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Abstract

Contrast enhanced cardiac computed tomography angiography (CTA) is a prominent imaging 

modality for diagnosing cardiovascular diseases non-invasively. It assists the evaluation of the 

coronary artery patency and provides a comprehensive assessment of structural features of the 

heart and great vessels. However, physicians are often required to evaluate different cardiac 

structures and measure their size manually. Such task is very time-consuming and tedious due to 

the large number of image slices in 3D data. We present a fully automatic method based on a 

combined multi-atlas and corrective segmentation approach to label the heart and its associated 

cardiovascular structures. This method also automatically separates other surrounding 

intrathoracic structures from CTA images. Quantitative assessment of the proposed method is 

performed on 36 studies with a reference standard obtained from expert manual segmentation of 

various cardiac structures. Qualitative evaluation is also performed by expert readers to score 120 

studies of the automatic segmentation. The quantitative results showed an overall Dice of 0.93, 

Hausdorff distance of 7.94 mm, and mean surface distance of 1.03 mm between automatically and 

manually segmented cardiac structures. The visual assessment also attained an excellent score for 

the automatic segmentation. The average processing time was 2.79 minutes. Our results indicate 

the proposed automatic framework significantly improves accuracy and computational speed in 

conventional multi-atlas based approach, and it provides comprehensive and reliable multi-

structural segmentation of CTA images that is valuable for clinical application.

Keywords

Computed tomography; heart segmentation; multi-atlas segmentation; random walk

Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/
publications/rights/index.html for more information.

Corresponding author: Li-Yueh Hsu (lyhsu@nih.gov). 

HHS Public Access
Author manuscript
IEEE Access. Author manuscript; available in PMC 2021 March 18.

Published in final edited form as:
IEEE Access. 2020 ; 8: 16187–16202. doi:10.1109/access.2020.2966985.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ieee.org/publications_standards/publications/rights/index.html
http://www.ieee.org/publications_standards/publications/rights/index.html


I. INTRODUCTION

Contrast enhanced cardiac computed tomography angiography (CTA) is an advanced 

imaging modality for evaluating the coronary arteries and the morphology of the heart non-

invasively. It allows the physician to examine the patency of the coronary arteries for 

atherosclerotic disease. It also provides a comprehensive evaluation of the anatomical 

features of the heart and its surrounding vessels for structural heart diseases. Quantitative 

assessment of various anatomical structures of the heart such as its four chambers, 

myocardium, and great vessels on the CTA images can help to detect potential cardiac 

anomalies or to evaluate disease progression and treatment effects. However, this process 

can be laborious, time-consuming, and may be prone to user variations since measurements 

of these cardiac structures is often performed manually.

Computer-based automatic segmentation is desirable but can be challenging due to 

anatomical variations of the heart among different individuals, indistinct boundaries between 

substructures of the heart (e.g. right ventricle and right atrium), or between the heart and 

surrounding tissues (e.g. liver, ribs, sternum). Moreover, technical complexities such as the 

differences in field-of-view reconstruction, scanning parameters, imaging protocols, and the 

presence of imaging or motion artifacts, suboptimal contrast-to-noise ratio or signal-to-noise 

ratio can all affect the image quality and result in imperfect image segmentation. Thus, it is 

essential to develop automatic and reliable computerized methods that can accurately 

segment the heart and its anatomical structures and evaluate the methods on a large dataset.

In this paper, we present a fully automatic pipeline for comprehensive multi-structure CTA 

image segmentation that can achieve high accuracy with efficient processing time for 

practical clinical applications. The proposed method extends our previous work [1] by 

incorporating an improved combined multi-atlas approach with corrective segmentation to 

label the whole heart (WH), left ventricular cavity (LV), left atrial cavity (LA), left 

ventricular myocardium (LVM), left atrial appendage (LAA), right ventricular cavity (RV), 

right atrial cavity (RA), ascending aorta (AA), superior vena cava (SVC), inferior vena cava 

(IVC), pulmonary artery (PA), and pulmonary vein (PV) in the CTA images. The method 

also separates other intrathoracic non-cardiac structures such as lung, chest wall (CW), 

spine, descending aorta (DA), and liver from the CTA images.

Our framework is aimed at addressing the high computational cost in the multi-atlas based 

approach while improving its robustness and accuracy for large scale contrast enhanced 

cardiac CTA imaging applications. The main contributions of this work are as follows:

• We present a comprehensive strategy to simultaneously segment 17 independent 

cardiovascular and intrathoracic structures at once.

• We propose a robust and rapid atlas selection scheme and an enhanced label 

fusion scheme to improve the speed and accuracy of multi-atlas registration.

• We incorporate a corrective segmentation process to further increase the final 

segmentation accuracy.
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Our methods are implemented in a multi-threading architecture to increase computational 

efficiency. We evaluate the proposed method on a large clinical dataset and compare the 

results with a manual reference standard as well as conventional multi-atlas segmentation.

II. PREVIOUS WORK

Several papers have summarized various automatic 3D cardiac segmentation methods across 

multimodality medical imaging. Kang et al. [2] and Zhuang [3] reviewed some early works 

on the whole heart segmentation. A recent comparison of 10 methods participated in 

MICCAI-STACOM challenge 2017 was summarized by Zhuang et al.[4]. Among these 

techniques, atlas-based approaches have been widely used to segment numerous cardiac 

structures [5]–[19]. More recent works also incorporate deep learning-based approaches for 

automatic cardiac segmentation [20]–[24].

