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Abstract

The goal of this study was to investigate the performance of different feature types for voice 

quality classification using multiple classifiers. The study compared the COVAREP feature set; 

which included glottal source features, frequency warped cepstrum and harmonic model features; 

against the mel-frequency cepstral coefficients (MFCCs) computed from the acoustic voice signal, 

acoustic-based glottal inverse filtered (GIF) waveform, and electroglottographic (EGG) waveform. 

Our hypothesis was that MFCCs can capture the perceived voice quality from either of these three 

voice signals. Experiments were carried out on recordings from 28 participants with normal vocal 

status who were prompted to sustain vowels with modal and non-modal voice qualities. 

Recordings were rated by an expert listener using the Consensus Auditory-Perceptual Evaluation 

of Voice (CAPE-V), and the ratings were transformed into a dichotomous label (presence or 

absence) for the prompted voice qualities of modal voice, breathiness, strain, and roughness. The 

classification was done using support vector machines, random forests, deep neural networks and 

Gaussian mixture model classifiers, which were built as speaker independent using a leave-one-

speaker-out strategy. The best classification accuracy of 79.97% was achieved for the full 

COVAREP set. The harmonic model features were the best performing subset, with 78.47% 

accuracy, and the static+dynamic MFCCs scored at 74.52%. A closer analysis showed that MFCC 

and dynamic MFCC features were able to classify modal, breathy, and strained voice quality 

dimensions from the acoustic and GIF waveforms. Reduced classification performance was 

exhibited by the EGG waveform.

Index Terms

voice quality assessment; Consensus Auditory-Perceptual Evaluation of Voice; acoustics; glottal 
glottal inverse filtering; electroglottograph; modal voice; non-modal voice; COVAREP; mel-
frequency cepstral coefficients

I. Introduction

The classification of voice quality plays an important role in the clinical assessment of voice 

disorders [1]. Voice quality assessment is typically performed using auditory-perceptual 

judgments using protocols that define perceptual dimensions assumed to be related to 

physiological deficits of the voice production system. For example, the Consensus Auditory-

Perceptual Evaluation of Voice (CAPE-V) protocol [2] defines six primary auditory-

perceptual dimensions of voice: overall severity, roughness, breathiness, strain, pitch, and 

loudness. Using the CAPE-V form, the listener’s task is to grade the degree and consistency 
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of each dimension on a visual analog scale that is then translated to a value between 0 and 

100, inclusive. Although some CAPE-V studies report sufficiently high intra-rater and inter-

rater reliability [3], especially for trained raters [4], subjective ratings of voice quality are 

known to exhibit a high degree of variability due to multiple factors such as the instability of 

internal representations of perception, the difficulty of isolating individual dimensions, and 

the resolution and anchoring of measurement scales [5]. To aid in complementing subjective 

methods, researchers have also studied objective correlates of voice quality dimensions.

The automatic classification of voice quality has the potential to be a reliable, objective 

method that can be used to produce clinical outcome measures, e.g., to objectively document 

voice improvements due to laryngeal surgery or voice therapy [6]. Commonly employed 

signals to assess voice quality include the acoustic voice signal, estimates of glottal flow 

from the glottal inverse filtered (GIF) signal, aerodynamic measures of subglottal air 

pressure, neck-surface acceleration, and electroglottography (EGG). The majority of 

research has focused on detecting the presence or absence of a certain type of voice disorder 

using features extracted from the acoustic waveform [7]–[10]. Some efforts have taken 

advantage of voice-related features of the GIF signal [11]–[13], which assumes a linear 

source-filter model of voice production. The presence of a structural or functional laryngeal 

pathology, however, often introduces non-linear subglottal-supraglottal acoustic coupling 

due to incomplete glottal closure patterns [14], which has the potential to make GIF 

challenging for non-modal voice analysis.

The electroglottograph (EGG), also known as a laryngograph, is a device which measures 

the change in conductance between two electrodes placed on either side of the thyroid 

cartilage. The output waveform is thought to be proportional to glottal contact area [15]; 

thus, with positive polarity indicating increasing conductance (reduced impedance), the 

waveform is at its maximum during the closed phase of a phonatory cycle and at its 

minimum during the open phase. Specialized equipment is required in order to obtain 

adequate EGG waveforms and is thus not ubiquitous for speech and voice assessment, 

especially for real-life applications. However, our recent work showed that voice modes 

produce distinct EGG waveform characteristics that may be exploited for voice quality 

classification [16].

