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Abstract

SUMMARY—Many gene products exhibit great structural heterogeneity because of an array of 

modifications. These modifications are not directly encoded in the genomic template but often 

affect the functionality of proteins. Protein glycosylation plays a vital role in proper protein 

functions. However, the analysis of glycoproteins has been challenging compared with other 
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protein modifications, such as phosphorylation. Here, we perform an integrated proteomic and 

glycoproteomic analysis of 83 prospectively collected high-grade serous ovarian carcinoma 

(HGSC) and 23 non-tumor tissues. Integration of the expression data from global proteomics and 

glycoproteomics reveals tumor-specific glycosylation, uncovers different glycosylation associated 

with three tumor clusters, and identifies glycosylation enzymes that were correlated with the 

altered glycosylation. In addition to providing a valuable resource, these results provide insights 

into the potential roles of glycosylation in the pathogenesis of HGSC, with the possibility of 

distinguishing pathological outcomes of ovarian tumors from non-tumors, as well as classifying 

tumor clusters.

In Brief—Hu et al. provide an integrated proteomic and glycoproteomic characterization of high-

grade serous ovarian carcinomas and relevant non-tumor tissues, which reveals tumor-specific 

glycosylation, uncovers different glycosylation associated with three tumor clusters, and identifies 

glycosylation enzymes correlated with glycosylation alterations.

Graphical Abstract

INTRODUCTION

Ovarian cancer is the fifth leading cause of cancer death among women in the United States 

(Siegel et al., 2018; Torre et al., 2018). High-grade serous ovarian carcinomas (HGSCs) are 

the most common and lethal type of ovarian carcinoma responsible for the majority of 

ovarian cancer-related deaths (Siegel et al., 2018; Torre et al., 2018). The current standard of 

care is to perform an aggressive debulking surgery followed by platinum-taxane 
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chemotherapy. However, the therapeutic approach is effective for only a small number of 

patients (Miller et al., 2009), and the 5-year survival rate is approximately 30% (Siegel et al., 

2018; Torre et al., 2018). Results from the recent Prostate, Lung, Colorectal, and Ovarian 

(PLCO) Cancer Screening Trial, which combined transvaginal ultrasound and serum cancer 

antigen 125 (CA 125) levels for early detection, did not indicate a reduction in ovarian 

cancer mortality after 19 years of follow-up (Pinsky et al., 2016). Therefore, understanding 

the molecular mechanisms of ovarian cancer development, progression, and treatment 

susceptibility represents critical steps to further improve patient survival.

The molecular analysis of clinically annotated HGSCs using genomic, proteomic, and 

phosphoproteomic approaches highlighted by The Cancer Genome Atlas (TCGA; Cancer 

Genome Atlas Research Network, 2011) and Clinical Proteomic Tumor Analysis 

Consortium (CPTAC; Zhang et al., 2016) have provided an enhanced understanding of the 

impact of genomic alterations of HGSCs on protein networks and signaling pathways. 

TCGA identified a remarkable degree of genomic disarray in HGSC, including TP53 
mutations in 96% of tumors and focal DNA copy number aberrations in 36% of cases; 

promoter methylation events involving 168 genes; and NF1, BRCA1, BRCA2, RB1, and 

CDK12 somatic mutations (Cancer Genome Atlas Research Network, 2011). CPTAC 

investigated the impact of genomic alterations on cancer biology at a functional level by 

comprehensively analyzing 169 HGSCs previously characterized by TCGA for proteomics 

and phosphoproteomics (Zhang et al., 2016). The study provided a number of important 

findings, such as the impact of copy number alterations on expression of proteins associated 

with chromosomal instability, protein acetylation associated with homologous 

recombination deficiency, and protein and phosphoprotein signaling pathways associated 

with cell survival (Coscia et al., 2018; Zhang et al., 2016). Although tumor tissues were 

extensively analyzed in these large-scale “omics” studies, strategies for the diagnosis and 

targeted therapy of HGSCs still need to be addressed.

In addition to genomic regulation, protein abundance and functions are further regulated by 

several factors, particularly proteinost-translational modifications (PTMs) (Vogel and 

Marcotte, 2012). Apart from phosphorylation, other protein modifications have not been 

investigated in large-scale proteomic studies (Mertins et al., 2016; Zhang et al., 2014). It is 

well-known that glycosylation plays a crucial role in cancer development processes, such as 

cell-cell adhesion, cell growth, ligand-receptor binding, and tumor metastasis (Hart and 

Copeland, 2010; Varki, 2017). Compared with other protein modifications, the analysis of 

glycoproteins has been limited because of the enormous complexity and heterogeneity of 

glycoprotein structures. Recent advances in glycoproteomic technologies have enabled the 

comprehensive analysis of complex glycoproteins (Narimatsu et al., 2018; Zielinska et al., 

2010).

Here, we present the systematic proteomic and glycoproteomic analyses of 83 prospectively 

collected HGSC tissues and 23 relevant non-tumor tissues. The analysis allowed us to 

identify and quantify sites of N-linked glycosylation using a Solid-Phase Extraction of 

Glycosite-containing peptides (SPEG) approach (Zhang et al., 2003), as well as 

identification of the glycans occupying those N-linked sites using intact glycopeptides 

(IGPs) analysis (Khatri et al., 2016; Parker et al., 2013; Scott et al., 2011; Sun et al., 2016). 
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This integrated approach provides a comprehensive look at the N-glycosylated proteins, 

their N-glycosylated sites, and the glycans occupying these sites in one study (Figure 1A). 

This is the first-of-its-kind large-scale omics analysis in clinical specimens with annotated 

clinical metadata. We found that glycoproteins in tumors compared with non-tumors and 

tumor clusters were regulated on multiple levels, including glycoprotein abundance, overall 

extent of glycosylation at specific glycosites identified, and type of glycosylation at the 

glycosites. Furthermore, using the integrated data from proteomics and glycoproteomics, we 

discovered that although the overall extent of glycosylation of each glycoprotein was 

strongly associated with its expression, glycans that modified glycoproteins had unique 

expression patterns that were correlated with glycosylation enzymes expressed in the 

tumors. These findings revealed the potential functions of protein glycosylation in ovarian 

cancer that have never been studied previously. Furthermore, altered glycoproteins from the 

extracellular space could provide a foundation for the development of diagnostic and/or 

therapeutic targets of HGSC.

RESULTS

The Landscape of Proteomic and Glycoproteomic Data

Proteins from tumors, non-tumors, and a quality control (QC) sample (separated into nine 

aliquots) were extracted, digested by trypsin, and labeled with tandem mass tags (TMTs) 

(Figure 1A). CPTAC prospectively collected 83 treatment-naive HGSC tumors and 23 

relevant non-tumor tissues from normal fallopian tubes (FTs), including 13 paired FTs from 

the 83 HGSC patients. The median tumor cellularity of tumor samples is 75% (Table S1). 

The associated clinical data and metadata are provided in Table S1 and summarized in 

Figure 1B. The TMT-labeled peptides were divided into three aliquots: one aliquot for 

global proteomics (GLOBAL dataset) using liquid chromatography-tandem mass 

spectrometry (LC-MS/MS), one aliquot for N-linked glycosites identified by SPEG method 

(SPEG dataset), and one aliquot for enrichment of IGPs (IGP dataset) (Figure 1A). The 

global or non-modified proteomic measurements used TMT labeling in conjunction with 

offline basic reverse-phase liquid chromatography (bRPLC) fractionation and online LC-

MS/MS to provide a broad coverage for peptide identification and quantification (STAR 

Methods; Figure 1A). The normalized relative abundance measurements (Figure S1A) were 

used to assess the analytical performance of each protein in all of the samples. We 

determined the reproducibility of the proteomic analysis using sample-sample correlation of 

the nine QC samples based on the absolute intensity measurements and the coefficient of 

variation (CV). As shown in Figure S1B, the median correlation of the quantified proteins in 

nine QC analyses was 0.90. The median CV of the quantified proteins in the nine QC 

analyses was 14% (Figure S1C). A total of 8,144 protein groups were identified with high 

confidence (protein-level false discovery rate [FDR] < 1%) in all of the tumor and non-

tumor samples from the GLOBAL proteomic experiment as shown in Figure 1B, while there 

were 5,916 proteins identified crossing all the samples. The raw absolute intensity 

abundances of each protein in each tumor and non-tumor sample are given in Table S2.

The N-linked glycoproteomes of the two remaining aliquots of TMT-labeled peptides were 

analyzed for glycosites after releasing N-linked glycans using PNGase F (using SPEG 

Hu et al. Page 4

Cell Rep. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methods; Zhang et al., 2003) and the enriched IGPs with associated glycans on specific 

glycosites (Sun et al., 2016; Zhang et al., 2003). Of the 8,144 protein groups identified from 

global proteomics, 1,690 N-linked glycosite-containing peptides and 3,202 intact N-linked 

glycopeptides were identified in the SPEG and IGP experiments, respectively, in which 

5,916 protein groups, 490 glycosite-containing peptides, and 365 IGPs were identified from 

all samples (Tables S3 and S4; Figure 1B). Similar to the quality assessment for global 

proteomic data, we evaluated the reproducibility of the technical replicates from nine QC 

analyses in SPEG and IGP. The normalized data of all the samples were shown in Figures 

S1D and S1G. The median correlation of nine QC samples in the SPEG dataset was 0.88 

(Figure S1E), while the median correlation value of the IGP QC samples was approximately 

0.74 (Figure S1H). The median CV values were 22% for glycosites (Figure S1F) and 15% 

for IGP (Figure S1I).