In a literature survey, most of the previous works only segmented a limited number of 

cardiac structures. Table I summaries various cardiovascular and intrathoracic structures 

explored by these prior developments. For the WH segmentation, Funka-Lea et al. [25] 

proposed a graph-cuts method, Zheng et al. [26] presented a marginal space learning 

method, and van Rikxoort et al. [5] proposed a multi-atlas based segmentation technique. 

Likewise, Jolly [27] proposed a graph-cuts and EM-based method to segment the LV, Karim 

et al. [17] segmented the LA, Yang et al. [8] segmented the LV and LVM, and Tobon et al. 
[9] segmented the LA and PA only.

Several other works have attempted to segment more cardiovascular structures. Zheng et al. 
[28] and Baskaran et al. [24] segmented the four chambers and the LVM. In Zuluaga et al. 
[7] and Lu et al.’s [14] works, the four chambers, LVM, and AA were segmented. Cai et al. 
[29] also segmented above six cardiac structures using a Gaussian filter-based method. 

Kirişli et al. [6] segmented those six cardiac structures plus the WH region. In the works by 

Yang et al.[15], Yang et al.[20], and Payer et al.[21], the four chambers, LVM, AA and PA 

were segmented. Ecabert et al. [30] presented an active shape model to extract above seven 

cardiac structures. Zhuang et al. [10] segmented those seven cardiac structures plus the DA. 

A more comprehensive coverage was shown in Zhou et al.’s [12] work for segmenting 15 

structures, and in Katouzian et al. [16] and Wang et al. [18] for 16 structures. However, these 

works split the PA into left and right trunks, and the AA into aortic arch and root as separate 

structures.

Some works have focused on segmenting different cardiac structures from non-contrast 

enhanced CT images. They aimed to assist thoracic radiation treatment planning [12], [19] 

and coronary calcium scoring [13]. As cardiac structures are not clearly distinguishable in 

these non-contrast CT applications, Zhou et al. [12] and Shahzad et al. [13] used the atlas 

based approach by registering the non-contrast enhanced CT with contrast enhanced CT 

images of the same patients, and then transformed the cardiac structure labels from the 

contrast enhanced images to the non-contrast enhanced dataset for cardiac segmentation. 

Morris et al.’s [19] work was also based on the multi-atlas approach, but it registered non-

contrast enhanced CT and magnetic resonance (MR) images of the same patient, with 

various cardiac structures manually labelled on the MR dataset. Heinrich et al. [31] applied a 
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random walk algorithm to the results produced by the multi-atlas segmentation. However, 

their work was applied to cardiac MR images to segment seven cardiac structures.

III. METHODOLOGY

Multi-atlas segmentation is one of the most widely used image segmentation techniques in 

biomedical imaging applications [32]. It is an extension of the atlas-based segmentation 

approach that leverages the spatial information between a given target image and an atlas 

image via a deformable registration strategy. An atlas consists of a pair of data, an image and 

an associated label, in which the label contains pre-delineated regions of interest of the 

image which can be propagated to the target image space through a nonlinear transformation 

as obtained from a pairwise non-rigid registration of the target and atlas images. Compared 

to a single-atlas segmentation, multi-atlas segmentation maintains a higher flexibility by 

retaining anatomical variations among a library of atlas datasets to improve the segmentation 

quality.

Our automatic CTA image segmentation method is based on the multi-atlas approach and 

aimed to improve such method. Fig. 1 shows the flow diagram of our fully automatic 

processing pipeline: a combined multi-atlas and corrective segmentation (CMACS) 

framework. There are two core blocks in the processing framework (1) multi-atlas 

segmentation and (2) corrective segmentation, that will be described in the following 

sections.

A. MULTI-ATLAS SEGMENTATION

The multi-atlas segmentation (MAS) block includes a sequence of steps to improve the 

common multi-atlas based methods. First, we establish an atlas library consisting of a 

collection of pre-labeled CTA dataset that covers a wide range of heart sizes. Each atlas 

contains 12 annotated labels representing different cardiovascular structures of interest that 

are to be transformed to the target image space after the image registration. These labels 

include seven cardiac structures: LV, LA, RV, RA, LVM, LAA, AA; as well as four 

associated vascular structures including SVC, IVC, PA, and PV all of which carry blood to 

or from the heart. Additionally, a WH label is delineated to encompass the entire heart 

volume including the four chambers, LVM, LAA, AA, and the surrounding pericardium.

Next, we propose a strategy to rapidly select an optimal set of atlases from the library by 

matching structural similarities between the target and each atlas images. This step 

effectively reduces the overall computational time by registering only the selected atlases 

instead of the entire atlas dataset with the target image. To further improve the 

computational speed, the image registration was implemented in a multi-threading scheme to 

register all selected atlases simultaneously. After the multi-atlas registration, an enhanced 

label fusion scheme is proposed to merge these transformed atlas labels into a target label. 

The following subsections will describe each step in more details.

1) ATLAS SELECTION: The first step in the MAS block is to find a subset of atlas 

images that are best matched in anatomical or structural similarity with the target image. 
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This step is aimed to 1) reduce the computational time and 2) improve registration 

performance by registering only those best matching atlas images to the target image.

We use a structural similarity index (SSI) calculated between each atlas and the target 

images to find the best matched atlases. This index was originally proposed to evaluate the 

perceptual quality of image compression schemes with an application to natural images [33]. 

It is highly indicative for summarizing the conformity between a target image and a 

reference image by taking luminance, contrast, and structure similarity into account. We use 

a cubical patch size of 7 × 7 × 7 voxels to compute the SSI for each voxel between the target 

image X and the atlas image Y to generate an SSI map. Each pair of the target and atlas 

images are aligned to their volume center before computing the SSI map.