A. Voice Quality Dimensions

Modal phonation is defined as phonation in which a mostly full glottal closure occurs during 

the closed phase of a phonatory cycle [17]. The glottal flow derivative contains a 

discontinuity at the moment of glottal closure and its spectrum is rich in harmonics. On the 

other hand, non-modal phonation is a very broad term for any phonation style that deviates 

from modal. Since the long-term goal of this investigation is to provide an objective 

classification of voice quality for the clinical assessment and treatment of voice disorders, 

three non-modal voice qualities—breathy, strained, and rough—from the CAPE-V protocol 

were used for the classification problem.

Breathy phonation is a common linguistic feature occurring due to insufficient glottal 

closure; which results in excessive air leakage through the glottis and a formation of 

turbulent airflow in the larynx and supraglottic tube. The vocal folds may exhibit periodic 
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vibration, but the glottal flow derivative does not contain a discontinuity at the moment of 

glottal closure. The energy of low- and mid-frequencies associated with F0 and higher 

harmonics is lowered, while there is an increase in high frequency noise [18]. The general 

trend is a decrease in the spectral slope.

Strained phonation commonly occurs in participants who attempt to compensate for 

incomplete vocal fold adduction or glottal closures due to certain physiological and 

neurological disorders [19]. The increased phonation effort is caused by increased muscular 

tension in pulmonary, laryngeal, and pharyngeal muscles. The strained voice quality is thus 

described as an impression of excessive vocal effort, as if a person were talking while lifting 

a heavy object. The result is an increased subglottal pressure, decreased glottal flow and 

increased duration of glottal closure [20], [21]. Its effects on the spectrum are not yet fully 

understood but certain studies associate strain with increased high-frequency energy [22] 

and changes in energy distribution in general [23].

Rough phonation is described as a perceived irregularity in voice source signal due to 

differences in laryngeal muscle tension or their pliability. It either means a complete lack of 

regularity in vibratory patterns or, more often, a simultaneous occurrence of double or triple 

fundamental frequencies, also called diplophonia or triplophonia. These stochastic and 

deterministic variations can also occur at the same time. The glottal flow derivative contains 

multiple discontinuities in a single phonatory cycle. An analysis of irregular glottal pulses in 

[24] showed that deterministic variations give rise to multiple pitches in spectrum, main 

harmonics shift in frequency and multiple subharmonics arise. The stochastic variations 

introduce high-pass noise and a low-pass line spectrum.

B. Related Work on Voice Quality Classification

The tasks of objective voice pathology diagnosis or voice quality detection represent well 

developed fields, both in terms of features and machine learning schemes. Features usually 

fall into one of the following categories: periodicity and voice stability measures, spectral/

cepstral measures, noise-related measures or non-linear modeling [25], [26]. The task of 

creaky voice detection in particular has been well researched. The work of [8] introduced 

power-peak, intra-frame periodicity and inter-pulse similarity measures; [27] used F0, 

spectral amplitude at the first two harmonics, the spectral slope and the first three formants 

for creaky voice detection; [28] employed the aperiodicity, periodicity and pitch detector 

[29]; or [30] which employed secondary and tertiary peaks in the residual signal [31]. A 

summary of the performance of different kinds of features for detecting laryngeal 

pathologies can be found in [32], which concluded that periodicity and stability measures in 

particular, and then spectral/cepstral and non-linear measures, provide good performance.

Voice quality assessment is a generalization of the previous problems as it requires 

classifying among several voice pathology parameters (also called dimensions) and/or 

predicting their severity. [33] analyzed the GIF waveform for modal, vocal fry, falsetto, and 

breathy voice types and concluded that the most important parameters for voice quality 

assessment were glottal pulse width, pulse skewness, abruptness of glottal closure, and 

turbulent noise. They also found that creaky voice had the highest harmonic richness factor 

and lowest spectral slope out of all studied voice types. This work was expanded upon in 
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[34], where linear predictive coding (LPC)–based GIF was used to determine the 

Liljencrants-Fant (LF) model [35] parameters for modal, breathy, and vocal fry voice 

qualities. Their analysis showed a statistically significant deviation for glottal pulse width, 

pulse skewness, abruptness of closure, and spectral tilt. A similar approach of using LF 

model was presented in [36], which examined the significance of open quotient, speed 

quotient, and return quotient using self-organizing clustering. This work was notably 

different as the authors did not specify the voice styles beforehand, but rather let the system 

come up with its own categories. After classification, listeners were asked to evaluate the 

resultant clustering in terms of acoustic similarity, achieving 81.4% performance.

