88 69.74 68.81 1.57 1.76 1.67

CNN + TCS (KS=3) 69.84 70.90 70.37 1.63 1.77 1.70

CNN + TCS (KS=4) 69.82 71.33 70.58 1.63 1.75 1.69

CNN + TCS (KS=5) 70.71 71.88 71.30 1.62 1.73 1.68

GCRN + TCS (G=1) 82.43 78.98 80.71 2.15 2.06 2.11

GCRN + TCS (G=2) 82.42 79.07 80.75 2.17 2.08 2.13

GCRN + TCS (G=4) 82.20 78.72 80.46 2.17 2.08 2.13

GCRN + TCS (G=8) 81.46 78.29 79.88 2.15 2.10 2.13
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TABLE III

Comparisons of different approaches in STOI and PESQ at 0 dB SNR.

Metrics STOI (in %) PESQ

Noises BAB CAF Avg. BAB CAF Avg.

Unprocessed 70.31 69.28 69.80 1.83 1.76 1.80

LSTM + TMS 85.87 84.43 85.15 2.42 2.38 2.40

LSTM + TCS 88.85 87.44 88.15 2.54 2.46 2.50

CRN + TMS [32] 87.04 85.49 86.27 2.47 2.45 2.46

CRN-RI + TMS 87.47 86.09 86.78 2.51 2.48 2.50

GCRN + cIRM (G=1) 86.64 85.32 85.98 2.47 2.41 2.44

GCRN + cRM-SA (G=1) 89.39 88.25 88.82 2.58 2.53 2.56

CNN + TCS (KS=1) [6] 81.43 81.72 81.58 2.07 2.20 2.14

CNN + TCS (KS=2) 82.22 83.39 82.81 2.10 2.23 2.17

CNN + TCS (KS=3) 83.56 84.46 84.01 2.15 2.27 2.21

CNN + TCS (KS=4) 83.86 84.84 84.35 2.15 2.25 2.20

CNN + TCS (KS=5) 84.34 85.06 84.70 2.15 2.23 2.19

GCRN + TCS (G=1) 90.77 89.15 89.96 2.66 2.57 2.62

GCRN + TCS (G=2) 90.90 89.34 90.12 2.70 2.60 2.65

GCRN + TCS (G=4) 90.69 89.16 89.93 2.68 2.58 2.63

GCRN + TCS (G=8) 90.39 88.89 89.64 2.66 2.60 2.63
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TABLE IV

Comparisons of different approaches in STOI and PESQ at 5 dB SNR.

Metrics STOI (in %) PESQ

Noises BAB CAF Avg. BAB CAF Avg.

Unprocessed 81.13 80.99 81.06 2.12 2.12 2.12

LSTM + TMS 91.52 90.72 91.12 2.80 2.76 2.78

LSTM + TCS 93.03 92.35 92.69 2.90 2.84 2.87

CRN + TMS [32] 92.33 91.64 91.99 2.86 2.83 2.85

CRN-RI + TMS 92.60 91.94 92.27 2.88 2.85 2.87

GCRN + cIRM (G=1) 92.40 91.92 92.16 2.90 2.82 2.86

GCRN + cRM-SA (G=1) 94.04 93.40 93.72 2.97 2.91 2.94

CNN + TCS (KS=1) [6] 89.26 89.26 89.26 2.46 2.56 2.51

CNN + TCS (KS=2) 90.12 90.56 90.34 2.51 2.60 2.56

CNN + TCS (KS=3) 91.10 91.39 91.25 2.58 2.66 2.62

CNN + TCS (KS=4) 91.34 91.72 91.53 2.57 2.63 2.60

CNN + TCS (KS=5) 91.63 91.91 91.77 2.58 2.62 2.60

GCRN + TCS (G=1) 94.53 93.82 94.18 3.03 2.96 3.00

GCRN + TCS (G=2) 94.75 94.02 94.39 3.07 2.99 3.03

GCRN + TCS (G=4) 94.70 93.95 94.33 3.06 2.96 3.01

GCRN + TCS (G=8) 94.52 93.85 94.19 3.04 2.98 3.01
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TABLE VI

Phase distances on the babble noise at different SNRs.

SNR PD(S, Y) PD(S, ŜcIRM) PD(S, ŜTCS)

−5 dB 30.896° ± 2.461° 29.516° ± 2.864° 24.151° ± 2.485°

0 dB 21.991° ± 1.641° 20.342° ± 1.549° 17.271° ± 1.363°

5 dB 14.885° ± 1.157° 13.842° ± 1.097° 12.957° ± 1.031°
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TABLE VII

Phase distances on the cafeteria noise at different SNRs.

SNR PD(S, Y) PD(S, ŜcIRM) PD(S, ŜTCS)

−5 dB 38.644° ± 2.472° 36.503° ± 2.437° 30.398° ± 2.220°

0 dB 28.313° ± 1.787° 26.218° ± 1.675° 22.237° ± 1.604°

5 dB 19.867° ± 1.307° 18.455° ± 1.307° 16.613° ± 1.346°
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