Equation (1) shows the function of SSI computed in each patch. Here μx, μy, σx, σy, σxy are 

the local mean, variance, and covariance within the local 3D patch x of image X and y of 

image Y. A symmetric Gaussian weighting function w = {ωi |i = 1, 2, … , N} with standard 

deviation of 1.5, normalized to unit sum ∑i = 1
N ωi = 1 , is used to obtain the local statistics.

SSI (X, Y) = (2μxμy + c1) (2σxy + c2)
(μx2 + μy2 + c1) (σx2 + σy2 + c2) (1)

μx = ∑
i = 1

N
ωixi; σx2 = ∑

i = 1

N
ωi(xi − μx)2

(2)

σxy = ∑
i = 1

N
ωi(xi − μx) (yi − μy) (3)

c = max (x, y) − min (x, y) (4)

c1 and c2 equal (0.01 × c)2, (0.03 × c)2, respectively. They are constant terms used to avoid 

instability from dividing by zero. Note that SSI equals 1 for a perfect match and equals −1 

for a complete divergency between two regions. Finally, a mean SSI, as described in (5), is 

calculated to represent the overall similarity between two image volumes X and Y. Here, xj, 

yj are local patches and M is the total number of patches.

Similarity score = mean SSI (X, Y ) = 1
M ∑

j = 1

M
SSI (xj, yj) (5)

In our framework, the five atlas images with the highest mean SSI scores are selected for the 

multi-atlas registration during the next step. A multi-threading scheme is used to compute 

the SSI from all 36 atlases concurrently.
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In a previous work [34], the luminance and contrast terms in the SSI was exploited to reduce 

the label fusion computing time in brain segmentation, but the SSI was not used for optimal 

atlas selection. In contrast, Yang et al. [15] used mutual information for atlas selection in 

their cardiac MAS method.

2) ATLAS REGISTRATION: Image registration is an essential step to determine the 

spatial correspondence between the target and the atlas images. A pairwise atlas-to-target 

deformable image registration is performed to obtain a nonlinear transformation to warp the 

atlas label into the target image space. A multi-threading scheme is implemented to register 

the five selected atlas images to the target image concurrently.

Deformable image registration poses a highly non-convex optimization problem which is 

prone to local minima. Discrete optimization overcomes these limitations as it does not 

require a derivative of the cost function as used in continuous optimization. We apply an 

efficient 3D discrete deformable registration developed by Heinrich et al. [35]–[37] that uses 

a Markov Random Field (MRF) objective function C:

C (f) = ∑
p ∈ P

D (fp) + α ∑
(p, q) ∈ E

R (fp, fq) (6)

P is a set of nodes p ∈ P that constitute a graph. Each node √ corresponds to a control point 

in a uniform B-spline grid with a spatial location xp and a set of 3D displacements fp = up = 

{up, vp, wp} between the target X and the atlas Y images. The objective function has two 

terms: a unary cost D (fp) and a pair-wise regularization cost R (fp, fq).

The unary cost D (fp) measures the similarity of the voxels around a control point p in the 

image X and the voxels around that control point , displaced by up, in the image Y based on 

the sum of absolute differences [35]. The similarity is estimated based on patch-based self-

similarity context (SSC) [36], [37]. SSC is described by a sum of squared differences 

between image patches within an image with a noise estimate σ2. For a patch x in image X, 

the SSC is given by:

SSCX (x, y) = e − SSD(x, y)
σ2 x, y ∈ N (7)

where y defines the corresponding patch within a neighborhood N in image Y, and N
contains six connected voxels around x. Thus, the unary cost is given by:

D (fp) = 1
∣ N ∣ ∑

y ∈ N
SSCX (xp + y) − SSCY (xp + up + y) (8)

The pair-wise cost R (fp, fq) regularized the displacement of the neighboring control points q 
that are directly connected to p with p, q ∈ ε where ε is a set of neighboring node pairs. It is 

given by squared differences:
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R (fp, fq) =
up − uq 2

xp − xq
(9)

This MRF-based optimization problem is solved using message passing on a minimum 

spanning tree for computational efficiency [35]. For each node p, the cost Cp of the best 

displacement fq of its parent q is given by:

Cp (fq) = arg min
fp

D (fp) + αR (fp, fq) + ∑
c

Cc (fp) (10)

α is weighting parameter that equals 1.6 in our framework. c are the children nodes of p. For 

leaf nodes, only the first two terms in (10) is calculated as it has no children nodes [35].

3) LABEL FUSION: After the multi-atlas registration, the label in each selected atlas is 

warped to the target image space using the corresponding transformation matrix. The next 

step is to fuse these transformed atlas labels into a consensus target label. This process 

improves the segmentation accuracy by eliminating false positive voxel from individually 

transformed atlas label. A common approach for label fusion is based on majority voting 

[38] that ranks each voxel by the frequency it appears in all transformed labels and then 

produces the final target label from the voxels that retain the most counts.

However, this approach does not consider the underlying voxel-to-voxel similarity of the 

target and the transformed atlas images which may possess large discrepancies due to mis-

registration. Several studies exploited the voxel-to-voxel relationship between the warped 

atlas and the target images to boost the performance [5], [10], [39], [40], [41].

Here we propose a simple technique based on structural similarity of each image pair to 

improve this step. First, an SSI map as described in (1) is computed between the target and 

each warped atlas images. Voxels within the transformed atlas labels will be re-indexed as 

the background if they have negative SSI values. This process effectively removes the voxels 

with low similarity between the target and the warped atlas images. Next, the voxels in the 

transformed atlas label that have an intensity value less than −400 Hounsfield Unit (HU) in 

the target image are also re-indexed as the background, as they represent the air spaces in the 

lung. Lastly, the majority voting is used to combine the transformed and processed atlas 

labels into a single target label.