Later work focused on using wavelet transform parameters (Peak Slope) for detecting 

modal, breathy and tense (strained) segments of speech [37]. The authors reported 75% 

accuracy on a data set of Finnish vowels. The same experimental protocol was later used for 

automatic clustering of breathy and tense voice regions [38]. The authors also used the set of 

features introduced in [39] to detect creaky segments and achieved 87% match with the 

results from A/B listening tests.

A very similar approach to the one investigated in this article was presented in [40], where 

the authors employed a hidden Markov Model (HMM) with K-means classifiers to 

categorize modal, breathy, creaky, and rough voice types. Their feature vector consisted of 

spectral gradient measures [41] extracted from the acoustic GIF signal. The HMM classifier 

reached 38.9%, 56.9%, 77,1% and 61.3% accuracy for detecting modal, breathy, creaky, and 

rough voice qualities, respectively. It is noted, however, that the system employed a speaker-

dependent classifier built from a large number of data.

Multiple studies have shown that the cepstral-based measure termed cepstral peak 

prominence (CPP) correlates very well with perceived breathiness [42]–[44] and strain [23], 

although weakly with roughness [45]. Recent works of [46]–[48] have employed mel-

frequency cepstral coefficients (MFCCs), as they are cepstral-derived features well suited for 

machine learning. The logarithm of the mel-frequency spectrum serves the purpose of 

Gaussianization, and the discrete cosine transform outputs decorrelated features to further 

improve feature space separability. The combination of these factors made MFCCs widely 

popular for a range of audio-related tasks, such as speaker identification, music retrieval, and 

detection of neurological disorders [49]–[51].

All of the previously cited works relied on hard labeling which is usually annotated by 

expert listeners or hard classification without any overlap between the classes. The authors 

of [52] employed the fuzzy-input fuzzy-output SVM classifiers in conjunction with a large 

set of features (LF model parameters, Peak Slope, F0, normalized amplitude quotient and 

spectral gradients) for detecting modal, breathy, and tense voice qualities. The performance 

of the system was then evaluated in both hard and soft labeling tasks. The hard labeling task 

achieved 86.1% overall accuracy, but interestingly the most difficult voice quality to classify 

was modal voice. This observation was consistent with findings in [40].
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C. Goals of Current Study

The goal of this study was to analyze the performance of acoustic, GIF, and EGG signals for 

the task of voice quality classification with multiple feature types. Conventional features 

were extracted using the COVAREP [53] feature extraction toolbox, which extracts a set of 

glottal source, spectral envelope modeling, and phase distortion measures. We also analyzed 

the performance of several classifiers: Gaussian mixture model (GMM), support vector 

machine (SVM), random forests (RF) and deep-neural network (DNN). The article then 

focuses on MFCC features as a way to model the spectral envelope of a signal in a compact 

way, which allowed us to extract them from acoustic, GIF, and EGG signals. Also, two other 

reasons supported the decision to focus on MFCCs. First, the mel-filter bank has higher 

resolution at lower frequencies, which is where most of the information is contained. 

Second, first- and second-order dynamic MFCCs were investigated for voice modality 

classification since they capture the temporal evolution of the spectral envelope.

II. Methods

A. Speaker Database

The experiments presented in this article were performed on a database consisting of sound 

booth recordings from 28 adult participants (21 female, 7 male) with normal voices. The 

average (mean±SD) age for the female participants was 35±12 years and 26±12 years for the 

male participants. Normal vocal status was confirmed via laryngeal videostroboscopy. Each 

speaker was asked to sustain vowels (/a/, /e/, /i/, /o/, /u/), each for 2–5 seconds, in their 

typical speaking voice at a comfortable pitch and loudness. Subsequently, participants were 

asked to produce the same vowel set while mimicking three non-modal voice qualities: 

breathy, strained, and rough. Speakers were enrolled in a larger study on smartphone-based 

ambulatory voice monitoring, in which microphone and EGG signals were simultaneously 

recorded in a laboratory protocol. Both signals were time-synchronized and sampled at 20 

kHz.

