
Technical guide for applications of gene expression profiling in 
human health risk assessment of environmental chemicals

Julie A. Bourdon-Lacombea, Ivy D. Moffata,*, Michelle Deveaua, Mainul Husainb, Scott 
Auerbachc, Daniel Krewskid, Russell S. Thomase, Pierre R. Bushelf, Andrew Williamsb, 
Carole L. Yaukb

aWater and Air Quality Bureau, Health Canada, Ottawa, ON, Canada

bEnvironmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada

cBiomolecular Screening Branch, Division of the National Toxicology Program, National Institute 
of Environmental Health Sciences, Research Triangle Park, NC, United States

dMcLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, 
Canada

eNational Centre for Computational Toxicology, U.S. Environmental Protection Agency, Research 
Triangle Park, NC, United States

fBiostatistics and Computational Biology Branch, Division of Intramural Research, National 
Institute of Environmental Health Sciences, Research Triangle Park, NC, United States

Abstract

Toxicogenomics promises to be an important part of future human health risk assessment of 

environmental chemicals. The application of gene expression profiles (e.g., for hazard 

identification, chemical prioritization, chemical grouping, mode of action discovery, and 

quantitative analysis of response) is growing in the literature, but their use in formal risk 

assessment by regulatory agencies is relatively infrequent. Although additional validations for 

specific applications are required, gene expression data can be of immediate use for increasing 

confidence in chemical evaluations. We believe that a primary reason for the current lack of 

integration is the limited practical guidance available for risk assessment specialists with limited 

experience in genomics. The present manuscript provides basic information on gene expression 

profiling, along with guidance on evaluating the quality of genomic experiments and data, and 

interpretation of results presented in the form of heat maps, pathway analyses and other common 

approaches. Moreover, potential ways to integrate information from gene expression experiments 
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into current risk assessment are presented using published studies as examples. The primary 

objective of this work is to facilitate integration of gene expression data into human health risk 

assessments of environmental chemicals.
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1. Introduction

Chemical risk assessment agencies worldwide are facing challenges that require new toxicity 

testing approaches. Major limitations of current approaches include the high cost and length 

of time required for tests that rely on the observation of adverse clinical or pathological 

effects in whole animals. As a result, human health risk assessments have been performed 

for only a small fraction of chemicals in commerce. To date, chemical substances inventories 

in Canada, the United States, and Europe contain over 23,000 (Health Canada, 2003), 

84,000 (U.S. EPA, 2013), and 107,000 (ECHA, 2011) compounds, respectively. In contrast, 

just over 1100 compounds are regulated under U.S. legal statutes (Dernbach, 1997), and 

occupational exposure limits from around the world have only been derived for 

approximately 6000 chemicals (Brandys and Brandys, 2008). Thus, there is an urgent need 

for faster and more cost-effective testing strategies capable of consistently predicting 

chemical toxicity, and the doses at which adverse effects occur in humans.

Gene expression profiling in the context of a toxicology study (also referred to as 

toxicogenomics) has been identified as a promising method to alleviate some of the current 

constraints on human health risk assessment of chemicals. Emerging science has 

demonstrated the utility of gene expression profiling in identifying likely health hazards and 

in deciphering chemical modes of action (U.S. EPA, 2009). In the long-term, gene 

expression profiling may be used in chemical screening to guide further testing approaches 

as well as to derive points of departure (PoDs) for chemicals with limited data (Thomas et 

al., 2013a). This is part of the larger vision for “toxicity testing in the 21st century”, in 

which recent advances in molecular biology are used to make more informed decisions 

relating to potential health risks of chemical exposures (Krewski et al., 2010, 2011; NRC, 

2007). Toxicogenomics data have also been identified as occupying a prominent place in the 

next generation of risk science, as envisioned by the US Environmental Protection Agency 

(Krewski et al., 2014).

Toxicogenomics studies offer rich datasets that can provide valuable information on 

chemical toxicity relevant to human health risk assessment. Important applications to current 

risk assessment practices include: (1) improving confidence in selecting critical endpoints 

through building and supporting mechanistic information; (2) enhancing understanding of 

whether adverse effects observed in animals are likely to occur in humans via similar modes 

of action; (3) guidance in selecting appropriate risk assessment approaches (such as 

threshold or non-threshold approaches); and (4) supporting read-across for chemical 

groupings. However, applications of toxicogenomics data in risk assessment have been 
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limited, in part because there is very little information available that would allow a risk 

assessor with limited background in genomics to critically evaluate data quality and 

suitability for toxicological risk assessment.

The present manuscript provides an overview of criteria that can be used to assess the 

quality of toxicogenomics data, along with guidance on data interpretation. 

Recommendations for inclusion of these data in human health risk assessment are also 

provided, along with examples of their application. As this work is intended to guide non-

specialists in using published genomics data to inform risk assessment, only high-level 

concepts have been presented, with references provided for those seeking more information 

on technical aspects. The manuscript is also divided into multiple sections to facilitate 

finding specific information when working through a toxicogenomics paper. The 

overarching objective of this work is to facilitate and promote the use of toxicogenomic data 

in human health risk assessment.

2. The basics: why gene expression profiling?

Every biological system (including cells, tissues, and whole organisms) must cope with 

changes in its environment, including exposure to toxic substances. A first line of defense in 

response to an environmental challenge can include alterations in gene expression, which 

generally translate into an increase or decrease in specific proteins required to carry out 

important tasks related to the maintenance of homeostasis. Gene expression profiles provide 

a snapshot of the system’s overall response to a toxicant, which can be related to the mode 

of action (MoA) of the toxicant, and can be captured by measuring levels of messenger RNA 

(mRNA or protein coding RNA) in the system. These changes correspond to the molecular 

alterations that will give rise to phenotypic changes at higher levels of organization. 

Although recent research has demonstrated that non-coding RNAs are also important 

regulatory and structural molecules involved in biological responses (Bhan and Mandal, 

2014; Cech and Steitz, 2014), the focus of this guide is primarily on mRNA.

In this article, we refer to gene expression profiling or toxicogenomics as the large scale 

measurement of changes in gene expression relative to control cells or tissues following a 

toxicological challenge. Gene expression profiling/toxicogenomics examines all of the genes 

in the system, or of a substantive portion of them, and takes into consideration that the 

human, rat and mouse genomes contain over 38,000, 29,000 and 33,000 genes, respectively 

(NCBI, 2011). Information on the identity of affected genes, the dose levels at which their 

function is altered, and the relationships among these genes is subsequently used to 

understand how a chemical is perturbing the system and to predict the adverse effects that 

may ensue.

It is important to note that toxicogenomics studies can vary considerably with respect to the 

biological questions under investigation as well as the technologies used to measure gene 

expression. Technical and biological considerations in toxicogenomics are briefly discussed 

below.
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2.1. Technical considerations

Various technologies are used in gene expression profiling (McBride, 2015). Among those 

most frequently applied include DNA microarrays, large scale real-time quantitative 

polymerase chain reaction (RT-qPCR or qPCR) experiments, and, more recently, RNA 

sequencing (RNA-seq). These platforms each have their own inherent advantages and 

disadvantages (Table 1). In general, the data generated from these well-established 

toxicogenomic methodologies have been shown to be reproducible and concordant across 

platforms (Black et al., 2014; Shi, 2006; Wang et al., 2009; Yauk and Berndt, 2007; SEQC/

MAQC-III Consortium, 2014). A brief overview of the concepts behind these technologies is 

presented in Fig. 1. Although the technical concepts underlying each method are different, 

the general concept is to identify changes in transcript abundance from exposed samples 

relative to controls.

2.2. Biological considerations

Experimental designs can differ markedly among toxicogenomic studies, depending on the 

biological question being addressed. Toxicogenomic studies have been conducted using 

various types of biological samples, including cells in culture, whole tissues of treated 

animals, or specific cell subtypes isolated from exposed humans or animals. Studies may 

involve single doses or seek to describe dose–response relationships using multiple doses. 

Moreover, the persistence of changes in gene expression responses are often investigated 

over time, using time course experiments. As is the case for all toxicity data, the study 

design will play an important role in the conclusions that can be drawn from the data. This 

will greatly affect how the data can be used in the context of human health risk assessment. 

Although the advantages and disadvantages of specific study designs will not be reviewed in 

this paper, examples of different types of toxicogenomics studies will be used to demonstrate 

their applications in risk assessment.

3. Determining the quality of toxicogenomics data

Data quality is critical to obtaining reproducible and reliable information from 

toxicogenomics studies. As noted above, significant improvements in toxicogenomics 

technologies and data analysis strategies have resulted in a high degree of concordance in 

data produced between different platforms and laboratories. However, there are several other 

considerations, such as experimental design, sample integrity, platform performance and 

analytical strategy, which should be assessed in order to ensure validity of the data. 

Additional approaches have been proposed to evaluate data quality using scoring criteria 

(e.g., Systematic Omics Analysis Review or SOAR tool) (McConnell et al., 2014). We 

believe it is in the best interest of the evaluator to clearly understand strengths and 

limitations of genomics studies, which will provide increased knowledge to enable the 

judgment calls often required in human health risk assessments. We proposed criteria in 

Tables 1-4 to provide a basis to evaluate whether or not a toxicogenomics experiment was 

designed, conducted and analyzed appropriately. The criteria ensure that the experiment has 

adequate power to measure gene expression changes while minimizing false-positive results. 