According to the monosaccharide composition of N-linked glycans associated on the 

identified IGPs, three glycan types were defined and investigated in this study: 

oligomannose/high mannose (HM), sialylated glycans (Sia), and fucosylated glycans (Fuc). 

The HM glycans represent glycans containing two N-acetylhexosamine (N) and hexose (H) 

without additional N, fucose (F), or sialic acid (S). The Sia glycans represent any glycans 

containing S. The Fuc glycans represent any identified glycans containing F.

Proteomic and Glycoproteomic Tumor Sample Clusters

To investigate the cancer heterogeneity of HGSC, we used the Z score transformed log2 ratio 

expression of the top 50% most variable proteins, N-linked glycosite-containing peptides, 

and intact N-linked glycopeptides for GLOBAL, SPEG, and IGP tumor sample clustering 

analysis, respectively. The consensus clustering result illustrated that three tumor clusters 

could be distinguished (see Figure 2A; Table S5). The three clusters were conservative for 

GLOBAL, SPEG, and IGP clusters, especially for cluster 3 (Figure 2A). Using the 

correlation to compare the three clustering results from IGP with GLOBAL and SPEG 

showed that IGP cluster 3 was the most conserved (Figures 2B and 2C).

To investigate whether clinical phenotypes were associated with tumor clusters, we 

calculated the correlation of IGP clusters to clinical phenotypes, and the result showed that 

the IGP cluster 3 reversely correlated with tumor cellularity and correlated with anatomic 

site of omentum (−0.45 and 0.45 for IGP cluster 3, respectively), but did not significantly 

correlate with other clinical phenotypes, such as tumor origin site of FT (Figure 2D). Most 

of the samples in cluster 3 were from omentum and have relatively lower tumor cellularity 

(Figure 2A).

The IGP clustering showed three IGP groups (IGs; Figure 2A). The Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway (Kanehisa, 2019; Kanehisa and Goto, 2000; 

Kanehisa et al., 2019) analysis using DAVID 6.8 (Huang et al., 2009a, 2009b) indicated that 

different pathways were significantly enriched in each IG. Lysosome was enriched in the 

IG1; the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, focal adhesion, and 

extracellular matrix (ECM)-receptor interaction were enriched in IG2; and complement and 

coagulation cascades were enriched in IG3 (Table S5).
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The result also showed the three IG-associated glycans, HM glycans in IG1, HM and Fuc 

glycans in IG2, and Fuc and Sia glycans in IG3 (Figure 2A). The relationship of the tumor 

clusters and IGs was revealed using glycans determined by IPGs from each tumor cluster. As 

shown in Figure 2E, the relative abundance of IG2 was observed to be decreased in tumor 

cluster IGP2 but increased in cluster IGP3 (Figure 2E). IG3 was decreased in tumor cluster 

IGP1 but increased in cluster IGP2. There is no significant difference for IG1 levels among 

the three tumor clusters.

To determine the relationship of IGP tumor clusters with tumor subtypes, the identified 44 

GLOBAL protein expression out of 100 subtype signature genes derived by Verhaak et al. 

(2013) were used to associate with the IGP tumor clusters and showed that the tumor 

clustering result from the IGP dataset was relevant to the four historical subtypes: 

differentiated, immunoreactive, mesenchymal, and proliferative (Figure S2A). The signature 

proteins of immunoreactive subtype were elevated in IGP cluster 1, while the signature 

proteins of mesenchymal were decreased in IGP2 and elevated in IGP3 (Figure S2B). 

According to the signature comparison, this observation indicated that IGP cluster 1 is 

relevant to immunoreactive subtype and IGP cluster 3 is relevant to mesenchymal subtype. 

We also applied ESTIMATE (Yoshihara et al., 2013) on the protein expression of 5,916 

proteins identified crossing all tumor samples in the GLOBAL dataset to estimate the 

stromal cell and immune cell influence on the clustering result (Figures S2C–S2E). The 

IGP1 cluster seemed not to be influenced by the tumor purity or stromal score. IGP2 had 

relatively higher tumor purity and lower stromal and immune scores. IGP3 had lower tumor 

purity and higher stromal and immune scores.

Proteomic and Glycoproteomic Analyses of HGSC Tumor and Non-tumor Tissues

In the previous retrospective study (Zhang et al., 2016), only tumor samples were 

considered. Here, we included relevant “non-tumor” samples to investigate HGSC in a more 

comprehensive approach. The “non-tumor” samples were from normal FT (STAR Methods), 

which is an adjacent critical organ considered as the start point of genetic alterations in 

HGSC development (Labidi-Galy et al., 2017; Ducie et al., 2017). The comparison between 

the tumor and non-tumor tissues could lead to the discovery of specific protein changes for 

HGSC. The relative abundance of each protein, glycosite-containing peptide, or IGP was 

determined by the log2 ratio of each protein level to the abundance of the reference sample 

from each TMT-10 plex (Tables S2, S3, and S4). The reference sample was pooled from all 

samples and serves as a common denominator for normalization of each sample for 

quantification in several multiplexed proteomic experiments.

In the IGP dataset, the principal-component analysis (PCA) of log2 ratio of tumors and non-

tumors illustrated the formation of distinct clusters of the tumors and non-tumors (Figure 

3A). All 83 tumors were assembled and basically differentiated from the non-tumor samples. 

To determine the differential protein expression in the tumor and non-tumor samples, we 

applied a t test to the 365 intact N-linked glycopeptides expressed in all of the samples 

(Figure 3B). Filtering by permutation corrected FDR = 0.01 using Perseus (Tyanova and 

Cox, 2018; Tyanova et al., 2016), we identified 142 differentially expressed IGPs. Among 
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them, 48 IGPs were significantly upregulated in tumors compared with non-tumor samples, 

while 94 IGPs were significantly downregulated (Figure 3B; Table S6).

Two-sample t tests were also applied to the proteins (5,916 proteins) expressed in all of the 

samples, as well as glycosite-containing peptides (490 peptides), to determine the 

differentially expressed proteins and N-linked glycosite-containing peptides in the tumor and 

non-tumor samples. Similar to the IGP result, the PCA of log2 relative abundance of 

glycosite-containing peptides and proteins illustrated the formation of distinct clusters of the 

tumors and non-tumors (Figures S3A and S3B). Filtering by permutation corrected FDR = 

0.01 using Perseus (Tyanova and Cox, 2018; Tyanova et al., 2016), we identified 1,232 

proteins and 173 glycosite-containing peptides differentially expressed in tumors compared 

with non-tumors (Table S6). Among them, 645 proteins and 59 glycosite-containing 

peptides were significantly upregulated, while 587 proteins and 114 glycosite-containing 

peptides were significantly downregulated (Figures S3C and S3D).

The significantly altered proteins or glycoproteins between tumor and non-tumor samples 

could be potentially useful for the diagnosis of ovarian cancer. We used CombiROC 

(Mazzara et al., 2017) to select signatures of IGPs to distinguish tumor and non-tumor 

samples (STAR Methods). As shown in Figure 3C, receiver operating characteristic (ROC) 

curves were presented for four selected IGPs from HYOU1, FKBP10, PSAP, and PPT1 to 

classify tumor and non-tumor tissues.

The KEGG pathway using DAVID 6.8 (Huang et al., 2009a, 2009b) was applied on the 

significantly positive and negative regulated proteins, glycosite-containing peptides, and 

IGPs in tumors based on their corresponding genes. The KEGG pathway analysis on IGPs 

revealed that lysosome was the overrepresented pathway (Benjamini-adjusted p < 0.05) for 

the significantly upregulated IGPs in the tumor samples, while complement and coagulation 

cascades pathways, ECM-receptor interaction, PI3K-Akt signaling pathway, focal adhesion, 

and protein digestion and absorption were the top overrepresented (Benjamini-adjusted p < 

0.05) pathways among the significantly downregulated IGPs in the tumor samples (Table S6; 

Figure 3D). Some pathways such as focal adhesion, ECM-receptor interaction, complement 

and coagulation cascades, and PI3K-Akt signaling pathway showed consistent 

overrepresented results from all GLOBAL, SPEG, and IGP datasets (Figures S3E and S3F).

Comparing the relative abundances of IGPs between tumor and non-tumor samples, we 

observed that the IGPs with HM type of glycan were in high abundance in tumors, while 

Fucand Sia-containing IGPs were in low abundance in tumors (Figure 3E). The pathways 

involved in the HM-, Fuc-, or Sia-containing IGPs showed that the lysosome pathway was 

the top enriched pathway in HM-containing IGPs. The ECM-receptor interaction was 

enriched in Fuc-IGPs, and component and coagulation cascades were enriched in Sia-IGPs 

(Figure 3F).

The clustering heatmap of all the abundances of IGPs and their corresponding SPEG 

peptides and global proteins illustrated that most of the upregulated IGPs were associated 

with HM-containing IGPs, in which the lysosome pathway was overrepresented (Figure 

S3G). Several lysosomal proteins were identified as upregulated in both protein and IGP 
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levels in tumor samples, including proteases (CTSC, CTSD, CTSL, and LGMN), 

glycosidases (GAA and HEXA), sulfatase (GNS), phosphatase (ACP2), ceramidase 

(ASAH1), and other lysosomal enzymes and associated activators (PPT1 and PSAP).