B. Auditory-Perceptual Screening

Mimicking non-modal voice qualities was often a difficult task. Certain vowels were not 

necessarily perceived to be pure productions of the prompted voice quality dimension, and 

other vowels were perceived to be a pure production of a different dimension. An expert 

listener—licensed speech-language pathologist who specializes in the assessment and 

treatment of voice disorders—rated each sustained vowel using the CAPE-V protocol with 

no knowledge of the prompted voice quality dimension. This step helped screen out 

utterances produced with obviously inconsistent or mixed voice quality. The listener also re-

rated a random sample of 200 sustained vowels to derive intra-rater reliability statistics. 

From this sample, utterances determined by the listener to be purely modal (n = 86), rough 

(n = 14), breathy (n = 31), or strained (n = 32) were selected for intra-rater analysis. Cohen’s 

κ was used to evaluate intra-rater reliability within each pure voice quality using the re-rated 

samples. Congruence between prompted labels and a speaker’s “success” at reproducing the 

prompted voice quality throughout the entire data set (n = 937) was also evaluated using κ. 

To compare the entire data set with the prompted labels, a perception label was derived for 

each utterance, which represented the highest CAPE-V score (e.g., if roughness, breathiness, 
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and strain were rated as present, the highest scored dimension served as the perception 

label). This process effectively created a completely new set of labels which were then taken 

as ground truth.

Table I presents the confusion table between the prompt and perception labels, and the 

number of utterances within each voice quality dimension exhibiting a pure auditory-

perceptual label (with zero CAPE-V scores for the other dimensions). The labels matched 

for 71.2% of utterances. The mean (standard deviation) of CAPE-V scores for the re-rated 

data were 53.8 (8.0) for roughness, 37.9 (16.8) for breathiness, and 26.7 (12.7) for strain. κ 
for intra-rater reliability was 0.82 for modal, 0.82 for roughness, 0.88 for breathiness, and 

0.68 for strain. Speakers were consistent in producing breathy and modal voice qualities 

(95.3% and 88.9%, respectively), but much less consistent in producing strained and rough 

voice qualities (47.9% and 42.9%, respectively). Interestingly, when people were asked to 

mimic strained phonation, they most often produced modal (louder) voicing according to the 

perception labels. In about an equal percentage of cases, the subjects produced breathy or 

strained voicing when attempting to mimic roughness. Despite this variability, agreement 

between prompt and perception labels was good-to-strong (i.e., κ ≥ 0.6). Since intra-rater 

reliability was higher than this agreement, automatic classification was carried out on the 

subset of utterances that were labeled as exhibiting “pure” voice quality (i.e., only one voice 

quality dimension labeled by the listener).

C. Pre-Processing

The GIF signal was derived from the acoustic signal using the iterative adaptive inverse 

filtering (IAIF) algorithm [54], which estimates the glottal flow derivative in two iterative 

steps. Figure 1 illustrates several periods of the acoustic, GIF, and EGG signals from a 

female speaker producing the vowel /a/ in a modal voice quality. Figure 2 illustrates the log-

magnitude spectra Y(ω) of these signals. The major portion of information is contained by 

frequencies up to 4000 Hz while the spectrum flattens afterwards. Thus only only spectral 

components up to 4 kHz were employed.

Each glottal cycle can be described by two instants. The A) Glottal Closure Instant (GCI) 

marks the moment of time when the vocal folds come into contact. This moment is 

commonly associated with a sharp rise of the EGG signal, a notable peak in its time 

derivative. The GCI is followed by a closed phase during which the subglottal pressure 

builds up. When the pressure reaches a critical threshold, the folds start to open again at a 

moment called the B) Glottal Opening Instant and stays open until the next GCI. In a healthy 

participant producing a modal voice quality, this characteristic movement is regular in time, 

approximately periodic, and displays a low variability in waveform shape.

1) Voice Activity Detection: Voice activity detection (VAD) is defined as a problem of 

distinguishing voiced segments from unvoiced segments in a signal. However, the majority 

of published algorithms are designed for modal speech and do not take into account the 

effects of non-modal voice characteristics. Our goal was to develop a reliable VAD 

algorithm that would perform well on both modal and non-modal voice qualities using the 
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framework already developed for classification. The implemented solution was a modified 

version of the unsupervised VAD proposed in [55].