The criteria that have been deemed to be essential to experimental integrity are denoted with 

an asterisk (*). Studies that do not meet those criteria identified as critical should not be 
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considered for use in risk assessment. The additional criteria can serve as guidelines in 

assessing the overall data quality and in providing a rationale for inclusion or exclusion of 

specific studies.

3.1. Data normalization and annotation

An important consideration in handling global genomic data that warrants further discussion 

than can be provided in the tables is proper normalization (denoted as an essential criterion 

for microarray and RNA-seq data quality in Tables 2 and 4). Normalization ensures that each 

replicate is comparable to the others. For example, it removes differences in overall signal 

intensity across DNA microarrays resulting from variables such as RNA input, labeling, 

hybridization or other technical issues.

For microarrays, different commercial platforms are amenable to a variety of normalization 

approaches, which depend on both the type of array or the experimental design. The 

methodologies for normalizing DNA microarrays are considered mature and well 

established. We refer the reader to Zhang et al. (2009) and Welle (2013) for additional 

information on this topic. For RNA-seq, normalization will account for technical variables 

leading to differences in the number of reads per sample by expressing reads, for example, 

as a counts per million (number of times that site was counted per million reads). 

Normalization approaches for RNA-seq are established but are still being refined (Dillies et 

al., 2013). In addition to normalization, full transcriptome sequencing introduces a number 

of other computational challenges, including alignment of reads against the appropriate 

reference genome (i.e., how to figure out which site in the DNA sequence of an organism the 

small reads are complementary to), and proper annotation (assigning each ‘read’ to a gene or 

genomic location). We refer the reader to a review by Auer et al. (2012) on this topic.

Overall, it is important that the data be properly normalized (and annotated for RNA-seq 

data), particularly in older studies; normalization and annotation do not generally present an 

issue in more recent works. In the future of risk assessment, when toxicogenomics data may 

be considered more heavily in selections of PoDs, it would be suggested to consult with a 

biostatistician on topics related to normalization and annotation.

4. Understanding toxicogenomics studies

High content toxicogenomics studies can contain large amounts of data (i.e., thousands of 

measurements of gene transcript levels) and involve complex analyses of the relationships 

between affected genes and their association with potentially adverse health outcomes. As 

such information is not easily presentable in standard graphs and tables, approaches tailored 

to toxicogenomics data visualization have been developed and are used routinely in 

published studies. These analytical and data visualization approaches are largely unique to 

toxicogenomics studies. Below, we provide an overview of the concepts behind common 

data analysis approaches and guidelines on how these data can be interpreted, along with 

several examples taken from the literature. It should be noted that most toxicogenomics 

studies do not present all of these techniques within a report: although these techniques are 

generally used in combination to synthesize the results of an experiment, studies usually 

employ a selection of approaches that best represent the data.
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4.1. Approaches for assessing treatment effects and general trends

The following approaches are frequently used to determine the presence or absence of a 

treatment effect and to broadly examine similarities and differences in gene expression 

across individual samples and experimental groups. These types of analyses are useful in 

determining the robustness of a treatment effect and in evaluating data quality. These 

techniques can also be used to compare various datasets from different experiments.

4.1.1. Reporting differentially expressed genes

4.1.1.1. Key information.: The number of differentially expressed genes provides 

information on the extent of a transcriptional response with regards to the number of genes 

affected and the extent to which these genes are affected. In some cases, the extent of the 

response across chemicals or animals can be compared to examine chemical potency or 

species susceptibilities.

4.1.1.2. Concept.: When a gene is referred to as being “differentially expressed”, it means 

that the authors consider that the number of copies of that gene’s transcript is either 

significantly increased (up-regulated) or decreased (down-regulated) as a result of an 

exposure or treatment following thorough statistical considerations. Standard practice is to 

report the number of differentially expressed genes for each treatment group relative to 

control samples. Two important criteria are used in establishing a list of differentially 

expressed genes: fold-change and statistical significance.

Fold-change refers to the ratio of expression change in the treated sample in comparison 

with the control sample reference or baseline. For each gene, this fold-change can represent 

an increase or a decrease in gene expression. Generally, fold-changes exceeding 2.0 or 

below −2.0 (representing a doubling or halving of the number of transcripts in the exposed 

sample vs. control) are considered to represent a significant change. However, the choice of 

a cut-off to determine fold-change significance is arbitrary and other values are often used 

(±1.5-fold is fairly common) (Shi et al., 2008; St. Laurent et al., 2013). Higher fold-changes 

are generally more robust and reproducible (Shi et al., 2008). It should be noted that some 

studies use the ratio of the transcript number in the treated sample to the transcript number 

in the control sample to indicate a down-regulation instead of negative values; in this event, 

a −2-fold-change in expression would be denoted by a fold-change of 0.5. It should be noted 

that applying a fold-change cut-off does not necessarily relate to the biological importance 

of the genes identified.

Significance refers to statistically calculated p-values generated for each gene. Given that the 

statistical evaluation of gene expression profiles must take into consideration thousands of 

endpoints, some false-positive genes can be expected. For this reason, p-values are 

sometimes adjusted using a false-discovery rate (FDR) approach (Tusher et al., 2001) or 

corrected in some way for multiple testing (Benjamini and Hochberg, 1995; Storey and 

Tibshirani, 2003). Usually, an FDR adjusted p-value cut-off of less than 5% (p ⩽ 0.05 FDR) 

is considered to be significant, although this criterion is sometimes relaxed to allow more 

comprehensive pathways searches (see pathways and networks section below). The 

Microarray Quality Control Consortium, a US Food and Drug Administration led group, has 
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conducted a number of comprehensive studies on the use of fold-changes and statistical 

significance. These studies demonstrate that use of fold-change ranking coupled with a p-

value cutoff leads to differentially expressed gene lists that are more reproducible across 

laboratories and different technologies (Shi, 2006; Shi et al., 2008).

4.1.1.3. Interpretation.: In principle, a chemical that induces expression changes across 

numerous genes is implicitly perturbing normal cellular functions. Although the number of 

genes that are differentially expressed does not provide information on specific biological 

responses in exposed cells, it does indicate the transcriptional response by the chemical in 

terms of the number of genes affected and the extent to which these are affected. 

Information on these genes can be mined to determine biological processes or molecular 

functions that are affected by the exposure (discussed further in subsequent sections).

We caution that when reporting and interpreting differential gene expression, it is important 

to examine the cut-off values employed by the investigators. A list of affected genes based 

on broader cut-offs (smaller fold-changes and larger p-values or p-values uncorrected for 

multiple testing) will be longer than a list based on more stringent cut-offs and can contain 

false positives. Furthermore, in principle, due to redundancy on gene expression arrays, 

several reports for a gene should be differentially expressed. If not, then further investigation 

as to disagreements is necessary. Provided that similar statistical analyses and cut-offs are 

used, comparing the number of differentially expressed genes across various experimental 

contexts (e.g., different chemicals, species, tissues, or cell lines), can provide information 

related to, for example, chemical potencies and differences in susceptibility across tissues, 

species (or genotypes), sex or life stages.

4.1.1.4. Examples.: The number of differentially expressed genes observed can be 

indicative of the potential for a chemical to cause an adverse effect. For example, the 

magnitude of the transcriptional response to naphthalene, as shown through the number of 

differentially expressed genes in rat nasal epithelium following subchronic inhalation, is 

highly correlated with tumor outcome in the two year cancer bioassay (Clewell et al., 2014). 

Although difficult to implement in current risk assessment practices, such information can 

be helpful in prioritizing chemicals for further toxicological investigation.

Nesnow et al. (2009) compared differentially expressed genes between phenobarbital and 

conazole fungicides propiconazole and triadimefon at their respective carcinogenic doses 

(850 ppm phenobarbital, 2500 ppm propiconazole and 1800 ppm triadimefon for 4 and 30 

days). Using an FDR corrected p-value of 0.05 as a cut-off with no restrictions on fold-

change, overlap between the gene lists was examined. Analysis revealed that many of the 

differentially expressed genes were unique to phenobarbital, with more commonalities 

observed between the two conazoles. This analysis suggests that the responses leading to 

liver tumors in rodents for conazoles is different from phenobarbital. This observation has 

important risk assessment implications, as a phenobarbital MoA involves hyperplastic and 

anti-apoptotic responses that do not appear to cause liver tumors in humans even at plasma 

phenobarbital concentrations that lead to hepatocarcinogenesis in rats (Holsapple et al., 

2006).
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Yao et al. (2012) used the number of differentially expressed genes to examine inter-strain 

hepatic responses to 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD) in rats. The analysis 

revealed a significant difference in responses across six different rat strains/lines that are 

known to exhibit different sensitivities to TCDD. In the analysis, the most sensitive strains 

(determined according to LD50) exhibited the greatest number of differentially expressed 

genes. This example shows how information on the number of perturbed genes can be useful 

in deciphering species and strain sensitivities that can potentially impact the dose at which 

toxicity is observed in a risk assessment context.