Integrated Glycoproteomic Analyses Revealed Changes in Glycosylation Sites and 
Glycans

Comparing differential expressed global proteins (GLOBAL), glycosite-containing peptides, 

and IGPs in tumor and non-tumor samples, we observed overlapping protein and 

glycoprotein changes; however, the glycosite-containing peptides and IGPs showed distinct 

levels of regulation in tumors (Figures 4A and 4B). The t test-based comparative analysis 

was performed on the glycoproteins quantified by GLOBAL proteomic dataset and SPEG 

dataset to investigate whether the tumor-specific changes in glycosites were also present in 

global protein abundance of the glycoproteins (Figure 4A). The correlation of the two t tests’ 

statistical significance scores from proteins in GLOBAL and glycosite-containing peptides 

in SPEG was 0.84 (R2 = 0.52), indicating that glycoproteins could be regulated by 

glycosylation occupancy, as well as global protein expression. Interestingly, although most 

of the differential abundance changes of glycosite-containing peptides were still positively 

correlated with the corresponding global protein expression, the abundance changes of 

glycosites of certain glycoproteins could exhibit distinguishable expression patterns from 

their global levels (Figure 4A). MUC16 (also named as CA125), for example, was 

previously reported as a tumor biomarker of ovarian cancer (Bast et al., 1983, 2005). 

MUC16 showed no significant abundance change in the global protein expression level (p = 

0.70; Figure 4C). However, this glycoprotein showed significantly differential levels in two 

glycosites, MUC16_12272 (p < 0.05; Figure 4D) and MUC16_12586 (p < 0.05; Figure 4E), 

between the tumors and non-tumors. These results suggested that simple measurement of 

protein abundance and subsequent protein-based clustering might be insufficient in 

comprehensively understanding tumor biology, and that clinical assays to measure CA125 

glycosylation levels in multiple glycosites could be more informative than measuring only 

CA125 protein abundance in diagnosis and monitoring of ovarian cancer.

To further investigate whether the alteration of glycosites was also reflected in the IGP 

analysis, we used the similar approach of t tests to compare the glycoproteins quantified by 

the SPEG and IGP datasets (Figure 4B). The comparison of t test scores from SPEG and 

IGP (correlation = 0.69, R2 = 0.56) and the analysis of associated glycan types on the IGPs 

indicated the abundance changes of IPGs in tumors comparing with non-tumors were not 

only regulated by the extent of glycosylation at each glycosite but also influenced by glycans 

that modify the glycosite. As shown in Figure 4B, the IGPs containing HM glycans were 

mostly overexpressed in tumors according to their quantitative values in the SPEG and IGP 

experiments, while the abundance changes of IGPs containing other types of glycans-

containing IGPs were various. The heterogeneity of glycosylation on the same glycosite was 

also observed in the IGP analysis. An example of differential regulation of glycosylation at 

the same glycosite showed that glycosite-containing peptide, IAPASNVSHTVVLRPLK 

from the signal sequence receptor (SSR2), was modified by three different glycans, 

including Man 8 (N2H8), Man 9 (N2H9), and complex glycan (N4H7F1) (Figures 4F–4H). 

Peptides carrying the HM type of glycan were elevated in tumors (Figures 4F and 4G), while 
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glycopeptides with complex glycan showed no significant difference between the tumor and 

non-tumor samples (Figure 4H). SSR2 is a glycosylated endoplasmic reticulum (ER) 

membrane receptor that functions to translocate proteins from the ribosome across the ER 

membrane (Wiedmann et al., 1987). Because the synthesized glycoproteins are modified by 

HM in ER, the elevated levels of HM modified SSR2 may represent the elevated levels of 

newly synthesized SSR in ER and play the translocation function of signal sequences of 

newly synthesized proteins to ER. SSR2 was reported to play a pro-survival role in human 

melanoma cells (Garg et al., 2016).

Altered Glycosylation Biosynthesis in HGSC

To investigate the regulation of glycan expression, we correlated the abundance of IGPs 

from each tumor and non-tumor sample in the IGP dataset with the protein abundance of the 

glycosylation enzymes that were identified and quantified from the GLOBAL proteomic 

dataset (Figure 5A). We found that the IGPs with glycosylation of HM glycans were 

positively correlated with the expression of Glucosidase 2 subunit beta (PRKCSH), but 

negatively correlated with several other glycosylation enzymes, including the expression of 

Mannosyl-oligosaccharide 1, 2-alpha-mannosidase IA (MAN1A1). Among all of the 

identified glycosylation enzymes, only PRKCSH was found to be significantly upregulated 

in tumors, while most of the other glycosylation enzymes were downregulated in tumors 

(Figure 5B). The correlations of the expression of IGPs and protein expression of Alpha-(1, 

3)-fucosyltransferase 11 (FUT11), PRKCSH, and MAN1A1 in the 83 tumor and 23 non-

tumor samples were shown in Figures 5C–5E, respectively. We observed statistical 

significantly positive correlations of FUT11 with IGPs modified by Fuc glycans (Figure 5C), 

as well as PRKCSH with IGPs modified by HM glycans (Figure 5D), but a negative 

correlation of MAN1A1 with IGPs modified by HM (Figure 5E). The quantitative 

measurement of FUT11, PRKCSH, and MAN1A1 showed no significant differential 

expression of FUT11, but a significantly increased level of PRKCSH and decreased level of 

MAN1A1 in the tumor samples comparing with non-tumors (Figures 5F–5H). These results 

were consistent with the observation that the IGPs modified by HM glycans were increased 

in the tumor samples (Figure 3E).

To determine the potential roles of HM modifications to glycoproteins, the partial 

glycosylation biosynthetic pathway was analyzed for the synthesis of HM with the functions 

of key glycosylation enzymes (Figure 6A). The increased expression of PRKCSH and 

decreased level of MAN1A1 in tumor cells could result in elevated glycoproteins with HM 

glycosylation, thus preventing further detailed complex carbohydrate synthesis. The function 

of the HM in cancer is not clear. This increment of HM glycan modifications could be 

critical for glycoproteins that are synthesized in large quantities for tumor growth. 

Investigation of the network of glycoproteins that are modified by HM in cancer cells might 

be helpful to identify the glycoproteins required for fast cell growth; we applied protein-

protein interaction analysis of STRING 10.5 (Szklarczyk et al., 2017) on the proteins with 

HM IGPs upregulated in tumors, and we found that they were involved in a network mainly 

related to lysosome, collagen metabolic process, and endomembrane system (Figure 6B). 

Previous studies done by looking at only glycans found that HM glycans were elevated in 

several cancer types, including breast cancer (de Leoz et al., 2011), cholangiocarcinoma 
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(Talabnin et al., 2018), ovarian cancer (Chen et al., 2017), colorectal cancer (Balog et al., 

2012; Sethi et al., 2014), and prostate cancer (PCa) sera (Tabarés et al., 2006). By analyzing 

the IGPs modified by HM glycans, this study identified the glycoproteins as the potential 

targets required for cancer growth.

DISCUSSION

The integrated glycoproteomic analysis on the proteins, glycosite-containing peptides, and 

IGPs illustrated the reliable power of the MS-based proteomic and glycoproteomic methods 

on the molecular profiling of HGSCs and non-tumor tissues (Figure 1; Figure S1). The 

statistics and evaluations demonstrated these datasets (GLOBAL, SPEG, and IGP) provide 

an integrated proteomic and glycoproteomic data resource for HGSC study.

The hierarchical clustering method suggested that ovarian tumors could be separated into 

three different clusters (Figure 2A). The tumor clustering analysis at the IGP level showed 

apparent consistency with the clustering results of GLOBAL and SPEG datasets (Figures 2B 

and 2C), and further revealed that the clusters could be correlated with the clinical 

phenotypes of tumor cellularity and anatomic site (Figures 2A and 2D). Overall, glycans are 

differentially presented in three tumor clusters. The tumor cluster IGP1 has the lowest level 

of IG3, which is dominated by the IGPs modified by complex glycans containing Fuc and/or 

Sia types of glycans from complement and coagulation cascades pathway. The tumor cluster 

IGP2 has the lowest level of IG2, which contains the IGPs modified mainly by HM or Fuc 

type of glycans from the ECM-receptor interaction pathway. Meanwhile, the tumor cluster 

IGP3 has the highest level of IG2 (Figure 2E). This result suggests that multi-omics data 

should be considered to guide the classification of ovarian cancers into molecular clusters, 

which is helpful to understand the relationship between the molecular alteration and the 

clinical phenotypes.