B. CORRECTIVE SEGMENTATION

The corrective segmentation (CS) block is designed to 1) refine the cardiovascular labels 

generated from the MAS processing block, and 2) separate the intrathoracic structures 

surrounding the heart. The first step is to identify non-cardiac structures in the CTA image 

and classify them into different regions including lung, CW, liver, spine, and DA. This is 

based on our previous work [1] to automatically extract seed voxels representing these five 

structures. The additional segmentation of the non-cardiac structures in this processing block 

is aimed at improving the segmentation of the cardiac structures. The next step is to combine 
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these five non-cardiac structures with those 12 cardiovascular structures from the previous 

MAS processing block for a joint 17-structure labels. The voxels in these labels then serve 

as the seeds to run through a random walk algorithm to improve the segmentation for each 

structure. The final segmentation is obtained by additional post-processing refinement steps. 

The following subsections provide more details for each step in the CS block.

1) MULTI-STRUCTURE SEEDING: A modified version of our previous work [1] is 

used to extract the best representative seed voxels (seeding) for these intrathoracic 

structures. The first step is to detect potential lung regions based on an intensity window 

between −1000 and −400 HU as the lung contains air and some soft tissues. For each 

binarized region, its major-axis length is measured. The regions with the maximum length 

are selected as the lung seed voxels. Next is to find the chest wall region by locating the top-

most boundary points from the previously detected lung and the whole heart regions. A 

surface fit is performed on these points using a linear radial basis function to separate the 

lower (mediastinum) and the upper (chest wall) regions. The upper region is further 

processed to retain voxels with greater than zero HU as the chest wall seed voxels.

The next step is to define the whole heart region based on the cardiac labels obtained from 

the previous MAS block. Here the bright voxels in LV and LA labels and intermediate 

enhanced RV, RA, and LVM voxels are merged with the AA and LAA labels into one region 

to represent the whole heart seed voxels. Next is to detect descending aorta and spine tissues 

by locating the region outside the lower part of the whole heart and the lung regions. Voxels 

with intensity values lower than zero HU are removed, and then a morphological erosion is 

used to process the region. The largest connected region is selected as the seed voxels for the 

descending aorta and spine joined region.

The last step is to detect the liver tissues by merging all regions detected from the previous 

stages and then analyzing the remaining regions in the image. A series of intensity 

thresholding and morphological operations are used to estimate potential liver regions.

2) CARDIAC STRUCTURE SEEDING: This processing stage is aimed at extracting 

representative seed voxels from the 12 cardiovascular regions obtained from the previous 

MAS processing block. Before the seed selection, the following preprocessing steps are 

applied to each region except for the LVM region. An intensity window between one 

standard deviation above and below the median HU is used to extract intermediate intensity 

voxels, followed by a morphological closing at each region.

In the subsequent steps, six cardiac regions are sequentially processed in the order of LV, 

AA, RV, LVM, LA, and RA to extract corresponding seed voxels. These processes are based 

on domain knowledge of cardiac anatomy, analyses of voxel intensity, distance, connected 

region size, and mathematical morphology operations.

For example, HU values in AA, LV, LA are typically higher than RV, RA, LVM in contrast 

enhanced CTA study and can thus be used to remove misclassified voxels. Distance analysis 

is also useful to rule out misclassified voxels among different structures. For instance, a 3D 

convex hull analysis is used to include papillary muscle in the initial LV region; candidate 
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voxels that are within 10 mm distance to the RV are removed. Such distance threshold is 

derived from the thickness of ventricular septum that separates the LV and RV.

Similarly, for the RV seeding, a distance measure is calculated for each voxel in the initial 

RV region. Voxels less than 10 mm to the LV, or 2 mm to the AA, or 4 mm to the CW are 

removed. For the LVM seeding, voxels that are 2 mm adjacent to RV, or 4 mm adjacent to 

the LA, or 4 mm to the CW are removed. For the LA seeding, voxels that are 4 mm and 2 

mm adjacent to the DA or AA are removed. For the RA seeding, voxels that are 2 mm 

adjacent to the AA, or 4 mm adjacent to the LA are also removed.

The largest connected region is used at each step as these structures contain one whole 

component. The other regions including PA, PV, SVC, IVC, and LAA are used as their 

corresponding seeds without further processing.

3) RANDOM WALK SEGMENTATION: Random walk algorithm [42] requires a set of 

initial seed voxels to proceed. It is formulated on a weighted graph, where each node 

represents a voxel. A graph G = (V, E) has the vertices v ∈ V and edges e ∈ E. An edge, e, 

of two vertices, vi, vj, is denoted by eij. The weight of edge eij is denoted wij. The degree of 

a vertex is di = ∑ w (eij). Given a weighted graph, VM is a set of labeled vertices and VU is a 

set of unlabeled vertices. The random walk algorithm labels each unknown vertex vi ∈ VU 

with a label yi ∈ Y by measuring the probability, xi, that this vertex is first reach the marked 

vertex vj ∈ VM, i.e., a set of seeds, which has been assigned to label yi. The segmentation is 

completed when each unknown vi is assigned to the label for which it has the highest 

probability, i.e., yi = max (xis) with s is the total number of labels in Y. The algorithm solves 

the Laplace equation by minimizing the cost function C:

C = xisTLvivjxis (11)

T is the transpose operator. Lvivj is the combinatorial Laplacian matrix defined as dvi if i = j. 
It equals to −wij if vi and vj are adjacent vertices, and zero otherwise.