The number of differentially expressed genes can also be used to examine potency of similar 

substances. The potency of habitual tobacco and marijuana smoking was examined in vitro 
using smoke condensates (Maertens et al., 2013). The analysis showed there was a very high 

degree of concordance between the differentially expressed genes in both exposure 

scenarios. However, marijuana smoke condensate was shown to perturb many more genes 

than tobacco smoke condensate at the same concentration, indicating that it has a higher 

potency than tobacco smoke. This is consistent with potency based on genotoxicity and 

cytotoxicity. In another example, fold-changes of genes known to be involved in male 

reproductive toxicity were ranked to evaluate the potency of various phthalates (Hannas et 

al., 2012). Ranking based on gene expression were consistent with potency rankings based 

on testosterone production, further illustrating the utility of gene expression information in 

comparing the potency of chemicals.

4.1.2. Heat maps and hierarchical clustering

4.1.2.1. Key information.: Heat maps provide an informative visual representation of 

gene expression responses using color. Hierarchical (unsupervised) clustering is used to 

compare gene expression data across individual samples, treatment groups, or experiments. 

Together, these methods provide a global overview of the raw data, highlighting key 

differences, trends or patterns between groups and, in some cases, can narrow down subsets 

of affected genes that are critical in the response. Another type of clustering is known as 

biclustering (Hartigan, 1972; Chou and Bushel, 2009). Here, a subset of genes and treatment 

conditions are grouped by common expression patterns. In addition, supervised clustering 

(Han and Kamber, 2001) can be applied to the data. During supervised clustering, an 

external phenotype is used to assign samples to classes and guide the grouping of the gene 

expression data. In general, there are numerous types of clustering approaches that can be 

applied to identify relationships across gene expression patterns and treatment conditions.

4.1.2.2. Concept.: A typical heat map of the type shown in Fig. 2 uses two colors (usually, 

red and green or in some cases, blue and yellow) to represent increased regulation (red or 

blue) and decreased regulation (green or yellow). Differential gene expression may be 

gauged relative to control samples, a reference sample or a median expression value. The 

intensity of the color is associated with the magnitude of differential expression. Brighter 

colors represent greater differences in either direction. In a fairly typical heat map, each 

column within the heat map represents a specific dataset; columns may reflect the 

expression of genes from an individual sample within an experiment or pooled data for an 

entire treatment group, depending on the objectives of the analysis. Rows within the heat 

Bourdon-Lacombe et al. Page 8

Regul Toxicol Pharmacol. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



map represent individual genes (or probes for a non-annotated mRNA). In most cases, the 

genes plotted in a heat map include those identified as differentially expressed by the 

treatment or genes from another pre-defined gene list (e.g., examining changes in genes 

associated with an important toxicological pathway or a set of genes considered to be 

predictive of an adverse effect). As such, each square within a heat map represents the 

expression of a single gene in a defined dataset.

Hierarchical clustering refers to the associated tree structure (dendrogram) on the X-and/or 

Y-axis of the heat map, which depicts the groupings of the expression profiles across each 

sample or groupings between genes based on some type of dissimilarity metric (i.e., Pearson 

correlation, Euclidian distance, etc.). Branching on the X-axis (i.e., the ‘tree’ associated with 

the figure) reveals which datasets are most similar in terms of expression, and which are 

further apart from one another. When treatment effects are observed, it is expected that 

samples from a group (e.g., biological replicates within a treatment group) will be highly 

similar and will thus ‘cluster’ or group together. For example, the shorter the branches in the 

branching structure, the more correlated two gene expression profiles are. In a heat map 

comparing datasets of exposure to different chemicals, those with similar MoAs would be 

expected to be highly correlated and thus cluster more tightly. It should be noted that the 

number of clusters or groups is dependent on the cut point of the dendrogram (i.e., how far 

down the branching structure you go to assign the groups), which can be subjective. 

However, this cut-point can also be determined objectively using specialized software 

(Tibshirani et al., 2000).

Hierarchical clustering is also conducted for genes on the Y-axis. This groups genes by the 

degree of correlation in their expression levels across samples and enables visualization of 

patterns within the heat map (although the tree itself is not always shown). Gene trees 

facilitate the identification of genes that respond similarly to a treatment and can provide 

important information on the underlying MoA.

4.1.2.3. Interpretation.: The primary objective of heat maps and hierarchical clustering is 

to explore the experimental, biological and technical factors that have the greatest influence 

on gene expression changes. Interpretation should not be focused on individual data points, 

but on a more general assessment of the overall response. In most toxicity studies, heat maps 

and clustering can be used to evaluate the strength of the response. For example, if all 

replicates within a treatment group cluster closely together, this suggests that response to the 

treatment is robust and reproducible across samples. However, it should be noted that given 

the biological variability that arises in vivo, as well as random correlations that can occur in 

large datasets, clustering within treatment groups is not always perfect. This is especially 

true when treatment effects are modest. To reduce the effect of random correlation, it is 

preferable to work with subsets of differentially expressed genes, which is generally what is 

done in most published works. In addition, assigning p-values to clusters to denote the 

significance of the groupings is ideal for risk assessment purposes. Heat maps and 

hierarchical clustering can also be used to compare data with other published experiments, 

such as those examining other chemicals, different species or responses in other tissues. 

Heat maps can also be used to compare toxicogenomics profiles to disease profiles, in order 

to obtain additional insight into MoAs for toxic substances. In any heat map in which a gene 
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tree is depicted, the patterns or patches of color that vary substantially between groups (i.e., 

showing increases or decreases in mRNA levels from one cluster to another) can be used to 

narrow down subsets of genes that may be important in activating specific pathways. Thus, 

heat maps and hierarchical clustering can serve many purposes.

4.1.2.4. Examples.: Heat maps and hierarchical clustering may be used to evaluate data 

consistency (e.g., to verify that treatment groups cluster together) or to assess overall effects 

of specific conditions/biological states on expression profiles. Other more specific 

applications can also be useful in risk assessment. In one study, gene expression profiles 

from the livers of rats treated with various genotoxic and non-genotoxic hepatocarcinogens 

at their respective carcinogenic doses were compared using heat maps (Ellinger-Ziegelbauer 

et al., 2009). Using genes involved in oxidative stress and DNA damage response, as well as 

cell cycle progression, obvious distinctions were made between expression patterns for the 

genotoxic chemicals (specifically, 2-nitrofluorene, dimethylnitrosamine, 4-

(methylnitrosamino)-1-(3-pyridyl)-1-buta done and aflotoxin) and the non-genotoxic 

chemicals (i.e., methapyrilene HCl, diethylstilbestrol, Wy-14643 and piperonyl butoxide). 

Thus, the gene expression profiles were useful in elucidating potential MoAs related to 

carcinogenesis. This approach was used successfully by Thompson et al. (2012) to support 

chromium’s MoA in small intestinal tumorigenesis. Heat maps using genes related to 

various MoAs associated with carcinogenicity (e.g., cell cycle progression, proliferation, 

oxidative stress and regeneration) clearly show that chromium clusters with other non-

genotoxic carcinogens and not with chemicals that are genotoxic (specifically, the same 

chemicals as in Ellinger-Ziegelbauer et al., 2009). This information is useful in risk 

assessments where the mode of carcinogenicity will guide interpretation, such as the 

adoption of threshold and non-threshold risk assessment approaches for carcinogens 

considered to be non-genotoxic and genotoxic, respectively.

Heat maps and hierarchical clustering can also be used to elucidate additional differences in 

experimental data. For example, Yauk et al. (2012) compared three tobacco smoke 

condensates from different brands to determine whether a brand marketed as ‘reduced harm’ 

was in fact less toxic. Cluster analysis demonstrated that the brand of condensate was the 

least important factor associated with gene expression; samples clustered first by 

concentration and then by time of sampling. These results corroborated those of 

mutagenicity and clastogenicity tests, which indicated that there were not significant 

differences in toxicity across brands, and that the brand marketed as ‘reduced harm’ was 

equally toxic to full flavor varieties.

4.1.3. Principal component analysis

4.1.3.1. Key information.: Visualization of toxicogenomics data can be difficult both 

because of the large number of genes included in the analysis and the need to consider the 

effects of multiple variables that can affect the results, such as dose and time. Principal 

components analysis (PCA) takes into consideration all of the study variables, yet allows 

simple data representation in a two or three dimensional plot. PCA makes it possible to 

visually assess how the gene expression profiles of individual samples are grouped across 

treatment conditions and other experimental variables.
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4.1.3.2. Concept: PCA is generally done using a subset of genes determined to be 

differentially expressed. PCA is also used to compare gene expression data across individual 

samples, treatment groups or different experiments. It is a mathematical algorithm used to 

identify dimensions that capture the greatest variability in the data. These dimensions 

(termed principal components) encompass multiple variables, allowing PCA to reduce the 

dimensionality of the data by using a small number of principal components to describe 

variation in the data. In practice, it is usually possible to describe most (⩾70%) of the 

variation in the data using two or three principal components, which are used as the axes of a 

PCA plot describing variability among experimental samples, treatment groups or 

experiments. However, it should be noted that some data sets may require more than the top 

3 principal components to capture the majority of the variability.

4.1.3.3. Interpretation.: PCA enables a visual representation of similarities and 

differences in the data elements according to their proximity within the PCA plot. PCA plots 

are often used to group data (Fig. 3), and are commonly used to determine if there is a 

specific treatment, time or dose effect. For example, clear delineation between control and 

treated groups would indicate an obvious treatment effect. Similarly, the data can be used to 

determine whether the biological responses change or remain consistent across time-points 

or other conditions. As with hierarchical cluster analysis, similarities to disease signatures or 

gene expression profiles for other chemicals can also be explored. Groupings are often made 

more apparent by ellipsoids (done either manually or as a statistical representation of the 

confidence regions encompassing similar groupings) around the data points.