The integrated glycoproteomic analysis of HGSCs and non-tumor samples demonstrated 

that there was a distinct expression pattern of proteins and glycoproteins in the tumors and 

non-tumors (Figures 3A and 3B), which can potentially be used as targets for the diagnosis 

and/or treatment of HGSCs, especially those glycoproteins or glycopeptides that are 

preferentially expressed on the cell surface or secreted in extracellular space with the 

likelihood of releasing into body fluids (Figure 3C). Using DAVID 6.8 on the significantly 

upregulated and downregulated gene names of identified proteins, glycosite-containing 

peptides, and IGPs compared with the KEGG pathway database, we observed lysosome was 

an enriched pathway in upregulated glycopeptides and focal adhesion, PI3-Akt signaling 

pathway, ECM-receptor interaction, and complement and coagulation cascades in 

downregulated glycopeptides (Figure 3D). The upregulation of proteins in the ECM-receptor 

interaction pathway was observed in a clear cell renal cell carcinoma (ccRCC) study (Clark 

et al., 2019), but the expression of proteins in the ECM-receptor interaction pathway was 

significantly downregulated in HSGC tumors in protein, glycosite-containing peptides, and 

IGPs. The significant changed abundance of the relevant proteins and glycosylation could be 

also regarded as informative indicators of the development of HGSC. Another interesting 

find is that the significantly upregulated IGPs in the lysosome pathway were dominantly 

occupied by HM type of glycans (Figure 3E), which was further confirmed by the enriched 
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pathway comparison in tumor and non-tumor tissues shown in Figure 3F. The lysosomes are 

the recycling centers in cells, where organelles and proteins are degraded during autophagy 

and micropinocytosis (Towers and Thorburn, 2017), which are also critical components for 

tumor cell resistance to stress and to survival and growth. On the other hand, the exocytosis 

of acid hydrolases inside lysosomes could cause the ECM degradation (Kallunki et al., 

2013), which has been reported as important in invasion and metastasis of tumor cells 

(Guan, 2015; Jiang et al., 2015). The inhibition of multiple lysosomal activities is one of the 

important directions of cancer therapy methods, but rarely considered is the inhibition of 

glycosylation on lysosomes, which could be a new direction for future investigation.

Although our integrated glycoproteomic analysis of global proteins, glycosite-containing 

peptides, and IGPs illustrated the formation of distinct clusters of the tumors and non-

tumors, and that the trends of changes in proteins, glycosite-containing peptides, and IGPs 

(T scores) of the tumors compared with the non-tumors were mainly positively correlated, 

some glycosites were differentially regulated as compared with their global expression levels 

(Figure 4A). This finding was also observed in the comparative analysis of the IGPs and 

glycosite-containing peptides from IGP and SPEG datasets (Figure 4B). CA125 (MUC16) 

was developed for monitoring treatment response of ovarian cancer, distinguishing 

malignant from benign pelvic masses, assessment of prognosis, prediction of response to 

drugs, and detection of primary cancer at its early stage (Bast et al., 2005). An elevated 

serum CA125 level (>35 U/mL) by a monoclonal antibody CA125 assay was found in 

patients with a variety of cancers, particularly in ovarian cancer (Fedele et al., 2010). 

However, elevated serum CA125 levels were also found in patients with benign conditions, 

such as endometriosis, menstruation, and pregnancy, as well as in patients with non-ovarian 

malignancy. Furthermore, CA125 is not detected in 20% of ovarian tumor tissue sections 

(Bast et al., 2005; Ooms et al., 2015). The limitation of a lack of sensitivity and specificity 

of current CA125 testing in clinical practice precipitates the urgency for the development of 

an alternative testing strategy. Our proteomic and glycoproteomic analysis showed that there 

was no evidence indicating that CA125 was differentially expressed between the tumor and 

non-tumor samples according to its global expression measurement (Figure 4C). However, 

as shown in Figures 4D and 4E, the glycosite-containing peptides of CA125 detected in all 

ovarian tumors demonstrated differential expression between the tumor and non-tumor 

samples. Our unique findings indicated that the analysis of glycosites of CA125 protein 

could be used for the detection of ovarian tumors. Although the protein expression of CA125 

was not different in the tumors and non-tumors, the degree of protein glycosylation at 

specific glycosites could be influenced by the pathological status of the tissues. This 

observation suggests that glycosylation changes may occur independently of protein 

expression. Thus, both the measurement of protein expression and the glycosylation are 

critical to characterize tumor-specific changes. Several studies have employed MS to 

independently verify antibody-based CA125 detection (Swiatly et al., 2018; Weiland et al., 

2012). However, currently published mass spectrometric data based on global proteomic 

experiments may be insufficient to satisfy complete profiling of CA125 and identify 

alterations on glycosylation level. Our finding highlights the need for high-quality mass 

spectrometric data to enable comprehensive CA125 analysis at each glycosite. Ultimately, 

the improved knowledge about the nature of CA125 may lead to the development of assays 
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for quantification of CA125 glycosites specific to ovarian tumors, which can potentially 

increase current specificities of CA125 for ovarian cancer diagnosis and monitoring.

Differential protein expression was observed not only on the global proteins or glycosites 

but also on the specific N-linked glycans that modified the glycoproteins in the tumors. As 

shown in Figure 4B, elevated levels of HM IGPs could be observed between tumors and 

non-tumors. The elevated HM type of glycans was previously observed in breast cancer 

progression (de Leoz et al., 2011) and also observed by glycomics analysis in epithelial 

ovarian cancer progression (Chen et al., 2017). HM glycans are not commonly detected in 

normal serum or presented as cell surface proteins because of extensive glycan processing 

within the Golgi, which yields highly processed complex and hybrid glycans on the mature 

proteins. The presence of increased levels of HM glycans in cancer represents an aberrant 

biosynthetic pathway of protein glycosylation in cancer cells. Indeed, HM-reactive 

antibodies have been isolated from patients with late-stage PCa (Wang et al., 2013), 

suggesting that glycan biosynthesis is dysregulated at the HM stage within the glycan 

processing pathway.

The expression levels of glycosylation-related enzymes are known to be disrupted during 

tumorigenesis (Meany and Chan, 2011; Stowell et al., 2015). Indeed, aberrant glycosylation 

in cancer progression can be used to distinguish cancerous cells from healthy cells and is 

one of the few distinctive details that can be used to distinguish between self-derived 

antigens (Gilgunn et al., 2013; Padler-Karavani, 2014). As a non-template-mediated PTM, 

glycans are not regulated by the genetic code; however, the pattern of glycosylation is 

controlled by the expression levels of glycosyltransferase and exo-/endo-glycosidase 

enzymes. In addition, glycosylation-related enzymes have been demonstrated to be 

pleiotropic drivers of the epithelial-mesenchymal transition (EMT) process, particularly the 

influential and oncogenic fucosylation modification (Chen et al., 2013; Wang et al., 2014). 

Given the importance of aberrant glycosylation in cancer progression, a number of 

glycogenes have been analyzed to discover their cancer-associated functions. The ability of 

glycosylation-related enzymes to alter cancer-associated processes like migration 

demonstrates the multifaceted role of glycosylation enzymes (Wang et al., 2014). The 

observation that HM glycan abundance is increased in ovarian tumors compared with non-

tumors suggests that there is dysregulation of the enzymes responsible for trimming 

mannose during glycan biosynthesis. The pathological dysregulation of oligomannose-

trimming enzymes could be related to the enhancement of tumorigenesis. Most of the 

glycosyltransferases were identified at lower expression levels in tumor tissues compared 

with non-tumors, except FUT11 and PRKCSH (Figure 5A). PRKCSH is a critical 

component of the glycan biosynthesis pathway and a positive regulator of Wnt/beta-catenin 

signaling and autophagy and apoptosis (Khaodee et al., 2017; Rauscher et al., 2018). 

PRKCSH was found to play an important role in tumorigenesis by selectively boosting the 

IRE1 signaling pathway (Shin et al., 2019). The upregulation of PRKCSH and the 

downregulation of most of the downstream glycosylation enzymes, such as MAN1A1 in 

tumors, actively promote the expression of the N-linked glycoproteins carrying HM glycans 

(Figure 6A). The HM type of glycans might occupy more glycosylation sites associated with 

the peptides in the tumors. As shown in Figures 3E and 4B, most of the HM type of glycan 

were upregulated in the tumor tissues, while the downstream hybrid or complex glycans 
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were downregulated in the tumors. According to the observations above, we hypothesize that 

the glycosylation biosynthesis pathway may be partially disabled in tumor tissues because of 

the downregulation of a series of glycosylation enzymes starting after the truncation of 

glucose in the ER (Figure 6A). Many protein glycosylation events could be terminated after 

exiting the ER with a premature glycosylation without further decoration on glycan 

structures in Golgi. This could be an energy-saving mechanism in tumor to more efficiently 

manufacture glycoproteins or adapt to environmental stress. Moreover, the overactivation of 

the lysosome pathway might release overexpressed HM glycosylated acid hydrolases via 

exocytosis to cause ECM degradation, including changes of stiffness, elasticity, and 

remodeling of ECM, and consequently contribute to tissue fibrosis and tumor metastasis. 

Due to the HM type of glycan’s protection, these acid hydrolases could be more difficult to 

degrade and result in more tissue damage.

In this study, the integrated multi-omics analysis, including proteomics and glycoproteomics 

analysis of HGSC, demonstrated the linkage of glycosylation to ovarian cancer. By applying 

the differential expression of multi-omics data between tumors and non-tumors, we 

identified several potential tumor-specific proteins, glycoproteins, and glycans. Further 

investigation showed that the differential glycoprotein expression in tumors could be shown 

as differential extent of glycosylation at glycosites, as well as types of glycan on the 

glycosites. The glycosylation biosynthetic pathways of tumors differ from those of non-

tumors. Due to the upregulation of PRKCSH and the downregulation of MAN1A1, the N-

linked glycoproteins could carry more HM glycans but fewer hybrid or less complex glycans 

in tumors as compared with non-tumors. This could be a common mechanism regulated by 

PRKCSH in tumors for efficient glycoprotein production, resistance to environmental stress, 

and overactivation of lysosomes. Finally, the comprehensive proteomic and glycoproteomic 

measurements for the HGSC tumor samples provide a valuable public resource. The 

glycoproteomic data linking glycoproteins with their extent of glycosylation, glycan 

modifications, and the glycosylation enzymes will improve our understanding of the 

molecular basis of ovarian cancer.