A slightly modified 3D version of random walk algorithm [43] is used to regularize the 

segmentation based on the seed voxels in different tissue structures as described in sections 

III.B.1. and III.B.2. This process is performed on each seed region in a single-label and 

multiple-pass fashion. Each label is processed by indexing seeds in the corresponding 

structure as foreground while seeds from all other structures are marked as background. In 

addition, a contour of 4 mm around each target seed region are marked as background to 

avoid over segmentation and improve boundary smoothness. To speed up the process, a 

multi-threading scheme is implemented to execute multiple random walk processes 

simultaneously.

After the random walk segmentation, a few post-processing steps are performed to separate 

descending aorta and spine regions. A threshold at 200 HU is used to remove darker pixels 

and then following by morphology erosion and connected region analysis. The region with a 

higher HU standard deviation is labelled as the spine since it contains mixed tissues structure 

such as bone and fluid. The region with a lower intensity standard deviation is labelled as the 
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DA due to its more homogeneous HU distribution. Finally, the 3D surface of each label is 

processed by a mean filter in the polar space to smooth the distance of adjacent neighbors to 

the volume center and to improve the visualization quality.

IV. EXPERIMENTS

A. CLINICAL DATA AND ATLAS ANALYSIS

One hundred twenty clinical CTA scans of patients with suspected coronary artery disease 

referred to the National Heart, Lung and Blood Institute between April 2017 and September 

2017 were retrospectively collected for this study. Patients with congenital heart defects, 

cardiac structural abnormalities, or serious arrhythmias were excluded. All CTA exams were 

performed under procedures and protocols approved by the Institutional Review Board of 

the National Institutes of Health. Written informed consent was obtained from all subjects 

prior to participating in the study. There were 73 males and the average age was 57 ± 12 

years. A subset of 36 CTA studies from the 120 studies were selected as the atlas library. 

The selection was based on the heart size to assemble a similar size distribution of the entire 

dataset (Fig. 2). For each of these 36 cases, as defined previously in section III.A, 12 

cardiovascular structures were manually delineated by 2 trained observers using a custom 

developed interactive image analysis software and reviewed by experienced cardiologists to 

assemble the reference atlas label dataset.

B. CTA IMAGE ACQUISITION AND PROCESSING

All CTA studies were performed on a 320-detector row scanner (Aquilion One Genesis, 

Canon Medical Systems) with 0.5 mm detector collimation, 275 msec gantry rotation time, 

100–120 kVp tube voltage, 200–850 mAs tube current according to patient’s attenuation 

profile determined by the scout image. Contrast material dose was 50–70 mL administered 

at a flow rate of 5.0–5.5 mL/sec and adjusted for patient weight. Prospective ECG-triggered 

image acquisition was initiated by a target threshold of 300 HU in the descending aorta. 

Images were reconstructed with a matrix size of 512 × 512 and a field-of-view of 148 to 220 

mm, resulting to a pixel size of 0.29×0.29 mm2 to 0.43×0.43 mm2. For each dataset, images 

were reconstructed at a 5% phase window around the diastasis in the cardiac cycle. Each 

study contains 240 to 520 images with a slice thickness of 0.5 mm and a slice spacing of 

0.25 to 0.5 mm. All CTA images were subsampled to an isotropic voxel size of 1.0 × 1.0 × 

1.0 mm3 to improve the symmetrical property of the voxel for 3D image processing.

All algorithms were implemented in Python (www.python.org) and Interactive Data 

Language (Harris Geospatial Solutions). The registration method was developed in C++ by 

Heinrich et al. [35] and compiled to dynamic link library under Microsoft Visual Studio in 

our framework. All studies were processed with the same parameter settings on a computer 

with an Intel Core i9-7980XE 2.6GHz CPU and 128GB RAM.

C. EVALUATION METHODS

The automatic segmentation results were quantitatively evaluated and compared with expert 

manual segmentation on the 36 atlases reference dataset. Here we assessed eight of the 12 

cardiovascular structures including LV, LA, LVM, LAA, RV, RA, AA, and WH. The other 
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four structures including PA, PV, SVC, IVC were not assessed quantitatively as they are 

connecting vessels to the heart and do not possess a complete structure form in the CTA 

images.

The performance was evaluated using leave-one-out cross validation in which each study 

was withheld in turn for validation while the remaining 35 studies were used as the atlas 

library for the automatic segmentation. Segmentation quality was evaluated using a Dice 

coefficient, 3D Hausdorff distance (HD) and mean surface distance (MSD). Summary 

statistics are expressed as the median and 95% confidence interval due to non-normally 

distributed data. The volume size (mL) of each cardiac structure obtained from the two 

segmentations was compared using Spearman rank-order correlation coefficient and 

nonparametric Mann-Whitney rank test. A p-value > 0.05 indicated a statistically non-

significant (NS) difference.

To compare the performance of our proposed framework against conventional multi-atlas 

segmentation, we implemented a baseline multi-atlas segmentation (bMAS) which consisted 

of the same optimal atlas selection and multi-atlas registration steps, but with a conventional 

label fusion based on majority voting and without the CS processing block. The results of 

bMAS were also compared against the reference manual segmentation using the same leave-

one-out cross validation from those 36 reference datasets.

For the entire 120 studies, evaluation of the automatic segmentation was performed 

qualitatively by three cardiologists visually inspecting each automatically segmented cardiac 

structure in the images. The criterion of qualitative evaluation was based on a five-point 

rating score, as described in Table II.