4.1.3.4. Examples.: PCA can be used to examine whether or not samples subjected to the 

same experimental condition (e.g., dose, time) demonstrate similar responses. For example, 

Jackson et al. (2014, Fig. 1C) used PCA to demonstrate that gene expression patterns in rat 

liver samples following a 21 day exposure to carcinogenic and non-carcinogenic doses of the 

hepatocarcinogen furan cluster together according to dose, with clear separation from 

control samples. PCA can also be used to categorize different datasets. As described earlier, 

Thompson et al. (2012) compared gene expression profiles in mouse duodenum following 

treatment with chromium [Cr(VI)] to rat liver expression profiles from rodents treated with 

four mutagenic and non-mutagenic carcinogens in order to elucidate on the mechanisms of 

chromium-induced carcinogenesis. PCA analysis revealed that chromium-induced gene 

expression clustered most closely with non-mutagenic carcinogens, providing insight into 

the chemical’s MoA.

4.2. Approaches for assessing gene functionality and interactions

It is important to understand that genes generally do not operate in isolation, but rather 

function together with other genes to carry out specific cellular functions. Consequently, the 

effects observed for a specific gene must also be considered within the context of the 

function or process of that specific gene in the cell (a concept often termed gene annotation, 

which is continuously updated as knowledge of each gene increases), how it interacts with 

other genes (e.g., in a network of genes), and how the other genes involved in those 

functions or networks also behave. The following approaches are useful in describing gene 

function and interactions and can help to elucidate the MoA for a chemical using modified 
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Bradford-Hill criteria (Meek and Klaunig, 2010; Meek et al., 2014) by identifying putative 

molecular initiating events (i.e., the initial interaction of the chemical with cellular 

molecules that triggers the downstream effects), key events within the MoA, and potentially 

adverse effects of exposure.

4.2.1. Gene functionality analysis

4.2.1.1. Key information.: Knowledge of the function of individual genes, especially the 

most affected ones, can provide information on potentially important biological 

perturbations occurring within biological systems. Larger groupings of differentially 

expressed genes that have similar functions provide evidence of specific biological responses 

potentially associated with adverse health effects.

4.2.1.2. Concept.: The process of assigning a gene to a functional group can be done by 

both literature searches and by applying computational approaches to retrieve pertinent 

information in bulk from databases. Thus, the type of analysis applied can vary from one 

study to another. One example is the Gene Ontology (GO) database (http://

www.geneontology.org). Using this database, each gene (if it has been characterized) is 

assigned ‘GO terms’ that describe the molecular functions of the gene, the biological 

processes in which it is most likely to be involved, and the cellular location of the protein. 

GO terms use consistent terminology to describe a gene and can be used in analyses to 

determine which functional groups are over-represented within the study dataset. The 

Database for Annotation, Visualization and Integrated Discovery (DAVID) cluster analysis is 

one tool that uses GO terminology to do this (http://david.abcc.ncifcrf.gov/) (Huang et al., 

2008). Other software can be used to group genes according to their functionality, including 

Metacore (http://thomson-reuters.com/metacore/) and Ingenuity Pathway Analysis (IPA) 

(http://www.ingenuity.com/), which have their own curated data annotations derived from 

information in the literature. Gene set enrichment analysis (GSEA) is a variant of the 

aforementioned gene functionality analysis approaches. GSEA identifies over-represented 

biological categories based on the ranking of the genes according to an enrichment score. In 

all cases, statistical tests are applied to determine whether the number of differentially 

expressed genes (given the number of genes annotated to a particular functional category) or 

the ranking of enrichment scores with a particular biological category or function is 

significantly greater or distributed differently than what would be expected by chance. 

GSEA has emerged as a powerful alternative to individual-gene analyses to reflect the 

functional relationship between genes in a set. Mootha et al. (2003) initially demonstrated 

the power of using pre-defined gene sets in a case where no individual gene’s expression 

was significantly different between normal and diabetic patients. The goal of all gene set 

enrichment analysis (GSEA) methods is to identify functionally related genes that display 

coordinated expression changes.

4.2.1.3. Interpretation.: Irrespective of the method used to categorize gene functionality, 

the premise is that a larger number of differentially expressed genes related to a specific 

function or process is generally associated with a high probability that this function or 

process is perturbed in the system. When available, p-values may be useful in interpreting 

the strength of the functional association. Caution is required in the interpretation of these 
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data, as many genes can have multiple functions and play important roles in more than one 

pathway. Moreover, some of the terms used to describe gene function, such as metabolism, 

can be broad, and may be less informative than others that describe specific biological 

processes, such as DNA repair or apoptotic pathways.

4.2.1.4. Example.: This method is used routinely in toxicogenomics studies to determine 

the predominantly perturbed functions within a system. For example, Genter et al. (2002) 

examined gene expression profiles of alachlor, an agricultural chemical known to cause 

nasal turbinate tumors, similar to acetochlor and butachlor. Assessment of gene functionality 

of alachlor in rat olfactory mucosa revealed perturbations of genes involved in extracellular 

matrices, immune function, cellular proliferation, and apoptosis-related genes. Assuming 

that the MoA is the same for acetochlor- and alachlor-induced nasal turbinate tumors, the 

gene expression information was used by the EPA’s Office of Pesticide Programs Cancer 

Assessment Review Committee to support cytotoxicity with regenerative cellular 

proliferation as the MoA for acetochlor, using read-across from gene expression profiles of 

alachlor (U.S. EPA, 2004).

4.2.2. Pathway and gene interaction network analysis

4.2.2.1. Key information.: Pathway and gene interaction networks examine interactions 

between gene products (i.e., proteins). When the probability that the relationships between 

genes is significantly greater than what would be expected by chance, the pathway or 

network is considered to be affected. This provides insight into the specific biological 

functions perturbed as a result of exposure that can be used in deciphering a chemical’s 

MoA.

4.2.2.2. Concept.: Pathway and network approaches are used to examine gene interactions 

linked to specific biological processes and potential adverse health effects (Fig. 4). Pathways 

refer to known interactions between proteins and associated genes that perform specific 

cellular functions or lead to specific cellular endpoints. Networks are also based on small 

molecule/gene/protein interactions but with a much broader perspective; they encompass all 

potential (known) interactions among differentially expressed genes and pathways, without 

considering a specific endpoint (Fig. 4). Molecular pathways are generally well-established 

and supported in the literature, whereas interactions in networks can be more loosely 

defined.

A standard tool for pathway analysis is the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway database (http://www.genome.jp/kegg/pathway.html), which contains 

hundreds of pathways involved in metabolism, genetic and environmental information 

processing, cellular processes, organismal systems and even human diseases. Additional 

sources include DAVID, Metacore (http://thomsonreuters.com/metacore), Ingenuity Pathway 

Analysis (http://www.ingenuity.com/), Panther (http://www.pantherdb.org/), Biocarta (http://

www.biocarta.com/) and GenMAPP (http://www.genmapp.org/). Pathways that are most 

affected (often termed ‘enriched’) are determined by analyses of the percentage of 

differentially expressed genes within each pathway (i.e., are there significantly more genes 

differentially expressed within a pathway than would be expected by chance), in 
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combination with an evaluation of the nature of the changes in gene expression (i.e., fold-

change and direction of change). As pathways are involved in a very specific response, they 

are useful in narrowing down potential toxic endpoints of concern following exposure. 

Specific examples include the p53 pathway involved in response to DNA damage and 

downstream cell cycle control, and the mevalonate pathway involved in biosynthesis of 

cholesterol.

With regards to networks, software tools (such as cytoscape (http://www.cytoscape.org), 

Metacore or Ingenuity Pathway Analysis) can be used to link large networks of 

molecules/gen es/proteins/pathways to general biological responses (e.g., inflammatory 

responses and DNA damage response). Network analysis has proven to be of great value in 

determining the primary changes in a biological system and for identifying which genes and 

pathways are central to the overall biological response.

4.2.2.3. Interpretation.: Pathways and gene interaction networks provide an overview of 

the potential adverse effects that may result from exposure to toxic substances, and can be 

used in identifying MoAs for those substances. Because these analyses take into account 

multiple genes, pathway and network analyses may be more useful in elucidating MoA than 

analyses focused on individual genes (Pennie et al., 2004). Furthermore, concordance across 

laboratories and platforms increases when pathways and networks are considered instead of 

individual genes (Zhang et al., 2013). In order to confirm the perturbation of pathways/

networks or hypothetical MoAs based on these, it is common to examine markers of the 

predicted toxicities directly in the test cells or animals. More weight can be placed on 

studies that employ confirmatory assays to validate their findings.

Networks can also aid in identifying the specific genes or pathways that are the most 

important to the overall response. For example, gene A in Fig. 4 is depicted as having 

multiple downstream effects. Thus, gene A may be considered as an important mediator of 

the overall biological response. Network nodes (central hubs that appear to drive many of 

the downstream consequences) can provide information on initiating and key molecular 

events involved in the MoA for the agent of interest. It is important to note that these central 

nodes (i.e., transcription factors or signaling molecule that appear to be connected and 

potentially ‘driving’ the perturbations) need not themselves be differentially expressed; for 

example, the p53 protein is activated by phosphorylation in order to function in regulating 

transcription.