The principal idea was to initialize Gaussian mixture models (GMMs) using a fraction of 

highest and lowest energy frames (5% for voiced and unvoiced frames equally), evaluate the 

data to obtain the labels, and retrain once more. For illustration, the final GMMs were 

trained on 80.6% and 18.2% of voiced and unvoiced frames, respectively. The system was 

not designed to achieve an optimal performance point with regard to sensitivity versus 

specificity. Maximum specificity was preferred even at the expense of lower sensitivity, as 

the goal was to remove any ambiguity from the classification due to the presence of noise 

artifacts.

Table II summarizes VAD performance evaluated on a set of randomly selected 150 

utterances that were manually annotated. Results differed greatly among voice quality 

categories. Modal and breathy utterances achieved the best overall results, whereas the 

strained and rough utterances exhibited lower VAD performance. Specificity did not drop 

below 0.99 for any voice quality dimension, which was the primary goal. The bootstrapping 

process could have been repeated several times over but we decided to stop after just a single 

pass as the VAD performed at a satisfactory level, and no significant improvement was 

observed by repeating the process.

D. Feature Extraction

COVAREP features were extracted only from the acoustic voice signal using default settings 

and consisted of 73 distinct features [53]. We included F0 from our analysis and worked 

with the remaining 72 COVAREP features. The COVAREP features were split into three 

subsets: 1) glottal source (GlotS) features, 2) spectral envelope modeling features - 

frequency warped cepstrum (FWCEP), and 3) harmonic model phase distortion (HMPD) 

measures - phase distortion mean and deviation (PDM, PDD). Their performance was 

analyzed separately to asses their partial contributions and suitability. The full COVAREP 

feature list is summarized in [53].

The MFCC feature extraction setup was identical to what is generally used for automatic 

speech recognition. Fixed-length framing was performed with a 25 ms window and 10 ms 

overlap. A Hamming window was applied. The number of filters in the mel-filter bank was 

set to 22, in the frequency range from 50 Hz to 4000 Hz, and 13 MFCCs were computed. 

The additional first and second order dynamic coefficients were computed over a context of 

two neighboring frames. The MFCC features were normalized to have zero mean and unit 

variance on per-speaker basis. The list of feature subsets is summarized in Table III.

Table IV summarizes the total number of utterances and extracted frames for each voice 

quality. An approximate balance across voice qualities was achieved except for less tokens 

for the rough voice quality.

E. Machine Learning Classification

Classification was done using GMM, SVM, RF, and DNN classifiers. The GMM parameters 

ΘGMM = {φ, μ, Σ} were initialized for each class separately using K-means clustering and 
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then re-estimated using the expectation-maximization algorithm. This approach was more 

robust and produced more consistent results than random or global initialization. The GMMs 

employed full covariance matrices Σ. All mixtures were added right at the start, and their 

number was set to 12 for modal and breathy, 6 for strained, and 4 for rough quality to reflect 

the different amount of data for each dimension. The utterance-level results were obtained 

by accumulating the posteriors over the whole utterance and applying a maximum a 
posteriori criteria (MAP) to yield an utterance-level label.

The SVM classifier was built using the radial basis function kernel as it showed the best 

overall results in our preliminary analysis. Since SVM natively supports only a binary 

classification task, six separate SVMs were built for each modality pair. The utterance-level 

prediction labels were derived from the frame-level labels by the majority rule.

The RF classifier used 48 trees for all data stream. Although the out-of-bag errors for GIF 

and EGG signals were higher than those for the acoustic signal, their trends converged for 

about 44 grown trees. For this reason, the RF classifier used a common setup of 48 trees. 

The utterance level prediction labels were derived from the frame-level labels by a majority 

rule.

The DNN classifier was built using a feed-forward architecture, one hidden layer with 100 

neurons, and sigmoid activation function. The net was initialized with random weights and 

trained using cross-entropy error function. The utterance level prediction labels were derived 

from the frame-level labels by the majority rule.

Speaker-independent classification was carried out with a leave-one-speaker-out strategy. 

One speaker was set aside for testing, the classifier was trained on data from remaining 

speakers and its performance was evaluated for the test speaker. The process was then 

repeated for all speakers selected for this study. The reported results were an aggregation 

from all individual classification runs. The results were evaluated in terms of classification 

accuracy [%] against the obtained perception labels.

All classification systems were built in the MATLAB environment. The SVM, RF and DNN 

systems were based on native MATLAB implementations and the GMM system was 

constructed using our own implementation.