On the assessment of multi-structure segmentation for all 17 cardiovascular and intrathoracic 

structures, the HU distributions for each structure was computed to quantify the range 

(variability) of HU values for specific tissues and the extent of their HU value overlap with 

spatially adjacent tissues. The HU values at the 25th, 50th, and 75th percentiles for each 

structure’s distribution were calculated. Furthermore, the percentile difference which 

describes the width of the HU distribution, and the interpatient HU variability which is 

expressed as the standard deviation of median HU values, were computed to characterize 

different tissue types.

V. RESULTS

The proposed automatic multi-structure cardiac CTA image segmentation framework 

successfully processed the entire dataset without exclusion. The data in our study cover a 

wide range of heart size. The average whole heart volume size was 826 ± 184 mL, with a 

minimum size of 471 mL and a maximum size of 1524 mL. The computational time to 

process a CTA image volume averaged 2.79 ± 0.59 minutes.

A. CARDIAC STRUCTURE SEGMENTATION

1) SEGMENTATION COMPARISONS: In Fig. 3, the results of our CMACS framework 

versus conventional atlas based segmentation are compared for qualitative assessment. To 
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demonstrate the effectiveness of atlas selection using the proposed SSI, results of single-

atlas segmentation based on the atlas images with the minimum vs. maximum mean SSI 

scores of the 36 matchings were displayed. The segmentation quality is considerably better 

by using the atlas with the maximum SSI score than the one with the minimum SSI score in 

this single-atlas based comparison.

For multi-atlas based comparison, we performed baseline multi-atlas segmentation (bMAS) 

as mentioned in the section IV.C. It is evident that bMAS based on the best matched five 

atlas images with majority voting label fusion further improves the results compared to the 

single-atlas based approaches. Finally, the results of the proposed CMACS framework 

produced considerably better labels than the bMAS and single-atlas methods. They appear to 

be closest to the reference manual segmentation as shown in Fig. 3.

2) QUANTITATIVE EVALUATIONS: For the results of leave-one-out validation based 

on the 36 atlases dataset, Fig. 4 shows three cases with the maximum, median, and minimum 

averaged Dice indices between the proposed CMACS and manual segmentations. The 

results of our automatic segmentation can also be viewed in the supplementary video files 

for volumetric evaluation. Overall, our automatic segmentation shows well-maintained 

results on all cases and even on the one with the lowest Dice index.

Table III summarizes the quantitative comparisons of eight cardiac structures segmented by 

the bMAS method and the CMACS framework against the manual reference standard. Our 

framework achieved better results than the bMAS for each of the eight structures in all Dice, 

HD, and MSD indices compared. The Dice results of CMACS are significantly better than 

bMAS with p<0.001 for all structures compared. For the HD index, the CMACS results also 

are significantly better than the bMAS results with p<0.05 for LVM, LAA, AA, and WH 

structures, but are not significantly different for LV, LA, RV, and RA structures. Lastly, the 

MSD results of CMACS are significantly better than the bMAS results with p<0.05 for all 

structures except RA. Overall, these results indicate that the enhanced label fusion and 

corrective segmentation block included in our pipeline processing method consistently 

improves the performance of conventional multi-atlas segmentation method.

Fig. 5 illustrates 3D volume size comparisons, showing the correlation plots between our 

automatic results against the manual segmentation among the eight cardiac structures. There 

was excellent relationship between automatic and manual segmentations in all cardiac 

structures, with correlation coefficients of 0.99 for LV, 0.97 for LA, 0.97 for LVM, 0.82 for 

LAA, 0.94 for RV, 0.92 for RA, 0.97 for AA, and 0.98 for WH. Table IV summaries the size 

of various cardiac structures measured by the automatic versus the manual segmentations. 

The Mann-Whitney test indicates there was no significant difference in size between the 

automatic and expert segmentations for all structure compared (all p = NS).

3) QUALITATIVE EVALUATIONS: In addition to the quantitative evaluation, our 

automatic segmentation results were also qualitatively assessed by expert cardiologists for 

the entire 120 CTA studies. All automatic segmentation results were compiled into animated 

cross-sectional images in the same format as the included supplementary video files for 

visual inspections. Based on the quality scores as classified in Table II for visual assessment, 
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our automatic segmentation results obtained an excellent overall score of 1 for all cardiac 

structures evaluated.

For individual cardiac structure visual assessment, less than 3% of the cases included one or 

more of the following conditions: the RA segmentation slightly extended into the RV or 

included the right coronary artery, the RV segmentation slightly extended into the PA, the 

LA segmentation slightly extended into the PV, the LV segmentation slightly extended into 

the LA, the LAA segmentation included small portions of the left circumflex coronary artery 

or the LA, the AA segmentation slightly extended into the left or right coronary artery. 

Additionally, less than 10% of the cases had slight contamination in the WH region that 

included minor amounts of liver tissues. However, these segmentation flaws were generally 

limited within small areas and did not yield large percentage errors.

B. MULTI-STRUCTURE SEGMENTATION

In addition to cardiac structures, our CMACS framework also performs automatic 

segmentation of intrathoracic non-cardiac structures in the CTA images. Fig. 6 shows an 

example of our automatic pipeline segmenting all 17 cardiovascular and intrathoracic 

structures. Detailed animated cross-sectional images can also be viewed in the 

supplementary video files for volumetric evaluation of our multi-structure segmentation.