STAR+METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Hui Zhang (huizhang@jhu.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The datasets generated during this study are available at 

CPTAC data portal and publicly available (https://cptac-data-portal.georgetown.edu/study-

summary/S038). The codes supporting the current study are publicly available and listed in 

the Key Resources Table.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Specimen acquisition—The ovarian tumor and non-tumor tissue samples used in this 

study were acquired from the prospective project of Clinical Proteomic Tumor Analysis 

Consortium (CPTAC). Biospecimens were collected from 83 patients who were recently 

diagnosed with high-grade serous ovarian adenocarcinoma, underwent surgical resection and 

did not receive any prior treatment for their disease, including chemotherapy or radiotherapy. 

For each patient, up to 3 individual fimbria from each normal FT were collected as non-

tumor tissue control. Twenty-three relevant non-tumor tissues from FTs included 13 paired 

non-tumor samples from the 83 patients. Ten patients provided FTs only as the matched 

tumor tissues from these 10 cases failed molecular qualification (McDermott et al., 2020). 

There were 83 tumor and 23 non-tumor tissue samples were applied in this study. All cases 

were required to be of serous histology but were collected regardless of surgical stage or 

histologic grade. Cases were staged according to the 1988 International Federation of 

Gynecology and Obstetrics (FIGO) staging system.

Each specimen endured cold ischemia for ≤ 30 minutes prior to freezing in liquid nitrogen. 

The specimens were used for the global proteomics (Global) and glycoproteomics studies 

including solid phase extraction of N-linked glycosite-containing peptide (SPEG) and intact 

N-linked glycopeptide (IGP) analyses. Each specimen was embedded in optimal cutting 

temperature (OCT) medium, and histologic sections were obtained from the top and bottom 

portions for pathology review. Each case was reviewed by a board-certified pathologist to 

confirm the assigned pathology. For inclusion in this study, the top and bottom sections were 

required to contain 60% tumor cell nuclei with < 20% necrosis. The specimens were serially 

curled at the Biospecimen Core Resource, and the curled sections were then transferred into 

pre-cooled cryovials (Corning).

Specimens were shipped overnight from the Tissue Source Sites to the Proteome 

Characterization Center located at Johns Hopkins University (JHU) in Baltimore, MD using 

a cryoport that maintained an average temperature of < −150°C. All procedures were carried 

out on dry ice to maintain the tissue in a frozen state and processed for mass spectrometric 

(MS) analysis at JHU.

Clinical data annotation—Clinical data were obtained from Tissue Source Sites and 

aggregated by the Biospecimen Core Resource. Data forms were stored as Microsoft Excel 

files (.xlsx). Clinical data can be accessed and downloaded from the CPTAC Data Portal 

(https://cptac-data-portal.georgetown.edu/cptac/documents/

CPTAC_S038_ovarian_cancer_clinical_data_r1.xlsx). Demographics, histopathologic 

information, and treatment details were collected. Supplemental clinical data were collected 

directly from the original file, and the updated clinical data are provided in Table S1. As 

shown in Table S1, the characteristics of the CPTAC Prospective specimens reflect the 

general population of women with advanced ovarian cancer. The average age at diagnosis 

was 59.94 years, all cases were of serous histology. Most cases were at late stage, with 76% 

(63 of 83) of cases at FIGO stage III and 18% (15 of 83) at FIGO stage IV. The ‘SPL’ 

column was used to indicate the internal sample index for simplifying the sample name.

Hu et al. Page 14

Cell Rep. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cptac-data-portal.georgetown.edu/cptac/documents/CPTAC_S038_ovarian_cancer_clinical_data_r1.xlsx
https://cptac-data-portal.georgetown.edu/cptac/documents/CPTAC_S038_ovarian_cancer_clinical_data_r1.xlsx


METHOD DETAILS

Protein extraction and tryptic digestion—The experimental design is shown in Figure 

1A. Approximately 30–200 mg of each of the sectioned ovarian tumor tissues or non-tumor 

tissues were homogenized separately in lysis buffer (8 M urea, 1.0 M NH4HCO3, pH 8.0) by 

sonication (Branson Sonifier 250, 15 s cycles with 1 min cool down, 4 times, 20% output). 

Lysates were precleared by centrifugation at 16,500 g for 15 min at 4°C and protein 

concentrations were determined by BCA assay (Pierce). Proteins (2mg/mL) were reduced 

with 10 mM tris (2-carboxyethyl) phosphine (TCEP) for 1 h at 37°C, and subsequently 

alkylated with 15mM iodoacetamide for 1 h at room temperature (RT) in the dark. Samples 

were diluted 1:5 with deionized water and digested with sequencing grade modified trypsin 

(Promega) at a 1:50 enzyme-to-substrate ratio. After overnight digestion at 37°C, another 

aliquot of the same amount of trypsin was added to the samples and further incubated at 

37°C overnight. The digested samples were then acidified with 50% trifluoroacetic acid 

(TFA, Sigma) to ~pH 2. Tryptic peptides were desalted on reversed phase C18 SPE columns 

(Waters) and dried using a Speed-Vac (Thermo Scientific).

TMT labeling of peptides—Desalted peptides from each sample were labeled with 10-

plex TMT (Tandem Mass Tag) reagents (Thermo Fisher Scientific). Peptides (300 μg) from 

each of the prospective ovarian samples were dissolved in 55 μL of 0.5 M triethylammonium 

bicarbonate (TEAB), pH 8.5 solution, and mixed with 3 units of TMT reagent that was 

freshly dissolved in 130 μL of ethanol. After 1h incubation at RT, the reaction was quenched 

by acidification with 50% TFA to pH < 3. A reference sample was created by pooling an 

aliquot of peptides from each individual tumor and non-tumor sample, and TMT Channel 

126 was used to label the pooled reference sample throughout the proteomic analysis. A 

single HGSOC tumor sample previously used as an internal quality control (QC) for the 

analysis of the prospectively-collected tumors (Zhang et al., 2016) was prepared and 

repeatedly analyzed in the same manner in the current study. A total of 83 prospectively-

collected tumors and 23 non-tumor samples together with 9 QC aliquots were co-

randomized to 13 TMT sets. The sample-to-TMT channel mapping is shown in the 

“Experiment Design” sheet of Table S1. After labeling, in each TMT set, peptides labeled by 

different TMT reagents were mixed and desalted on C18 SPE columns. After desalting, the 

peptides from each sample (3 mg) were divided to 4 groups: 200 μg for proteomic analysis, 

400 μg for SPEG analysis, 1.1 mg for intact glycopeptide analysis, and 1.3 mg for additional 

analysis, if needed.

Peptide fractionation by basic reversed-phase liquid chromatography (bRPLC)
—Extensive fractionation was performed by bRPLC to reduce sample complexity and thus 

reduce the likelihood of peptides being co-isolated and co-fragmented. This approach has 

been well-documented to reduce isobaric (i.e., iTRAQ, TMT) reporter ion ratio distortion 

effects (Bantscheff et al., 2008) and it was applied in this study.

The samples were fractionated using bRPLC. Approximately 200 μg of 10-plex TMT 

labeled sample was first purified on strong cation exchange columns (Glygen), and then 

separated on a reversed phase Zorbax extend-C-18 column (4.6 × 100 mm column 

containing 1.8-um particles; Agilent) using an Agilent 1200 Infinity HPLC System. The 
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solvent A consisted of 10 mM ammonium formate, pH 10.0. Solvent B consisted of 10 mM 

ammonium formate, pH 10, 90% acetonitrile as mobile phase. The separation gradient was 

set as follows: 2% B for 10 min, from 2 to 15% B for 5 min, from 15 to 45% B for 85 min, 

from 45 to 95% B for 5 min, and 95% B for 15 min. A total of 96 fractions were collected 

into a 96 well plate in a time-based mode. These fractions were then concatenated into 24 

fractions by combining 4 fractions that are 24 fractions apart (i.e., combining fractions #1, 

#25, #49, and #73; #2, #26, #50, and #74; and so on). Each concatenated fraction was dried 

down in a Speed-Vac and re-suspended in 2% acetonitrile, 0.1% formic acid for LC-MS/MS 

analysis.

Enrichment of intact glycopeptides by Retain AX cartridges (RAX)—A total of 

1.1 mg TMT labeled peptides from each set were adjusted to 95% ACN (v/v), 1% TFA (v/v) 

for intact glycopeptide enrichment using Retain AX Cartridges (RAX) (particle size 30–50 

μm, 30 mg sorbent per cartridge, Thermo Fisher Scientific) (Yang et al., 2017). The RAX 

columns were equilibrated three times with 1 mL of ACN, three times with 100 mM 

triethylammonium acetate, three times with water, and finally three times with 95% ACN 

(v/v), 1% TFA (v/v). The samples were loaded on to RAX columns and washed four times 

with 1 mL of 95% ACN, 1% TFA. Finally, bound intact glycopeptides were eluted in 400 μL 

of 50% ACN (v/v), 0.1% TFA (v/v). The intact glycopeptides were then dried in a Speed-

Vac and stored in −80°C prior to LC–MS/MS analysis.