4.2.2.4. Examples.: Pathway and network analyses represent one of the most common 

approaches for analyzing gene expression data. Pathway approaches specifically have been 

identified as the strategy that is most likely to prove to be both practical and useful for risk 

assessment purposes moving forward (U.S. EPA, 2014).

An example of the use of pathway analysis is provided by a case study examining the utility 

of genomics data for the qualitative human health risk assessment of dibutyl phthalate 

(Euling et al., 2013; U.S. EPA, 2009). Dibutyl phthalate is known to cause adverse male 

reproductive effects that are thought to be linked to reduced testosterone production (Makris 

et al., 2013). Analyses revealed perturbation of several pathways within testicular tissue that 
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support this mechanism of action (steroidogenesis, followed by lipid, sterol, and cholesterol 

transport). However, several pathways involved in other mechanisms were also identified, 

including perturbations in cellular growth and differentiation, peroxisome proliferation, and 

cell death. Thus, genomics data were able to inform risk assessment by identifying data gaps 

potentially indicating alternative or complementary MoAs and/or additional effects linked to 

exposure. Knowledge of pathways can be especially useful in general weight of evidence 

analyses for critical toxicological endpoints.

Network analyses, on the other hand, are generally used to identify larger-scale gene 

interactions affected by exposure. These can reveal relationships between the regulators and 

the different pathways that were affected, potentially elucidating a molecular sequence of 

events involved in the response. For example, networks were used to identify genotoxicity as 

a potential concern for exposure to carbon black nanoparticles (Bourdon et al., 2012a). 

However, delving further into the specific genes and pathway within the network, alongside 

other tests, helped to elucidate oxidative stress as the likely cause of genotoxicity (Bourdon 

et al., 2012a,b). In the context of risk assessment, the information provided by network 

analyses can be especially valuable for chemicals with limited toxicological information as it 

provides insight into the most likely outcome of exposure.

4.2.3. Analysis of upstream regulators

4.2.3.1. Key information.: Upstream regulators can include transcription factors as well 

as an array of small molecules capable of initiating specific gene expression responses. 

Signals transmitted from outside the cell are communicated to transcription factors, which 

then regulate gene expression. Transcription factors are critical regulatory proteins that 

control gene expression through DNA binding. Alone, or in combination with other proteins, 

transcription factors bind to DNA and promote or inhibit transcription of specific genes. 

Small molecules can include reactive oxygen species, hormones, and chemicals that initiate 

very specific downstream responses. Various databases are used to mine expression patterns 

induced by chemicals and effectively ‘work backwards’ to identify possible regulatory 

molecules responsible for the measured downstream changes in gene expression. Knowledge 

of the key regulators causing changes in transcription is directly relevant to risk assessment, 

as it provides information on the specific biological effect that initiated alterations in gene 

expression profiles; this knowledge can also be used in the elucidation of MoAs for 

environmental agents, and the identification of similar hazards using read-across approaches. 

An excellent depiction of an upstream regulatory analysis demonstrating the key regulatory 

molecules involved in tumorigenesis mediated through the TNF-α pathway is shown in Fig. 

1 of (Breslin et al., 2005).

4.2.3.2. Concept.: Upstream regulators and master regulators at the top of the regulatory 

hierarchy can activate or suppress gene transcription during specific cellular events. For 

example, nuclear factor kappa B (NF-κB) binds to DNA under conditions of inflammation, 

oxidative stress, and infection, and has been implicated in the transcription of over 150 

genes involved in immune and inflammatory responses (Pahl, 1999). Similarly, the p53 

transcription factor is activated when DNA damage occurs, allowing cell cycle changes and 

activation of DNA repair or apoptotic pathways. There are over a thousand known human 
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transcription factors with defined position weight binding matrices that are experimentally 

validated to be associated with particular biological effects (Vaquerizas et al., 2009) and 

various computational models and databases that can be used to identify transcription factors 

that are modulating observed gene expression changes (e.g., TRANSPATH and 

TRANSFAC; Krull et al., 2003; Wingender et al., 2001). Identifying which transcription 

factors are activated upon exposure can help to identify the MoA of chemical toxicants.

One approach to identifying upstream regulators that have been affected by exogenous 

exposures is to carefully examine the set of differentially expressed genes to determine if 

known targets of specific transcription factors or other signaling molecules possess the 

regulator’s binding motif and are enriched in the dataset. The direction of the change in 

expression change (increase or decrease in transcript levels) can be used to predict whether a 

certain chemical activates or suppresses the activity of a transcription factor or signaling 

pathway. Given that many transcription factors are activated by specific ligands, the data can 

also be used to predict whether a chemical is an agonist or antagonist with respect to a 

specific transcription factor. As in any analysis of large datasets, statistical justification 

should be included when upstream regulators are presented and the biological plausibility 

for associations with transcription factors should be discussed.

4.2.3.3. Interpretation.: Identification of transcription factors using the entire gene list 

can help identify the major cellular processes affected by initial exposure to the agent of 

interest. In some cases, investigators may offer more substantive proof of activation by 

conducting in vitro reporter assays, such as luciferase assays, using the agent of interest. 

Identification of other upstream regulators, such as hormones, can be quantified within the 

biological system under study to lend further support to the relative importance of these 

regulators in the overall biological response. Identification of what may be referred to as a 

“master regulator” (i.e., the top of a regulatory hierarchy (Chan and Kyba, 2013)) can be 

especially beneficial to aid in the development of a MoA for risk assessment. These master 

regulators may be the specific molecules that control multiple downstream networks and 

pathways to lead to the associated adverse effect. Thus, master regulators in a gene 

expression analysis can be used to hypothesize the molecular initiating or key events in a 

MoA.

4.2.3.4. Examples.: Upstream regulator analysis is commonly used to predict initiating 

molecular events or other key events involved in chemical toxicity. This was done for the 

carcinogen furan described by Jackson et al. (2014). Upstream regulator analysis identified 

activation of reactive oxygen species, inflammation and growth factor regulation as critical 

events, which is consistent with the known MoA for furan-induced carcinogenesis 

(specifically, chronic cytotoxicity followed by sustained regenerative proliferation) (Jackson 

et al., 2014). In another example, interferon γ (IFNγ), which is associated with cytokine 

activity and immunoregulatory properties, was suggested to be a key molecular regulator of 

forestomach responses following oral exposure to benzo[a]pyrene in mice (Labib et al., 

2013). There is increasing evidence indicating immunosuppressive properties of 

benzo[a]pyrene and this has important implications for carcinogenicity (Zaccaria and 

McClure, 2013). Such information can be used to narrow down the possible mechanisms of 
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chemical-induced toxicity and is thus useful for both MoA discovery and weight of evidence 

evaluation in human health risk assessment.

4.3. Approaches specific to human health risk assessment

The utility of gene expression profiling in human health risk assessment of chemicals is 

becoming increasingly apparent. Various practical demonstrations of utility and specific 

analytical approaches that have been developed are discussed below.

4.3.1. Comparison of effects observed in animals with responses in human 
cells

4.3.1.1. Key information.: When it is unclear whether or not an adverse effect observed in 

animals also applies to humans, studies in human cells can provide some evidence that 

pathway perturbations associated with an event in animals are likely, or unlikely, to occur in 

humans.

4.3.1.2. Concept.: Determining human relevance of effects observed in experimental 

animals can be challenging, particularly when epidemiological evidence is limited or 

unavailable. Studies using immortalized or primary human cells may provide supporting 

evidence for human relevance in these circumstances. For example, gene expression analysis 

can be used to demonstrate perturbations to the same pathways in human cells in culture as 

in an animal model, or support the hypothesis that activation/repression of key transcription 

factors or signaling molecules are similar across species. Likewise, predictive models built 

in animal model systems and based on gene expression may be used to extrapolate cause and 

effect in humans. Having a training gene expression data set from a rodent model system, 

one can use a variety of classifiers (i.e., k-nearest neighbor, support vector machines, neural 

networks) to identify a subset of genes that are highly predictive of a particular phenotype or 

endpoint. Using genomics and sequence similarity between species, these predictor genes 

can be “mapped” to the human species. With those predictors, one can then apply the 

classifier model to a test human gene expression data set to predict outcome. These findings 

can be used to determine if similar processes are operating in different species and provide 

guidance on the probability that downstream consequences (i.e., adverse health effects) 

observed in animals represent a relevant apical endpoint in humans.

4.3.1.3. Interpretation.: Several factors must be taken into consideration when 

interpreting studies using human cells for purposes of human health risk assessment. First, 

the cell type used will play an important role in the conclusions that can be drawn. It is 

important to select human cells that are relevant to the adverse effects under investigation 

(e.g., renal cells should be used as a basis for inferences about the risk of nephropathy). 

Greater confidence can generally be placed on studies employing primary untransformed 

cells as compared to transformed cells lines. Although the latter cell lines are used in most in 
vitro human studies and can provide evidence of human relevance, these genetically 

transformed cells may not accurately represent the biological response occurring in normal 

somatic cells (Milo et al., 1995).

Bourdon-Lacombe et al. Page 17

Regul Toxicol Pharmacol. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



An important factor to be taken into consideration is the dosing used in vitro. Dosing should 

reflect actual tissue concentrations expected or observed in the in vivo test system. Thus, 

pharmacokinetic data should be considered when comparisons between profiles of cells in 

culture and tissues of live animals are made.