To assess our multi-structure segmentation for characterizing different tissues, Table V and 

Fig. 7 summarize the ranges of the HU values among all 17 structures from our automatic 

segmentation across the entire 120 cases. In the group comparisons, there were several blood 

containing structures such as the LV, LA, LAA, AA, PV, and DA that had significantly 

higher HU values (all median HU > 500) than other blood containing structures such as the 

LVM, RV, RA, SVC, IVC, and PA (all median HU < 200) that were less-enhanced (all 

p<0.05). However, all of the 12 blood containing structures had significantly higher HU 

values than the liver that showed a typical HU range for non-contrast enhanced soft tissues 

(all p<0.05). Among those six high-contrast enhanced structures, there was a large degree of 

overlap in the HU ranges as shown in Fig. 7. A similar extent of overlap was also observed 

among the six less-enhanced structures. This overlap of HU distributions among spatially 

adjacent cardiac structures makes the segmentation of different structures surrounding and 

within the heart based on the HU values alone a challenging task.

For the interpatient variability comparison of different tissue structures, Table V shows the 

high-contrast enhanced blood containing tissues of the LV, LA, LAA, AA, PV, and DA also 

had a higher interpatient variability (all > 100 HU) than other structures that were less 

enhanced. For the comparison of percentile differences between 25% and 75% of the HU 

distributions, the largest difference was observed in the WH region as it combined both high-

contrast and less-contrast enhanced tissues. The spine region also had a high percentile 

difference as this structure is comprised of bone, soft tissue, and cerebrospinal fluid.

VI. DISCUSSIONS

We present a fully automatic image processing system to segment the heart and its 

peripheral structures in contrast enhanced cardiac CTA images. The proposed framework 
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facilitates a combined multi-atlas and corrective segmentation approach that outperforms 

conventional atlas-based segmentation in our quantitative comparisons. The qualitative 

assessment performed by expert cardiologists also showed our automatic segmentation 

attained an excellent quality score for all cardiac structures evaluated in this study.

In the literature, most studies performed quantitative evaluation based on Dice, HD, and 

MSD indices for various cardiac structure segmentation; Kirişli and colleagues also included 

qualitative assessment [6]. To compare the methods that required less than five minutes 

processing time, an MSD of 1.57 mm [28], 0.98 mm [30], and 2.2 to 8.6 mm [20] were 

reported. A Dice index from 0.77 to 0.90 [16], from 0.78 to 0.94 [20], from 0.84 to 0.93 

[21], and from 0.67 to 0.96 [23] were also described. In a recent MICCAI-STACOM 

challenge [4], a Dice range from 0.81 to 0.91, an HD range from 25.2 to 55.4 mm, and an 

MSD range from 1.11 to 4.20 mm were summarized from the comparison of ten cardiac 

CTA segmentation algorithms. Comparatively, our method showed an excellent Dice score 

from 0.91 to 0.96 on most cardiac structures, except for the LVM and LAA. Our distance 

indices were also comparable with other groups, with an MSD from 0.71 to 1.46 mm and an 

HD from 4.58 to 13.0 mm. The HD in our results is noticeably better than those reported in 

[4].

On comparing the computational speed for different multi-atlas methods for automatic CTA 

segmentation, whereas some groups [8], [9], [14], [17], [29] did not report the computational 

time, those groups that did [5]–[7], [10], [12], [15], [18] required a much longer processing 

time (greater than five minutes) than our method (less than three minutes). The processing 

voxel size is unsurprisingly one of the key factors influencing the overall segmentation time. 

A recent study [18] reported a computational time of greater than three hours using an 

isotropic 1.5 mm3 voxel size, or greater than one hour using an isotropic 2.0 mm3 voxel size 

for processing. Their segmentation time can be reduced to less than 30 minutes if performed 

under a larger voxel size, e.g. 3 mm3 or greater. Advantageously, our proposed CMACS 

pipeline framework requires less than three minutes using a 2 mm3 voxel size in the MAS 

processing block and 1 mm3 voxel size in the CS processing block. In contrast, deep neural 

network methods were considerably faster than the existing multi atlas-based methods and 

generally require less than two minutes for the inference processing time [20], [21].

In a recent work [4], the advantages and potential limitations of multi-atlas and deep-

learning based approaches for cardiac CTA segmentation were compared and discussed. 

Eight out of the ten methods benchmarked in the study were based on deep neural networks 

whereas the other two were multi-atlas based. One possible reason that the multi-atlas 

approach is less prevalent is due to its longer processing time of greater than 20 minutes. 

However, deep-learning approaches showed large interquartile ranges and outliers in Dice 

compared to the multi-atlas methods, and they require large amounts of annotated training 

data in order to produce good results.

Furthermore, unlike some poor quality examples in [4] that displayed an incomplete heart 

shape, our segmentation produced a realistic heart shape in all 120 cases that were tested. 

The Fig. 4 example demonstrates that our segmentation looks well-maintained even for the 

case with the minimum overall Dice score.
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Overall, our proposed method could generate more stable segmentation results compared to 

deep-learning based approaches. Our results were also competitive in terms of mean 

accuracies and computation efficiency compared to conventional multi-atlas based 

approaches.

In our summary assessment of multi-structure segmentation for different tissue 

characterization, we observed two groups of HU distributions that categorize 12 blood 

containing cardiovascular structures into high-contrast (LV, LA, LAA, AA, PV, and DA) 

versus less-contrast (LVM, RV, RA, SVC, IVC, and PA) enhanced tissues. Such a large 

discrepancy in HU values among anatomically adjacent structures is primarily due to our 

contrast administration and scan timing protocol that uses a bolus tracking technique to 

trigger the scan when the contrast bolus arrives in the descending aorta. Our automatic 

framework can thus be a useful quality assurance tool to measure optimal contrast 

enhancement in routine CTA scans. This multi-structure segmentation feature may also be 

useful to differentiate HU characteristics in muscle, liver, and cancer tissues, or to assess 

interpatient HU discrepancies [44]. Moreover, this automatic segmentation feature can also 

be used for computer-based image context-driven annotation of cardiac CTA image dataset, 

such as a similar work performed on abdominal CT for multi-label image annotation [45].