III. Results

The initial analysis assessed the performance of the full COVAREP feature vector, its 

subsets, and MFCCs using all classifiers. The GIF and EGG signals were excluded from this 

analysis as the GlotS features, for example, were not primarily defined for these signals. The 

strong and weak points of each feature sets are summarized. The subsequent analysis 

focused on MFCC features.

A. Performance of COVAREP features

The results using full COVAREP feature set and its subsets for the acoustic signal are 

summarized in Tab. V. The overall best results of 79.97% were achieved by the SVM, 

followed closely by 79.79% using the RF classifier, which was well within the margin of 
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error. The DNN achieved 76.98% and GMM only 68.12%. Let us now discount the GMM 

from the subsequent discussion as it achieved significantly worse results. The differences 

between particular classifiers were within 3 percentage points (pp), which showed that the 

used machine learning scheme was not nearly as significant. Also, the RF showed the best 

average results across the subsets, followed by the DNN and SVM. This observation was 

slightly surprising if we consider that DNN are notoriously data hungry and our database 

contained a limited amount of data. It shows their potential for the future when more data 

are available.

The analysis of confusion matrices for full feature set revealed that modal and breathy 

modes were the easiest to classify, as the average accuracy reached 89.8% and 79% 

respectively. The accuracy for strained and rough modes reached 50.9% and 39.5%. The 

breathy voice was most often confused with the modal one, for 19.7% of utterances, whereas 

the modal voice was equally often confused with breathy and strained, for 4.8% of 

utterances. The strained and rough modes were mostly confused with modal, in 43.8% and 

41.2% of cases respectively. It might be argued that this trend reflected an unbalanced data 

distribution and biased the classifiers towards modal class. This trend was most notable for 

GMM and least prominent for DNN classifier.

The comparison of standalone feature subsets revealed mixed results, but the overall trend 

was as follows. The results for the full feature set were better than for any other feature 

subset. The FWCEP features achieved the average results across classifiers of 72.8%, 

followed by 73.6% for glottal source and 76.4% for HMPD measures. A closer look at the 

confusion matrices revealed that HMPD measure outperformed the other two feature subsets 

due to a comparatively better performance for modal, strained and breathy modes. The 

FWCEP features were accurate for classifying modal and breathy modes but 

underperformed for strained mode. The results for rough mode were at the level of random 

guessing. The glottal source features performed well also for rough mode. It might be argued 

that their performance would have been better, in comparison to other feature subsets, had 

our database been more balanced. Figure 3 illustrates the percentage of correctly classified 

utterances for each voice mode and all feature sets.

B. Performance of MFCC features

The following section summarizes results for the RF classifier as it achieved the best overall 

performance in our previous analysis with COVAREP features and also because our prior 

analysis for MFCCs proved its superior performance over other classifiers. For comparison, 

the accuracy with DNN was lower by about 2 pp on average for all signals. The overall best 

result of 74.52% was achieved for the acoustic signal using static+Δ feature vector. 

However, this improvement was still not sufficient to outperform the GlotS or HMPD 

features if we compare the results for RF classifier. The results for GIF stream were worse 

by about 5 pp, whereas the results for EGG were worse by about 18 pp.

The addition of first-order dynamic MFCC features improved the performance for all 

signals. The accuracy reached 74.52%, 69.17%, and 56% for acoustic, GIF and, EGG 

signals, respectively. The improvement was statistically significant for GIF only, as the 

improvement for acoustic and EGG signals was within the margin of error. The addition of 
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ΔΔ features had only marginal effect for GIF and EGG signal classification and a negative 

improvement for acoustic signal classification.

The feature level combination of data streams has improved the recognition results. This 

trend was most prominent for streams which included the acoustic signal. For example, the 

acoustic+GIF stream performed at 75.2%, which meant about 1.5 pp improvement over a 

standalone acoustic stream. The addition of ΔΔ features increased the accuracy to 75.61%, 

which was even marginally better than results for GlotS features. The main advantage was 

that combining acoustic and GIF streams was just a matter of additional computational cost. 

On the other hand, adding EGG signal required collecting the additional signal, and no 

improvements were observed when it was combined with other signals. The 

misclassification rates for dynamic and combined MFCCs displayed the same trends as the 

ones reported for full COVAREP set. In short, breathy was mostly confused with modal, 

modal with breathy and strained, strained and rough with modal. Finally, it can be concluded 

that combining the feature streams brought larger improvement than extending the static 

MFCC feature vector with dynamic or ΔΔ MFCC coefficients.