Solid phase extraction of N-linked glycosite-containing peptides (SPEG)—N-

linked glycopeptides were captured by solid phase extraction of N-linked glycosite-

containing peptides (SPEG) as described previously (Zhang et al., 2003). Briefly, 400 μg 

TMT-labeled peptides (in C18 elution buffer: 60% ACN, 0.1%TFA) of each TMT set were 

oxidized by 10 mM of sodium periodate at room temperature for 1 h in the dark. After 

oxidation, samples were desalted on C18 SPE columns to remove sodium periodate. Then 

the sample was conjugated to 40μl hydrazide resin (Bio-Rad) in the presence of 1% Aniline 

at room temperature overnight by gentle shaking. Non-glycopeptides were removed by 

centrifugation at 6000 rpm for 1 min. Then the resin was intensively washed sequentially 

with 1) 50% ACN/50% deionized water (v/v), 2) 1.5M NaCl, 3) deionized water and 4) 

25mM NH4HCO3, three times for each wash step, by vortexing and centrifugation. After the 

last wash, the hydrazide resin was reconstituted in 200μL 25mM NH4HCO3. The N-linked 

glycopeptides were released from the resin by incubation with 2μL PNGase F (New England 

Biolabs Inc) at 37°C overnight with gentle shaking. The released de-glycopeptides were 

dried and stored in −80°C prior to LC-MS/MS analysis.

LC-MS/MS for global proteomic analysis—The global proteome fractions were 

separated on a Dionex Ultimate 3000 RSLC nano system (Thermo Scientific) with a 75 μm 

× 50 cm PepMap RSLC C18 Easy-Spray column (Thermo Scientific) protected by a 100 μm 

× 2 cm Acclaim PepMap 100 guard column (Thermo Scientific). The mobile phase flow rate 

was 450 nL/min and consisted of 0.1% formic acid in water (A) and 0.1% formic acid/95% 

acetonitrile (B). The sample injected (6 μL) was trapped using 100% mobile phase A for 13 

min at a flow rate of 5 μL/min before being placed in-line with the analytical column and 

subjected to a gradient profile which was set as follows: 2%–4% B for 10 min, 4%–24% B 
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for 80 min, 24%–33% B for 22 min, 33%–95% B for 3 min, 95% B for 10 min at a flow rate 

of 320 nL/min. MS analysis was performed using a Q-Exactive mass spectrometer (Thermo 

Scientific). The Q-Exactive mass spectrometer parameters were as follows: electrospray 

voltage was 2.2 kV; following a 20 min delay from the end of sample trapping, Orbitrap 

precursor spectra (AGC 3×106) were collected from 400–1800 m/z for 110 minutes at a 

resolution of 70K along with the top 12 data dependent Orbitrap HCD MS/MS spectra at a 

resolution of 35K (AGC 2×105) and max ion time of 120 msec; ions selected for MS/MS 

were isolated at a width of 1.4 m/z and fragmented using a normalized collision energy of 

31%; peptide match was set to ‘Preferred’; exclude isotopes was set to ‘on’; and charge state 

screening was enabled to reject unassigned 1+, and > 8+ ions with a dynamic exclusion time 

of 30 s to discriminate against previously analyzed ions.

LC-MS/MS for glycoproteomic analysis—The de-glycosylated glycosite-containing 

peptides isolated by SPEG were separated on a Dionex Ultimate 3000 RSLC nano system 

(Thermo Scientific) with a 75 um × 50 cm Acclaim PepMap RSLC C18 Easy-Spray column 

(Thermo Scientific) protected by a 100um × 2 cm Acclaim PepMap 100 guard column 

(Thermo Scientific). The mobile phase flow rate in the analytical column was 320 nL/min 

and consisted of 0.1% formic acid in water (A) and 0.1% formic acid/95% acetonitrile (B). 

The sample injected (6 μL) was trapped using 100% mobile phase A for 13 min at a flow 

rate of 5 μL/min before being placed in-line with the analytical column and subjected to the 

gradient profile which was set as follows: 2%–7% B for 10 min, 7%–27% B for 80 min, 

27%–34% B for 22 min, 34%–95% B for 3 min, 95% B for 10 min. MS analysis was 

performed using a Q-Exactive mass spectrometer (Thermo Scientific). The Q-Exactive mass 

spectrometer parameters were as follows: electrospray voltage was 2.2 kV; following a 20 

min delay from the end of sample trapping, Orbitrap precursor spectra (AGC 3×106) were 

collected from 400–1800 m/z for 110 minutes at a resolution of 70K along with the top 12 

data dependent Orbitrap HCD MS/MS spectra at a resolution of 35K (AGC 2×105) and max 

ion time of 120 msec; ions selected for MS/MS were isolated at a width of 1.4 m/z and 

fragmented using a normalized collision energy of 31%; peptide match was set to 

‘Preferred’; exclude isotopes was set to ‘on’; and charge state screening was enabled to 

reject unassigned 1+, and > 8+ ions with a dynamic exclusion time of 30 s to discriminate 

against previously analyzed ions. Each sample was analyzed by LC-MS/MS in triplicate.

The intact glycopeptides were analyzed on the Orbitrap Fusion Lumos system (Thermo 

Scientific). The intact glycopeptides were separated using an Easy nLC 1200 UPLC system 

(Thermo Scientific) on an in-house packed 20 cm × 75 mm diameter C18 column (1.9 mm 

Reprosil-Pur C18-AQ beads, Dr. Maisch GmbH); Picofrit 10 mm opening (New Objective). 

The column was heated to 50°C using a column heater (Phoenix-ST). The flow rate was 200 

nL/min with 0.1% formic acid and 2% acetonitrile in water (A) and 0.1% formic acid/90% 

acetonitrile (B). Injected peptides were subjected to the following gradient: 2%–6% B for 1 

min, 6%–30% B for 84 min, 30%–60% B for 9 min, 60%–90% B for 1 min, 90% B for 5 

min and then back to 50% B for 10 min. The Fusion Lumos mass spectrometer parameters 

were as follows: electrospray voltage was 1.8 kV; the ion transfer tube temperature was at 

250°C; Orbitrap precursor spectra (AGC 4×105) were collected from 350–1800 m/z for 110 

min at a resolution of 60K along with data dependent Orbitrap HCD MS/MS spectra 
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(centroided) at a resolution of 50K (AGC 2×105) and max ion time of 105 msec for a total 

duty cycle of 2 s; masses selected for MS/MS were isolated (quadrupole) at a width of 0.7 

m/z and fragmented using a high energy collision dissociation of 38%; peptide charge state 

screening was enabled to reject unassigned 1+, 7+, 8+, and > 8+ ions with a dynamic 

exclusion time of 45 s to discriminate against previously analyzed ions between ± 10 ppm. 

Each sample was analyzed by LC-MS/MS in triplicate.

QUANTIFICATION AND STATISTICAL ANALYSIS

Identification and quantification of global proteins—LC-MS/MS analysis of the 

TMT-labeled, bRPLC fractionated samples generated a total of 312 global proteomics data 

files. The Thermo RAW files were processed with ProteoWizard 3.0(Chambers et al., 2012) 

using ‘peak-picking’ for MS1 and MS2 spectra and converted to ‘.mzML’ format, and 

protein identification was conducted using MS-PyCloud (Chen et al., 2018). MS-GF+v9881 

(Kim et al., 2008; Kim and Pevzner, 2014) was the default search engine in MS-PyCloud 

applied to match against the RefSeq human protein sequence database, released on May 02, 

2016 (101,661 proteins). The partially tryptic search used a ± 10 ppm parent ion tolerance, 

0.5 m/z fragment ion tolerance, allowed for isotopic error in precursor ion selection [−1,2], 

and searched a decoy database composed of the forward and reversed protein sequences. 

MS-GF+ settings included static carbamidomethylation (+57.0215 Da) on Cys residues, 

TMT modification (+229.1629 Da) on the peptide N terminus and Lys residues, and 

dynamic oxidation (+15.9949 Da) on Met residues for searching the global proteome data. 

Peptide identification stringency was tuned to not exceed a false discovery rate (FDR) of 1% 

at the peptide-spectrum match (PSM) level. In the protein inference conducted by MS-

PyCloud, a minimum of 3 PSMs per peptide and 2 unique peptides per protein were required 

for achieving FDR < 1% at the protein level within the full dataset. Inference of 

parsimonious protein set resulted in a total of 8,144 common protein groups among all the 

tumor, non-tumor, pooled reference, and QC samples (Table S2).

The intensities of all ten TMT reporter ions in each MS/MS spectrum were extracted using 

MS-PyCloud. Next, PSMs were linked to the extracted reporter ion intensities by scan 

number. The relative protein abundance was calculated using the ‘log2-median-median’ 

strategy. The pooled reference sample was labeled with TMT 126 reagent, allowing 

comparison of relative abundances across the normalized intensity values of the remaining 9 

channels of the TMT 10-plexes on the PSM level. The median value of the log2-transformed 

relative abundances from different scans and different bRPLC fractions corresponding to the 

same peptide were used as the relative abundance of the peptide. The final relative protein 

abundance was calculated as the median value of the log2-transformed relative abundance 

from each protein’s constituent peptides. Small differences in sample handling can result in 

detectable systematic, sample-specific bias in the quantification of protein levels. In order to 

mitigate these effects, we computed the median, log2 relative protein abundance over all 

identified proteins for each sample followed by re-centering to achieve a common median of 

0 (see Figure S1A).