The HU ranges for different structures measured in our study may be compared to a contrast 

enhanced thoracic CT study that characterized the HU distribution of various intrathoracic 

structures through manual planimetry [44]. For the common structures that were labelled in 

both studies, their results showed lower HU values for those high-contrast enhanced 

structures than ours. Their median HU values for the AA and DA regions were only 246 and 

236, versus 568 and 503 in ours. On the other hand, our study had lower HU values for the 

structures that are less-enhanced. Our median HU values for the PA, IVC, and liver regions 

were 155, 68, and 46, versus 218, 129, and 92 in theirs. For the whole heart region, their 

median HU was 169; whereas ours was 115. These differences in HU ranges can likely be 

explained by different imaging protocols, contrast timing and doses administered, e.g. 

continuous slow infusion versus first-pass bolus injection, between their thoracic CT and our 

cardiac CTA studies.

Our study has some limitations: It used retrospectively collected data from a single center 

and single vendor. The dataset represents only a single-phase (75% time point) of the cardiac 

cycle. No inter- or intra-operator analysis was evaluated on the atlas dataset. The 

segmentation results for intrathoracic structures were not evaluated against a reference 

standard as they were not the primary aim of this study. Our work did not evaluate patients 

with congenital heart defects such as single ventricle, atrial and ventricle septal defects, or 

other abnormal cardiac structures. A future study including different scanner vendors and 

imaging protocols, or a direct comparison with various techniques such as in MICCAI 

challenge [4], is needed to fully evaluate the proposed method under different clinical 

settings.
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VII. CONCLUSION

In this paper, a novel automatic segmentation framework for contrast enhanced cardiac CTA 

images has been introduced. It incorporates a combined multi-atlas and corrective 

segmentation approach to improve conventional atlas-based segmentation. Our results have 

shown the proposed framework produced significant improvement over conventional multi-

atlas segmentation, a strong agreement with expert manual labeling, and a high segmentation 

quality score in all cardiac structures assessed. We demonstrated the proposed framework 

can reliably segment 17 cardiovascular and intrathoracic structures from cardiac CTA 

images and provide high-quality results that are more consistent and faster than manual 

labeling. This automatic system may assist clinicians by more easily and rapidly integrating 

quantitative size and morphology evaluation into routine clinical practices.
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Fig. 1. 
Flow diagram of the proposed combined multi-atlas and corrective segmentation (CMACS) 

framework for fully automatic multi-structure cardiac CTA image segmentation.
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Fig. 2. 
Histogram of the heart volume size measured in the entire 120 cases and the selected 36 

cases of the atlas library.
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Fig. 3. 
Comparison of different segmentation: single-atlas segmentation (SAS) based on the 

minimum and maximum structure similarity index (SSI) matched atlases; baseline multi-

atlas segmentation (bMAS) and the proposed combined multi-atlas and corrective 

segmentation (CMACS) based on the five highest SSI matched atlases; and the reference 

manual segmentation for the 12 cardiac structures. Color labels: LV, LA, LVM, LAA, RV, 
RA, AA,, WH, SVC, IVC, PA, PV.
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Fig. 4. 
Comparison of automatic versus manual segmentation on three cases with the minimum, 

median, and maximum averaged Dice indices. Detailed color overlay comparisons for each 

structure and animated cross-sectional results of the automatic segmentation can also be 

viewed in the supplementary files.
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Fig. 5. 
The correlation analyses of cardiac structures between the proposed automatic and manual 

segmentation. (R: Spearman correlation value)
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Fig. 6. 
Example of the proposed CMACS framework of all 17 cardiovascular and intrathoracic 

structures. Top row shows the 3D rendered display of the raw CTA image and the segmented 

structures. Bottom row shows 2D cross-sectional images and labels. Detailed animated 

cross-sectional results of the automatic segmentation can also be viewed in the 

supplementary video files. Color labels: LV, LA, LVM, LAA, RV, RA, AA, WH, SVC, 
IVC, PA, PV, DA, Spine, Liver, CW, Lung.
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Fig. 7. 
Summary of the Hounsfield unit (HU) ranges for all 17 cardiovascular and intrathoracic 

structures labelled from the proposed automatic segmentation of 120 CTA studies.
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TABLE II

SEGMENTATION QUALITY SCORE CLASSIFICATION.

Score Automatic Segmentation Result

1 Excellent

2 Good

3 Acceptable

4 Needs improvement

5 Segmentation failed
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TABLE V

STATISTICS OF THE HOUNSFIELD UNIT (HU) DISTRIBUTIONS FOR 17 STRUCTURES ACROSS 120 CTA SCANS FROM THE 

PROPOSED METHOD.

(HU) Empirical percentiles Percentile difference Interpatient variability

Structure type 25% Median 75% |25%-75%| SD of medians

LV 349 503 561 212 138

LA 503 543 577 73 163

LVM 47 74 101 54 14

LAA 372 507 576 204 128

RV 85 120 154 69 48

RA 65 96 125 61 42

AA 528 568 599 71 140

WH 44 115 380 336 40

SVC 81 114 145 65 97

IVC 43 68 93 50 27

PA 125 155 180 56 62

PV 461 507 547 86 161

DA 453 503 546 93 134

Spine 49 169 295 246 49

Liver 19 46 73 54 15

CW 31 71 132 101 20

Lung −840 −791 −721 119 79
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