Skip to main content
. 2021 Mar 9;11:5529. doi: 10.1038/s41598-021-85016-9

Table 3.

Summary table of performance measures of the second layer meta/ensemble learners (random forests and boosted trees) combining the predictions of all RadLex-based ML base classifiers from the findings and impression sections.

Ensemble ML-algorithm Classifiers Number of features (ML-model outputs) Most important ML-classifiers/outer fold Optimized metric Hyperparameters Selected number of features or hyperparameter settings on outer fold 1.0–5.0 Accuracy# [95%CI] ME AUC BS LL
vRF vRF 8 × ML-models (findings) Top 1: ME ntree = 500, mtry = 2, pvarsel = 8 pvarsel = 8 83.5 [77.7–88.3] 0.17 0.83 0.29 0.47
tRFBS, vRF-find 1/5
tRFME, SVM-find 2/5
tRFLL, ELNET-find 1/5
ELNET, XGBoost 1/5
SVM-LK, XGBoost, fastText Top 2:
XGBoost-find 1/5
tRF-ME-find 2/5
fasstext-find 1/5
ELNET-find 1/5
vRF vRF 8 × ML-models (impressions) Top 1: ME ntree = 500, mtry = 2, pvarsel = 8 pvarsel = 8 89.3 [84.3–93.2] 0.11 0.90 0.19 0.34
tRFBS, fasstext-impr 5/5
tRFME, Top 2:
tRFLL, svm-impr 1/5
ELNET, XGBoost-impr 2/5
SVM-LK, XGBoost, fastText tRF-BS-impr 1/5
ELNET-impr 1/5
vRF vRF 16 × ML-models Top 1: ME ntree = 500, mtry = 4, pvarsel = 16 pvarsel = 16 88.8 [83.7–92.8] 0.11 0.90 0.20 0.36
tRFBS, (8 × findings & fasstext-impr 5/5
tRFME, 8 × impressions) Top 2:
tRFLL, svm-impr 3/5
ELNET, tRF-BS-impr 1/5
SVM-LK, XGBoost, fastText ELNET-impr 1/5
XGBoost vRF 16 × ML-models Top 1: ME nrouds/ntree = [5, 10, 25, 50, 75, 100] nrounds = [75, 5, 75, 5, 10] 87.4 [82.0–91.6] 0.13 0.87 0.30 0.46
tRFBS, (findings & impressions) fasstext-impr 3/5 max_depth = [3, 5, 6, 8] max_depth = [3, 6, 5, 3, 5]
tRFME, svm-impr 2/5 eta = [0.01, 0.1, 0.3]

eta = [0.3, 0.01, 0.1, 0.01, 0.1]

gamma = [1, 0.01, 0.1, 0, 0.5]

colsample_bytree = [0.1, 0.5, ln2~RF, 0.1, 0.25]

tRFLL, Top 2: gamma = [0, 0.001, 0.01, 0.1, 0.5, 1]
ELNET, fasstext-impr 2/5 colsample_bytree = [0.1, 0.25, 0.5, 0.693 (ln2) ~ RF, 1.0],
SVM-LK, XGBoost, fastText tRF-BS-impr 2/5 min_child_weight = 1,
svm-impr 1/5 subsample = 1

AUC: multiclass area under the ROC after Hand and Till (that can only be calculated if probabilities are scaled to 1), us var.filt: unsupervised variance filtering using p = 300 most variable RadLex terms -this step was previous of training to prevent information leakage, BS: Brier score, ME: misclassification error, LL: multiclass log loss, vRF and tRF: vanilla- and tuned random forests, ELNET: elastic net penalized multinomial logistic regression, SVM: support vector machines, LK: linear kernel SVM, n.SV: number of support vectors; XGBoost: extreme gradient boosting using trees as base learners, BT: boosted trees.