Identification and quantification of glycosite-containing peptides isolated with 
SPEG—The glycosite-containing peptide identification for the 39 SPEG data files (each set 
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has 3 replicated runs) were performed as described above (e.g., peptide level FDR < 1%), 

with an additional dynamic deamidation (+0.984016 Da) modification on Asn and Gln 

residues. For SPEG datasets, the TMT-10 quantitative data was summarized at the glycosite-

containing peptide level (Table S3). All the peptides (glycosite-containing peptides and 

global peptides) were labeled with TMT-10 reagent simultaneously. SPEG and intact 

glycopeptide analyses were performed after the TMT labeling. Thus, all the biases upstream 

of labeling are assumed to be identical between the global proteomics and glycoproteomics 

samples isolated by SPEG and intact glycopeptide enrichment. Therefore, to account for 

sample-specific biases in the glycosite-containing peptide analysis we normalized the 

relative abundance of the glycosite-containing peptides by subtracting the median values of 

log2-transformated relative abundance of glycoproteins in each sample (see Figure S1D).

Identification and quantification of intact N-linked glycopeptides—The intact N-

linked glycopeptides were identified using GPQuest 2.1 software (Hu et al., 2018; Mertins et 

al., 2018). Prior to database search, ProteoWizard 3.0 was used to convert the .RAW files 

to .mzML files with the “centroid all scans” option selected. GPQuest 2.1 was applied to 

identify intact glycopeptides to MS/MS spectra using two approaches: searching spectra 

containing oxonium ions (‘oxo-spectra’) and identifying intact N-linked glycopeptides. The 

oxonium ions were used as the signature features of the glycopeptides from the MS/MS 

spectra, which were caused by the fragmentation of glycans attached to intact glycopeptides 

in the mass spectrometer. In this study, the MS/MS spectra containing the oxonium ions 

(m/z 204.0966) in the top 10 abundant peaks after removing TMT reporter ions were 

considered as the potential glycopeptide candidates. The intact N-linked glycopeptides were 

identified by using GPQuest 2.1 to search against the database of unique deglycosylated 

peptide sequences identified from the SPEG method and a database containing 178 N-linked 

glycan compositions. The glycan database was collected from the public database of 

GlycomeDB (Ranzinger et al., 2011) (http://www.glycome-db.org). Each tandem mass 

spectrum was first processed in a series of preprocessing procedures, including removing 

reporter ions, spectrum de-noising, intensity square root transformation (Liu et al., 2007), 

oxonium ions evaluation and glycan type prediction (Toghi Eshghi et al., 2016). The top 100 

peaks in each preprocessed spectrum were matched to the fragment ion index generated 

from a peptide sequence database to identify all the candidate peptides. All the qualified (> 6 

fragment ions matchings) candidate peptides were compared with the spectrum again to 

calculate the Morpheus scores (Wenger and Coon, 2013) by considering all the peptide 

fragments, glycopeptide fragments, and their isotope peaks. The peptide having the highest 

Morpheus score was then assigned to the spectrum. The mass gap between the assigned 

peptide and the precursor mass was searched in the glycan database to find the associated 

glycan. The best hits of all ‘oxo-spectra’ were ranked by the Morpheus score in descending 

order, in which those with FDR < 1% and covering > 10% total intensity of each tandem 

spectrum were reserved as qualified identifications. The precursor mass tolerance was set as 

10ppm, and the fragment mass tolerance was 20 ppm.

Similar to the process described for the analysis of glycosite-containing peptides in SPEG, 

the quantification of the intact glycopeptides was also conducted at the peptide level. The 

median log2 ratio value of all the PSMs of an identical intact glycopeptide was used as the 
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relative abundance of the intact glycopeptide. The relative abundances of intact 

glycopeptides of samples were also normalized by subtracting the median value of 

glycoproteins in each corresponding sample expressed in the global datasets (See Figure 

S1G and Table S4).

Quality control assessment—The sample correlation was the indicator of the similarity 

of the expression values of the samples. To eliminate the influence of the pooled reference 

channel, the absolute intensity matrix was applied in the sample correlation procedure. 

Instead of using a ‘log2-median-median’ strategy, the ‘sum-of-intensity’ approach was used 

to generate the intensity matrix of protein expression. The median (MD) strategy is 1) 

calculate median log2 value of the ith sample (mi = median(yij; where j = 1…p; i = 1...n). 

Here, p is the total protein or peptide identification number, and n is the total sample 

number. 2) record m0 = median (mi; where i = 1…n). 3) center the data of each sample by 

subtracting median from each value yij′ = yij − mi . The sum of intensity of all the reporter 

ions of the PSMs from all the fractions assigned to the same peptide was used as the 

absolute abundance of the peptide. The sum of peptide intensity values of the same protein 

was regarded as the absolute abundance of the protein. A Spearman’s rank correlation value 

was calculated between the two samples using their shared proteins (See Figure S1B). As 

the correlation is a rank-based correlation, no normalization is required before the 

calculation. The sample correlation was also applied on the ‘sum-of-intensity’ peptide 

matrices of all the quality control samples of the SPEG dataset and the intact N-linked 

glycopeptide dataset (See Figures S1E and S1H). The coefficient of variation (CV) values of 

the relative abundance (ratio values) of proteins or peptides of the QC samples were also 

calculated to evaluate the stability of the reproducibility of proteins or peptides expressed in 

the 9 QC samples (See Figures S1C, S1F, and S1I).

Proteomic and glycoproteomic clustering analysis—The top 50% of most variable 

global proteins (2,958) without missing values were analyzed by CancerSubtypes (Xu et al., 

2017) for consensus clustering (Monti et al., 2003) of tumor subtypes. For the glycosite-

containing peptide and IGP data, an identical approach was applied on the 50% most 

variable glycosite-containing peptides and IGPs. Specifically, 80% of the original sample 

pool was randomly subsampled without replacement and partitioned into three major 

clusters using hierarchical clustering, which was repeated 500 times (Wilkerson and Hayes, 

2010). The expression values were transformed into Z scores using the built-in 

standardization function of R. The sample clustering result was reported in Table S5. For the 

IGP clustering, the corresponding glycan types were also listed on the left side of the 

heatmap of the clustered expression matrix to illustrate the possible relationship between 

tumor clusters and the associated glycan types (Figure 2A). The preferential glycan types 

and enriched pathways of different intact glycopeptides were grouped and shown in the left 

side columns of Figure 2A. The Z-score transformed the abundance of intact glycopeptides 

were grouped by the IG types in each IGP cluster to show the preferential glycosylation in 

each tumor cluster (Figure 2E).

Correlation between tumor clusters and clinical phenotype associations—The 

abundance levels of GLOBAL, SPEG, and IGP were transformed to binary vectors. The 
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spearman’s rank correlation coefficient values of each pair of binary vectors were calculated 

by using Python SciPy package. The results were visualized in the Figures 2B and 2C for 

GLOBAL and SPEG comparing to IGP respectively. The categorical clinical phenotypes, 

such as tumor grade, tumor stage, participant race, anatomic site, origin site were also 

transformed to binary vectors for each class of the corresponding clinical phenotype and 

then correlated with the tumor clusters of IGP datasets. The numeric clinical phenotypes, 

such as tumor cellularity and participant age were directly correlated with the tumor clusters 

using spearman’s rank correlation method. The result was shown in Figure 2D.

Principal component analysis of tumor and non-tumor samples—The principal 

component analysis (PCA) function under OmicsOne (Hu et al., 2019) using scikit-learn 

package (Pedregosa et al., 2011) was implemented to conduct the unsupervised clustering 

analysis with the parameter ‘n_components = 2′ on the expression matrix of global 

proteomic data, in which there are 106 samples (observations) and 365 intact glycopeptides 

(features). The 95% confidence coverage was represented by an ellipse for each group, 

which was calculated based on the mean and covariance of points in that group (see Figure 

3A). A similar approach was also applied on the GLOBAL proteomic and SPEG 

glycoproteomic datasets (see Figures S3A and S3B).

Tumor and non-tumor differential expression—To uncover discriminating features 

between tumors and non-tumors, we performed the t test analysis on the global proteomic 

dataset of 5916 global proteins expressed on tumor and non-tumor samples. The permutation 

corrected p values were calculated using Perseus with setting the FDR = 0.01 to identify the 

significant alternations. A total of 645 significantly upregulated and 587 significantly 

downregulated proteins were observed in the filtered results (see Figure S3C). A similar 

approach was also applied to the SPEG and IGP glycoproteomic data (See Figures S3D and 

3B and Table S6).

CombiROC is an interactive web tool for selecting accurate marker combinations of omics 

data (Mazzara et al., 2017). It was applied to plot the Receiver operating characteristic 

(ROC) curves for the differential intact glycopeptides in tumor and non-tumor samples, in 

which both signal cutoff and minimum features were set to 1 to plot the results. The result 

was shown in Figure 3C.