The association between responses in human cells in vitro and in vivo will vary greatly 

depending on the nature of the agent under investigation. Confidence in human relevance is 

enhanced when the MoA is understood and the genes that are changing are known to be 

specific to the adverse health outcome (for example, specific genes are involved in repairing 

damaged DNA, whereas generalized metabolic changes may induce a less specific gene 

expression response).

In general, it is preferable to compare pathways instead of gene subsets. Specific genes 

involved in biological responses can vary from one species to another; however, the 

biological processes and their corresponding pathways are similar across species. Thus, 

pathway analyses can be more useful and more accurate than examining individual genes.

4.3.1.4. Example.: Many studies have investigated gene expression differences between 

species to examine the plausibility of occurrence in humans (Dere et al., 2011; Vanden 

Heuvel et al., 2006; Richert et al., 2003; Martignoti et al., 2006). An excellent example is 

provided by the risk assessment of dimethyl arsenic acid (DMA) conducted by the US EPA 

Office of Prevention, Pesticides and Toxic Substances (U.S. EPA, 2006; Wilson et al., 2013). 

DMA is known to cause bladder tumors in rats. To examine the plausibility of this outcome 

in humans, gene expression profiles of rat urothelium (in vitro and in vivo) and human 

urothelial cells were compared (Sen et al., 2005). Overall, 12 and 49 pathways were 

common between the human cells and the in vivo and in vitro rat cells respectively, with 

only one pathway observed uniquely in human cells but not in the rat cells or tissue (Sen et 

al., 2007). This provided sufficient evidence to determine that bladder cancer is an outcome 

of relevance to humans. The information was used in conjunction with other toxicological 

data to recommend a reduction of the uncertainty factor for inter-species variability from 10 

to 3. Additionally, blood gene expression acquired from rats exposed to subtoxic and toxic 

doses of acetaminophen for various durations were used to build classifiers to select genes 

highly predictive of exposure level. Expression profiles of 66 human orthologs classified the 

exposure status of acetaminophen-overdosed patients from normal individuals with a 

probability of 0.0061 (Bushel et al., 2007).

4.3.2. Comparisons with publicly available gene expression profiles

4.3.2.1. Key information.: Various gene expression profiles covering a large array of 

biological conditions (including chemical toxicities, diseases and other health conditions in 

humans, animals and cells) are readily available from genomics repositories such as the 

Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), ArrayExpress (http://

www.ebi.ac.uk/arrayexpress/) and Chemical Effects in Biological Systems (http://

www.niehs.nih.gov/research/resources/databases/cebs/). The Comparative Toxicogenomics 

Database (http://ctdbase.org/) links biological conditions and diseases with chemical-gene 
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interactions. These gene expression profiles can be compared to toxicity profiles to provide 

further insight into the MoA for toxic chemicals and to elucidate potential adverse effects.

4.3.2.2. Concept.: Comparison of a toxicogenomics profile against publicly available 

expression profiles in order to decipher chemical toxicity is a strategy that is increasingly 

reported in the scientific literature. These analyses can be used to ask a variety of questions, 

including: (1) whether the chemical acts in a similar way as other well-studied chemicals (by 

comparing changes induced in expression for one chemical to another); (2) if a specific 

MoA or transcription factor has been induced (through comparison of chemically-induced 

profiles with those of model agents or knock-out/knock-in samples); (3) if the chemical 

induces expression profiles that are consistent with an adverse effect or disease (by 

comparing the chemically-induced expression changes to the gene expression profiles of 

diseased tissues or other chemicals that induce that particular adverse effect); and (4) if an 

animal MoA may also occur in humans (by comparing exposed animal model samples to 

human in vitro and/or in vivo data).

This concept has briefly been discussed in preceding sections in which heat maps and 

principal component analysis are discussed. These common analytical methods for gene 

expression data can also be used to compare different studies. An additional approach is the 

Prediction Analysis for Microarray (PAM) method (Tibshirani et al., 2002). This approach 

relies on the user to identify and compile gene expression profiles available either in public 

repositories or produced by the investigators. PAM effectively identifies a subset of genes 

that best characterize each gene expression profile.

Another approach involves deriving a gene expression profile for chemicals that act as 

positive and negative controls (e.g., presence or absence of liver tumors following chronic 

exposure) for a particular effect of interest to obtain a ‘training set’ against which expression 

profiles for other chemicals can be compared (Waters et al., 2010). The training set 

chemicals are used to identify the genes that accurately identify chemical MoAs involved in 

the development of the outcome, known as the ‘gene set’. Thus, chemical gene expression 

profiles can be compared to these profiles to elucidate whether or not the adverse effect is 

expected to occur. The results of such comparisons are generally presented using probability, 

summary statistics and heat maps. Recent efforts in the field have focused on whether or not 

gene expression profiles can be used to guide the necessity of the costly and time-consuming 

two year cancer bioassay, by prediction of cancer outcomes using short-term exposure gene 

expression profiles of exposed animals. The method appears to be promising for rat liver 

tumors (Ellinger-Ziegelbauer et al., 2008; Fielden et al., 2011, 2007; Nie et al., 2006; Uehara 

et al., 2011), mouse lung tumors (Thomas et al., 2009) and renal tubular toxicity (Fielden et 

al., 2005). Although more work will be necessary to fully implement this concept (i.e., guide 

toxicity testing), comparisons to training sets can be very useful in deciphering chemical 

MoA in the current risk assessment context.

Commercial software has recently been developed for comparing gene expression datasets. 

NextBio is the largest repository of publicly available gene expression profiles generated in 

various fields of study, including toxicology, pharmacology, and medicine. The software 

works by ranking the genes by responsiveness relative to a control sample (e.g., disease 
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versus control, or exposed versus control) and can be used to search for commonalities 

among datasets to reveal the most highly correlated profiles (Kupershmidt et al., 2010). This 

analytical technique can be used to identify toxicants that induce similar profiles (e.g., 

compound X is similar to compound Y), the disease profile that is most similar to the profile 

(compound X induces genes involved in disease Y), as well as provide other insights into 

chemical toxicity. Disease and exposure profiles can be mined to determine whether similar 

mechanisms are involved in disease development across species, and if the gene expression 

changes observed in animals would also be expected in humans.

Another smaller, but more targeted and integrated resource for comparing toxicogenomic 

gene expression data is the DrugMatrix Database and Analysis Tool (https://

ntp.niehs.nih.gov/drugmatrix/index.html) that is freely available through the National 

Toxicology Program at NIEHS. DrugMatrix is a rat-centric toxicogenomics database that 

contains gene expression profiles for 638 different compounds; these compounds include 

FDA approved drugs, drugs approved in Europe and Japan, withdrawn drugs, drugs in 

preclinical and clinical studies, biochemical standards, and industrial and environmental 

toxicants. Nearly all of the gene expression data in DrugMatrix is paired with 

histopathology, clinical chemistry and hematology performed in the same animals from 

which the gene expression data were taken. The integration of the different data types in 

DrugMatrix allows for the identification gene expression signatures related to a number of 

organ-specific pathologies and modes of toxicological action. Notably, the toxicogenomic 

profiles from DrugMatrix are available in NextBio; however, the additional data (e.g., 

integrated histopathology) associated with the samples are not.

4.3.2.3. Interpretation.: Overall, the details relating to methodology and purpose of the 

comparison, as well as the strength of the association should be clearly presented. The 

results of such analyses can be used in conjunction with other data used in risk assessment to 

support a variety of possible associations including: MoA, groupings of chemicals or read-

across between chemicals, human relevance, and onset of adverse health outcomes or 

disease.

4.3.2.4. Example.: In order to elucidate the potential health implications of exposure to 

carbon black nanoparticles (CBNPs), Bourdon et al. (2013) compared pulmonary gene 

expression profiles of CBNP exposed mice that exhibited inflammation to 13 profiles of 

various mouse inflammatory lung disease models. These included models of allergic airway 

inflammation, bacterial infection, and tissue injury and fibrosis. Using PAM, the authors 

determined that CBNP-induced mouse pulmonary gene expression profiles are correlated 

with profiles of lung injury and fibrosis. Using NextBio, they then determined that the 

molecular pathways in mice exhibiting fibrosis are similar to those seen in people with 

fibrosis. These analyses suggest that fibrosis is a likely outcome of exposure to CBNPs and 

that the response is likely to occur in humans.

In another example, daily oral gavage doses of hepatocarcinogenic and non-

hepatocarcinogenic doses of furan (based on cancer occurrence patterns in rodents at two 

years of age) was administered to mice for three weeks, followed by hepatic gene expression 

analyses (Jackson et al., 2014). The authors used NextBio analysis of gene expression 
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profiles to predict that the most relevant health impacts of carcinogenic doses were liver 

injury, followed by liver regeneration, hepatic fibrosis, hepatocellular dysplasia, liver cancer, 

inflammation of the liver, and cirrhosis of the liver. These health effects are consistent with 

chronic cytotoxicity and sustained regenerative proliferation as the postulated MoA of furan-

induced hepatic carcinomas, a hypothesis that is supported by the extensive literature on 

furan. This information can thus be used to support furan’s MoA and the endpoint of 

concern in the context of human health risk assessment. Moreover, comparisons with other 

chemical profiles found that hepatic gene expression profiles were most consistent with 

malathion, chloroform, hydrogen peroxide, and acetaminophen. Were the MoA of furan 

unknown, this would have aided in deciphering potential mechanisms of action.