DAVID 6.8 was applied on the 48 significantly upregulated and 94 significantly 

downregulated intact glycopeptides to perform gene-annotation enrichment analysis and 

shown in Figure 3D. The 365 identified glycopeptides were classified to HM, Fuc, and Sia 

types based on their glycan compositions, and separately plotted according to their median 

log2 ratio values in tumor and non-tumor sample groups as shown in Figure 3E. DAVID 6.8 

was also applied on the gene name list of intact glycopeptides associated with HM, Fuc, and 

Sia glycan types for enriched pathways (Figure 3F).

Integrated proteomic and glycoproteomic analysis—The t tests were applied to the 

common global proteins, glycosite-containing peptides, and intact glycopeptides 

respectively to determine their differential expression in the tumor and non-tumor tissues 

(Figures 4A and 4B). The glycosylation sites of CA125 (MUC16) and its identified 
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glycosite-containing peptides (SPEG) were highlighted in Figures 4C–4E to indicate the 

differential expression of global protein and the three glycosite-containing peptides. For 

further comparison, their corresponding expression values across all samples are shown as 

four boxplots representing expression in tumors and non-tumors (Figures 4D and 4E). The 

heterogenous glycosylation events on the identical glycosite of SSR2 were plotted in Figures 

4F–4H.

Glycosylation biosynthetic pathway analysis—The intact glycopeptide expression 

was hypothesized to be influenced at least by the expression of substrate glycoproteins and 

glycosylation enzymes. The log2 ratio values of intact glycopeptides were correlated with 

the 22 glycosylation enzymes identified from the global proteomic data in this study. The 

correlation matrix was further arranged by hierarchical clustering on glycopeptides 

(columns) and glycosylation enzymes (rows) and visualized in Figure 5A. The glycan 

compositions were linked to the intact glycopeptides. The intact glycopeptides were 

classified as different groups for two comparisons based on the glycan structure they carry: 

one comparison is whether glycopeptides contained HM glycans (Figures 5D and 5E); the 

other is whether glycopeptides contained Fuc glycans (Figure 5C). For each comparison, the 

correlations between the IPGs and specific glycosylation enzyme (FUT11, PRKCSH, or 

MAN1A1) that correlated with the IGPs across all samples were calculated and shown in a 

boxplot. The hypothesis of tumor-specific glycosylation mechanism was shown in Figure 

6A.

The gene names of significantly elevated intact glycopeptides modified by HM glycans in 

tumors were submitted in STRING 10.5 (Szklarczyk et al., 2017). The minimum required 

interaction score was set to 0.7. The protein-protein interaction network was shown in Figure 

6B by disabling structure previews inside network bubbles, hiding disconnected nodes and 

small groups in the network.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Proteomics and glycoproteomics of 83 ovarian cancer and 23 relevant non-

tumor tissues

• Glycosylation is associated with three tumor clusters

• Tumor-specific changes of glycoproteins and glycosites are apparent

• Enzymes responsible for the glycosylation alterations are identified
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Figure 1. The Workflow of the Integrated Glycoproteomic Strategy to Analyze HGSCs and Non-
tumor Tissues
(A) Proteins from 83 HGSC tumor tissues, 23 non-tumor tissues, pooled reference sample, 

and technical replicates of quality control sample were digested by trypsin to peptides, 

which were labeled by TMT and analyzed by global proteomic analysis (GLOBAL), as well 

as glycosite-containing peptides (SPEG), and intact glycopeptides (IGPs) analysis using LC-

MS/MS.

(B) The clinical phenotypes and data profiling of proteomic (GLOBAL) and glycoproteomic 

(SPEG and IGP) data of 83 tumor and 23 non-tumor tissues.

See also Tables S1, S2, S3, and S4 and Figure S1.
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Figure 2. The Proteomic and Glycoproteomic Investigation in Tumor Clusters
(A) Hierarchical clustering of tumor samples based on their Z score transformed abundance 

of IGPs from the IGP dataset. The clinical phenotypes of all 83 tumor samples, including 

tumor cellularity, tumor grade, tumor stage, participant race, participant age, anatomic site, 

origin site, and the labeled tumor clusters classified from GLOBAL, SPEG, and IGP 

datasets, were shown in the top rows of the clustered heatmap. The left columns showed the 

overrepresented pathways in the three IGP groups (IGs) and the associated glycan types on 

the IGPs. HM, high-mannose glycans; Fuc, fucosylated glycans; Sia, sialylated glycans.
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(B) The pairwise correlation values between the three tumor clusters based on GLOBAL and 

IGP datasets, respectively.

(C) The pairwise correlation values between the three tumor clusters based on SPEG and 

IGP datasets, respectively.

(D) The pairwise correlation values between the three clinical phenotypes (tumor cellularity, 

anatomic site, and origin site) and the three tumor clusters in the IGP dataset.

(E) The abundance comparison of three IGP groups (IGs) grouped by three tumor clusters in 

the IGP dataset.

Fuc, fucose; HM, high mannose; Sia, Sialic acid. See also Table S5 and Figure S2.
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Figure 3. Proteomic and Glycoproteomic Analyses of 83 Ovarian Tumors and 23 Non-tumors 
Revealed Alterations of Proteins and Glycoproteins in Ovarian Tumors
(A) Principal-component analysis (PCA) based on the abundance of IGPs from the IGP 

dataset to reveal the difference between 83 tumor and 23 non-tumor samples.

(B) Volcano plot of IGPs of 83 tumor and 23 non-tumor samples to reveal the significantly 

upregulated and downregulated IGPs.

(C) Receiver operating characteristic (ROC) curves of selected IGPs: HYOU1_931_N2H8 

(AEPPLNASASDQGEK), FKBP10 _70_N2H8 (YHYNGTFEDGK), PSAP_80_ 

N2H3F1S0G0 (DNATEEEILVYLEK), and PPT1_212_N2H7 (GINESYK).The format is 
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GeneName_Glycosite_GlycanComposition (PeptideSequence). In the glycan composition, 

N = HexNAc and H = Hex.

(D) Overrepresentation analysis (ORA) of significantly upregulated and downregulated IGPs 

using DAVID 6.8 referring to the KEGG pathway database.

(E) The relative abundances of IGPs in tumor and non-tumor samples.

(F) The enriched pathways from the gene sets obtained from the identified IGPs under three 

different glycosylation types (HM, Fuc, and Sia).

See also Table S6 and Figure S3.
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Figure 4. Proteomic and Glycoproteomic Analyses of 83 Ovarian Tumors and 23 Non-tumors 
Reveal Alterations of Proteins and Glycoproteins in Ovarian Tumors
(A) A comparative analysis of the differential abundance changes of glycosite-containing 

peptides and their corresponding proteins in tumors comparing with non-tumor samples 

from SPEG glycoproteomic data and GLOBAL proteomic data, respectively.

(B) A comparative analysis of the differential abundance changes of IGPs and glycosite-

containing peptides in tumors comparing with non-tumors from intact glycoproteomic data 

and SPEG glycoproteomic data, respectively. The attached glycans were classified and 
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highlighted by three groups (HM, Fuc, and Sia) according to their identified glycan 

compositions.

(C) The abundance changes of global protein expression of CA125 (MUC16), an ovarian 

cancer biomarker, in the tumor and non-tumor samples.

(D) The abundance changes of glycosite-containing peptides NTSVGPLYSGCR of protein 

CA125 (MUC16) in the comparison between tumors and non-tumors. The identifier of each 

glycosite-containing peptide was presented using the specific format: MUC16(gene 

name)_12272(start position of the peptide) _NTSVGPLYSGCR(peptide 

sequence)_1(number of glycosites)_12272(glycosite position(s)).

(E) The abundance changes of glycosite-containing peptides NTSVGLLYSGCR of protein 

CA125 (MUC16) in the comparison between tumors and non-tumors. (F–H) Micro-

heterogeneity of glycosylation expression on the same IGPs of translocon-associated protein 

subunit beta (SSR2). The identifier of IGPs was presented using the format: SSR2(gene 

name) IAPASNVSHTVVLRPK(peptide sequence)+N2H8F0S0G0(glycan composition), in 

which N2H8F0S0G0 represents the glycan composition of HexNAc/N:2, Hexose/H:8, 

Fucose/F:0, Neu5Ac/S:0, and Neu5Gc/G:0.
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Figure 5. Association of IGP Abundance and Protein Levels of Glycosylation Enzymes in 83 
Tumors and 23 Non-tumors
(A) The hierarchal-clustered correlation matrix of IGPs and glycosylation enzymes. The 

glycan types were highlighted in the top rows.

(B) The bar chart log2 fold change (FC) ratio values of glycosylation enzymes between 

tumor and non-tumor samples from the GLOBAL dataset.

(C) Correlation between FUT11 and IGPs with/without Fuc glycans (Fuc and non-Fuc).

(D) Correlation between PRKCSH and IGPs with/without HM (HM and non-HM).

(E) Correlation between MAN1A1 and IGPs with/without HM (HM and non-HM).
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(F) The abundances of FUT11 in tumors and non-tumors.

(G) The abundances of PRKCSH in tumors and non-tumors.

(H) The abundances of MAN1A1 in tumors and non-tumors.
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Figure 6. The Synthesis Pathway and Protein-Protein Interaction (PPI) Network of the Elevated 
IGPs Modified by HM Glycans in Tumor
(A) The possible mechanism of glycan biosynthesis with the elevated HM glycosylation in 

ovarian cancer.

(B) The PPI network of significantly upregulated HM IGPs in tumors. The annotations were 

also marked by different colors on the nodes of the involved genes.
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