These examples suggest that comparisons to select profiles of disease models (such as in the 

CBNP example) or to a wide array all disease and toxicant-induced profiles (as in the furan 

example) can be useful in predicting potential health outcomes. Further comparisons of this 

type will help in elucidating the likelihood of a response observed in in vitro and animal test 

systems also occurring in exposed humans. In the current risk assessment paradigm, this can 

be useful for supporting the choice of a key endpoint of concern or determination of 

chemical MoA.

4.3.3. Dose–Response relationships and identification of biologically 
relevant doses

4.3.3.1. Key information.: The same techniques used to examine dose- or concentration–

response relationships in traditional toxicity assays can also be used in gene expression 

studies to determine the levels of exposure associated with specific biological effects. These 

include the no-observed-adverse-effect level (NOAEL) and lowest-observed-adverse-effect 

level (LOAEL), as well as the benchmark dose (BMD) or benchmark concentration (BMC).

4.3.3.2. Concept.: It is becoming increasingly common to examine dose- or 

concentration–response relationships for specific genes or pathways that are determined to 

be biologically significant with respect to the overall response, or are thought to be linked to 

an adverse health outcome or disease. Exposure–response relationships can be examined by 

determining if fold-changes in specific genes increase or decrease significantly with dose, or 

if the number of differentially expressed genes in a pathway increases with dose. PoDs, such 

as the NOAEL and LOAEL, that are widely applied with traditional toxicological data also 

apply to toxicogenomics data. For example, the lowest dose corresponding to a significant 

effect on a specific gene or pathway corresponds to the LOAEL, and the dose below that at 

which no significant changes are observed (assuming the experimental design produced such 

a dose) would be the NOAEL. In certain cases, a no-observed-transcriptional-ef fect level 

(NOTEL) is assigned for an entire experiment and denotes the dose at which mRNAs are not 

significantly increased or decreased as a result of exposure (Lobenhofer et al., 2004).

BMD or BMC modeling is increasingly used in human health risk assessment, and is often 

preferred over the traditional NOAEL and LOAEL approaches because it makes use of all of 

the experimental data to produce a harmonized description of the entire exposure- or dose–

response relationship (Sand et al.,2011) These approaches can be applied directly to specific 
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genes and pathways of interest. Recently, bioinformatics tools such as BMD Express 

(downloadable from http://sourceforge.net/projects/bmdexpress/) have been developed to do 

simultaneous modeling of dose–response across all differentially expressed genes or across 

all significant pathways, using the same continuous models used by the U.S. EPA 

Benchmark Dose Modeling Software (BMDS) to calculate BMDs and BMCs for standard 

toxicological endpoints (http://www.epa.gov/ncea/bmds/index.html). The number of studies 

reporting BMDs or BMCs is expected to increase as researchers continue to explore the 

potential utility of these as PODs for future human health risk assessments of chemicals 

(Thomas et al., 2011, 2012)

4.3.3.3. Interpretation.: As with traditional toxicological data, observation of a dose- or 

concentration–response relationship increases the weight-of-evidence that the effects on 

transcription, and the potentially related downstream effects of transcription (including both 

key events and adverse health outcomes), are related to exposure. Reference doses derived 

from the NOAEL/LOAEL or BMD/BMC may also be established (Sand et al., 2011). As is 

the case with traditional toxicological studies, lower reference doses or concentrations 

reflect an increased likelihood of chemically-induced toxic effects at low levels of exposure.

4.3.3.4. Examples.: There are many promising applications of dose–response assessments 

of toxicogenomics data that are relevant to the future of quantitative risk assessment. As the 

objective of this manuscript is to discuss topics related to current uses of toxicogenomics in 

risk assessment, issues pertaining to dose–response assessment are only briefly discussed 

here. However, it should be emphasized that as in all toxicological studies, evidence of 

dose–response trends increases the likelihood of the treatment being responsible for the 

effect. This information can be useful within the current risk assessment context.

It has been shown for five carcinogenic chemicals (i.e., 1,4-dichlorobenzene, 1,2,3-

trichloropropane, propylene glycol, mono-t-butyl ether and methylene chloride) that BMDs 

and BMDLs calculated for standard cancer and non-cancer endpoints (e.g., tumors, organ 

weight, histopathology) in mice exposed for two years correlates well with the BMD/BMDL 

of the most sensitive GO category (i.e., lowest GO BMD) of mice exposed for only 13 

weeks (Thomas et al., 2011, 2012). This concept was confirmed using an additional six 

chemicals with gene expression analysis of known target organs in rats following exposure 

for 5 days, and 2, 4, and 13 weeks (Thomas et al., 2013b). Comparison of BMDs for the 

most sensitive pathways to traditional toxicological endpoints showed a high degree of 

correlation at all time points.

Case studies of benzo[a]pyrene, conazoles, carbon black nanoparticles, and furan have 

demonstrated similar points of departure and/or margins of exposure (MOEs) using both 

traditional toxicological endpoints and genomics data (Bourdon et al., 2013; Jackson et al., 

2014; Moffat et al., 2015; Nesnow et al., 2009). For example, a drinking water risk 

assessment was conducted on benzo[a]pyrene using: (a) traditional data alone; (b) genomics 

data alone; and (c) a combination of genomics and traditional data (Moffat et al., 2015; 

Chepelev et al., 2015). These three risk analytic scenarios resulted in very similar PoDs for 

risk assessment, using the most biologically relevant pathways (i.e., pathway perturbations 
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relating to the hypothesized MoA). These examples provide evidence of the expanded 

applications of genomics data in quantitative risk assessment in the future.

5. Overview of applications of toxicogenomics in human health risk 

assessment

Collectively, the examples presented in this paper document numerous practical applications 

of toxicogenomics data in risk assessment that extend beyond basic reporting. This includes 

the risk assessment of DMA by the U.S. EPA Office of Prevention, Pesticides and Toxic 

Substances, in which human relevance was determined by examining commonalities 

between pathways observed in treated rat and human urothelial cells (U.S. EPA, 2006; Sen 

et al., 2005, 2007). In another example from the U.S. EPA’s Office of Pesticides Programs 

Cancer Assessment Review Committee, gene expression profiles for alachlor were used in 

the development of a MoA for acetochlor induced nasal turbinate tumors in rats (U.S. EPA, 

2004; Genter et al., 2002). Toxicogenomics information was also considered in detail in the 

Integrated Risk Information System (IRIS) assessment of trichloroethylene (U.S. EPA, 

2011). However, due to several questions surrounding the validity of toxicogenomics data, 

many of which have been elaborated upon in this paper, the information was not considered 

further in that evaluation.

In order to better understand how risk assessment agencies are incorporating gene 

expression data in their evaluations, we conducted an investigation of documents within 

Health Canada’s Existing Substances Risk Assessment Bureau (ESRAB), Health Canada’s 

Guidelines for Canadian Drinking Water Quality program, and EPA’s IRIS program 

spanning the period January 1, 2000 to February 2, 2013. These programs were selected as 

their evaluations are readily available online and include important risk assessment 

initiatives within Canada and the United States. It was found that EPA IRIS assessments 

included gene expression information in 20% (12 of 59) of the evaluations conducted during 

this time period. Only 2% of evaluations within ESRAB (5 of 209) contained genomics 

information. Gene expression information was not used in any of the drinking water 

evaluations at Health Canada.

When gene expression information was used in IRIS and ESRAB assessments, it tended to 

be discussed qualitatively, adding to the database of studies of a chemical’s toxicity or MoA. 

In fact, 82% and 42% of IRIS assessments employing gene expression data used genomics 

to support a specific MoA or health effect, respectively. In Health Canada ESRAB 

evaluations, 40% of the reports used gene expression information to support an MoA, and 

20% to support determinations of adverse health effects. An additional 20% accounts for 

reports that cited gene expression studies, although the toxicogenomics data were not used 

within the document as part of the evaluation. Interestingly, though perhaps not surprisingly, 

reporting of gene expression data has increased significantly from 2000 to 2012, as shown in 

Fig. 5. It is unclear whether this increase is due to better understanding of gene expression 

data and its potential utility in human health risk assessment, to the increased number of 

published toxicogenomics studies available for use in risk assessment, or to the increased 

ease with which gene expression measures can be taken given advances in technology. 
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Consideration of all relevant toxicological information is important for ensuring the integrity 

of risk assessments. Given the broad utility of gene expression data as described in is article, 

we would expect a notable increase in the routine application of these types of data in human 

health risk assessment in the future.

Potential areas in which gene expression data can be especially useful in improving current 

risk assessments include increased confidence in selecting critical endpoints, determining 

human relevance of existent toxicological data, deciding on the most appropriate risk 

assessment approaches and strategies, and supporting read-across of toxicological data for 

relevant chemical groupings. For example, reporting of gene expression changes related to a 

specific adverse health effect can add to the overall weight of evidence for that critical 

endpoint. This can be especially useful for chemicals for which information on the critical 

effect is limited by a lack of strong candidate studies, such as traditional — albeit time-

consuming and expensive — long-term rodent toxicity studies, which is often the case for 

difficult to assess endpoints such as neurotoxicity. Moreover, certain chemicals such as 

solvents can elicit non-specific toxicities in various tissues. Gene expression information can 

help strengthen the rationale for selection of the specific critical endpoint and target tissue 

on which to base risk assessment.

Development of MoAs using gene expression data in combination with other mechanistic 

data can be of great value within the current risk assessment paradigm. The MoA can be 

used to evaluate the possibility of key events occurring in humans, thus strengthening the 

rationale for selection of a specific critical effect on which to base a risk assessment (Fig. 6). 

This can be useful, for example, when evaluating carcinogens such as benzo[a]pyrene 

(IARC, 2010) for which there exists substantial information in animals, but little evidence in 

humans. In some cases, MoA data can also be used to exclude the use of a specific endpoint; 

this can be especially useful in assessing endpoints such as kidney tumors in rats, as these 

can often occur due to an MoA that is not relevant to humans. More thorough comparisons 

with various disease models (as described in Section 4.3.2) can be especially useful in 

determining a chemical’s potential to elicit similar responses and effects in humans as seen 

in in vitro and/or animal studies.

Current risk assessment practice is moving away from using default approaches, such as 

using a threshold approach exclusively for non-cancer effects and low dose linear 

extrapolations for all cancer endpoints. Gene expression data can guide the selection of 

appropriate approaches through increased understanding of the MoA. For example, an 

extensive MoA evaluation that considered gene expression information has been published 

for chromium (Thompson et al., 2012, 2013). These analyses point to a non-genotoxic MoA 

for chromium-induced intestinal tumors and can be used to argue for the use of a threshold 

approach over the traditional linear low dose extrapolation for cancer endpoints in this case. 

It is also common for some risk assessment agencies to use read-across for chemicals within 

a common chemical grouping (such as polycyclic aromatic hydrocarbons, arsenicals, or 

phthalates) when information on the compound to be evaluated is scarce, but a rich database 

of toxicological information for a similar compound within the group is available. 

Toxicogenomics can aid in ensuring that these compounds do in fact behave similarly within 

the biological system of interest (an essential component enabling read-across) and may 
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even provide insight into relative chemical potency (Hannas et al., 2011, 2012). Overall, 

gene expression data can contribute to current evaluations by providing data that strengthen 

toxicological evaluations and subsequent risk decisions.

Finally, it is worth considering the advantages and disadvantages of inclusion of genomics 

data in a risk assessment. If good strong datasets are available, we see no disadvantages in 

considering the data in a risk assessment. However, caution must be exercised to ensure that 

the data are of high quality, as there are certainly numerous DNA microarray publications 

that contain poorly designed experiments (e.g., insufficient replicates, inappropriate 

methodologies applied, etc.) that could provide false information about effects or mode of 

action. This is, in part, one of the reasons for the present document. For extensive 

discussions on the advantages and shortcomings of toxicogenomics datasets for the current 

risk assessment paradigm we point the reader to our recent case study comparing 

toxicogenomics and traditional approaches in the risk assessment of benzo[a]pyrene (Moffat 

et al., 2015) and the associated commentary to the case study (Chepelev et al., 2015).

6. Concluding remarks

Gene expression data tend to be presented and evaluated using approaches that are not 

generally applied in traditional toxicity studies. The information in Sections 2-4 of this 

document is meant to serve as a practical reference to aid in interpreting toxicogenomics 

data. As with all studies considered in risk assessment, some will carry more weight than 

others. Table 5 provides an overview of how each method can be used within the current risk 

assessment paradigm.

The utility of gene expression data to risk assessment will vary, depending on study quality 

and relevance of the available genomics information, as well as the specific data gaps to be 

addressed and objectives of the assessment. As such, the degree to which gene expression 

data may be incorporated and used in a toxicological evaluation will vary on a case by case 

basis. A general strategy for the inclusion of gene expression data in risk assessment is 

presented in Fig. 6. Although the specifics of such a strategy will undoubtedly vary both 

among assessments and across agencies, it demonstrates that toxicogenomics data could be 

effectively used in risk assessment. It also illustrates that toxicogenomics is highly relevant 

to current risk assessment practices. As an overarching goal of the NRC (2007) vision for 

Toxicity Testing in the 21st Century is to use genomics data quantitatively, it is anticipated 

that gene-based PODs may be used for risk assessment in the future (see Fig. 6).

This work documents a number of specific applications of analytical toxicogenomics 

approaches and how they can be used in risk assessment to provide insight into potential 

human health hazards associated with exposure to toxic chemicals, and to the MoAs of such 

agents. It is anticipated that the utility of toxicogenomics data to risk assessment will 

continue to increase, as knowledge in this area is expanding rapidly and major international 

efforts underway are now focused on increasing our knowledge of pathway perturbations 

and their associations with adverse health effects (Krewski et al., 2010; NRC, 2007). For 

example, in 2012 the Organisation for Economic Cooperation and Development released the 

Adverse Outcome Pathway (AOP) programme (http://www.oecd.org/chemicalsafety/testing/
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adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm#Documents). 

AOPs map the progression of a toxicological response from the initial interaction of the 

chemical with cellular molecules through to an adverse effect at the individual or population 

level. In September 2014, the OECD officially released the AOP-wiki, which makes peer-

reviewed AOPs publicly accessible in order to consolidate knowledge of toxicity pathways. 

The overarching goal is to produce a web-based application that consolidates knowledge of 

how toxicants cause adverse effects in human populations, and provide a weight of evidence 

summary supporting the associations within the pathway, across its components, and the 

adverse health outcome. Another highly relevant initiative is the mapping of the human 

toxome (http://humantoxome.com/) (Hartung and McBride, 2011; Hartung, 2015), which 

aims to create a public database of toxicity pathways, thus providing a means to 

comprehensively map human responses to toxicants (Bouhifd et al., 2014). Collectively, 

these initiatives will significantly increase the utility and integration of toxicogenomics 

changes in routine toxicity evaluations and regulatory risk assessments over the long-term.

Application of toxicogenomics to human health risk assessment of chemicals is a field that 

continues to expand and that is expected to eventually transform toxicological evaluation 

practices, thus allowing more efficient evaluations of the large numbers of chemicals for 

which there exist inadequate toxicity profiles. However, full implementation of the vision for 

Toxicity Testing in the 21st Century in the 21st century is a very large task that still requires 

some time to complete (Krewski, 2014). We hope that the present document will help to 

promote the implementation of the NRC vision, and, in the interim, serve to enrich the 

current human health risk assessment paradigm through expanded use of toxicogenomics 

data along the lines discussed in this paper.
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Fig. 1. 
Brief overview of technologies used for gene expression profiling.
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Fig. 2. 
Schematic representation of a typical heat map with hierarchical clustering. Red, green and 

gray demonstrates increased regulation, decreased regulation and no-change, respectively. 

The intensity of the color refers to greater fold-changes. In this example, chemical A 

increases the expression of genes A, B and C, whereas genes D, E and F are down-regulated. 

Chemical B down-regulates genes A, B, C and causes modest up-regulation in genes D, E 

and F. The clustering on the X-axis demonstrates how closely the samples correlate with 

each other. Clustering on the Y-axis represents subsets of genes with similar functions (not 

always depicted).
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Fig. 3. 
Schematic representation of a 3D PCA plot. This PCA diagram depicts treatment effects at 

the high dose, but not at the low dose. PC1 should capture more than PC2 and both 

components should total to >55% and the top three >70%.
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Fig. 4. 
Schematic representation of biological pathways and networks. The pathway represents 

molecular interactions leading to a specific biological outcome, whereas the network refers 

to broader biological interactions representing the overall state of the biological system.
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Fig. 5. 
Number of EPA IRIS (Panel A) and Health Canada ESRAB (Panel B) assessments 

containing gene expression data (blue) compared to total assessments (red) for 2000–2012. 

Percentages indicate the proportion of assessments containing gene expression information. 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 6. 
Utility of toxicogenomics data in risk assessment today and in the future.
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Table 5

Utility of toxicogenomics approaches within the current risk assessment paradigm.

Approach Value

Number of differentially 
expressed genes

General overview of the presence and extent of toxicogenomic response. Comparisons between similar 
chemicals can be used to draw conclusions on many factors, including potency as well as species-, strain- or 
tissue-specific susceptibilities

Heat maps and 
clustering/PCA

Identification of treatment effects, important genes and likely biological outcomes. Comparisons with gene 
expression profiles for well documented chemicals can be used to elucidate MoA

Gene functionality/pathways 
and Networks

Identification of major responses and likely biological outcomes that can be used in the weight of evidence. 
Insight in chemical MoA

Upstream regulators Identification of plausible molecular initiating events, key events and insight into chemical MoA

Comparisons of work in 
animals and human cells

Provides evidence that responses associated with adverse effects in experimental animals are relevant to human 
responses. Can be used to strengthen the rationale for selection of a critical effect for human health risk 
assessment

Comparisons with publicly 
available profiles

Provides insight into MoA, potential pathologies and relevance to humans by comparison of gene expression 
profiles in animals with those of other chemicals, disease models or humans. Can be used to elucidate MoA or 
to strengthen the rationale for selection of the critical effect

Dose–response analysis Identification of treatment effects. No-observable-transcriptional-effect level (NOTEL) or BMD can be used to 
assess modified Bradford-Hill criteria (to verify order of events) if a full MoA analysis framework is 
considered
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