The last experiment examined the possibility of extending the standard COVAREP vector 

with static MFCCs computed for ACO+GIF signals. We did not include the dynamic 

coefficients as the improvement over just the static ones was marginal but its addition 

inflated the vector size considerably. The same was true about the combination of all data 

streams and was most apparent for the ACO+GIF+EGG vector with ΔΔ coefficients. The 

performance was again tested with all machine learning schemes. The accuracy reached 

78.38%, 79.53%, 56.26%, and 76.7% for SVM, RF, GMM, and DNN respectively. These 

values were marginally worse, but within the margin of error, than the results for just the 

COVAREP features. Thus, we could not confirm the contribution of combining the original 

COVAREP feature vector with the MFCCs computed from acoustic and GIF signals.

IV. Discussion

Misclassification rate trends between particular modes provided an insight into the 

distribution of modes in the MFCC space. The largest portion of misclassified breathy 

frames (across all signal types) were in the modal category, which indicates that breathy 

voicing was much closer to modal than strained or rough. Strained utterances were also most 

often confused with modal voicing. The described behavior may likely be explained by a 

common conceptual model of voice quality, where there is a continuum from lack of glottal 

closure (i.e., breathy) to tight glottal closure at the extremes and modal voicing in the middle 

[14].

A. Interpretation of MFCC hyper-space and its correlation with CAPE-V scores

The overall performance of static MFCCs was worse than for the COVAREP feature set. 

This drop was mostly caused by worse recognition results for strained quality. Results for 

roughness were at the level of random guessing, but the amount of data for rough quality 

was also significantly lower than for other qualities which might have played a role in its 

poor performance. The addition of first order dynamics improved performance by about 1.5 

pp in general. The combination of acoustic and GIF streams has proved to yield the best 
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overall results, of 75.2% for static features only and of 75.61% for static + ΔΔ features. 

These results were even slightly better than results for the glottal source features, but still 

worse than HMPD features. The analysis of MFCC feature space hinted that vowels uttered 

in different modalities form separate clusters. This hypothesis was later put to test by 

computing the Bhattacharyya distance between selected voice mode pairs.

Results presented in the previous section demonstrated that breathy, modal, and strained 

qualities occupy distinct places in the MFCC hyper-space. This was, however, not the case 

of rough quality as it heavily overlapped with strained and modal feature spaces. This fact 

can also be easily shown by estimating an average class probability for a frame belonging 

the correct class. The average output probability reached 0.63, 0.72, 0.61 and 0.16 for 

breathy, modal, breathy, and rough qualities, respectively. In another words, rough frames 

had a significantly lower probability of being classified correctly than all other voice 

qualities.

Our hypothesis was that the distribution of frames in the MFCC space was not random but 

rather content and voice mode specific. To prove this, the frames for each voice mode were 

clustered together, split randomly into a train and test set with 9:1 ratio, and the 

Bhattacharyya distance DB(p, q) for all possible voice mode pairs was computed under the 

assumption of their normal distribution. In addition, each vowel was analyzed separately. 

The process was repeated 10 times, and the values reported as the cross-mode distance were 

the minimum while the same-mode distance values were the maximum from all runs. This 

approach let us prove that, even in the worst case scenario, the MFCCs created mode- and 

content-specific clusters. Rough voice quality is not presented since results from previous 

analyses were not statistically significant.

The Bhattacharyya distances are summarized in Table VII. The distance values for vowel /a/ 

showed that modal quality creates the most tight cluster, followed by strained and breathy. 

Several conclusions can be taken from the cross-mode distance values. First, breathy quality 

was more similar to modal than to strained; in fact, breathy and strained modes formed the 

most distinct distributions. Second, the distribution of modal quality was only slightly closer 

to strained than to breathy quality. The distances for vowel /e/ followed the trends described 

for vowel /a/. On the other hand, M-S distance for vowel /i/ higher than B-M distance. This 

would indicate that modal /i/ was more similar to breathy /i/ than to strained /i/. This was 

also the case for vowel /o/ and /u/.

There were multiple general conclusions which are shared for all vowels. First, the same-

mode distance was always lower than cross-mode distance. In fact, the it was always lower 

by an order of magnitude at least. Second, M-M distance was the lowest observed distance 

from all pairs, by far. Third, the vowels behaved in two distinct ways when in breathy, 

modal, and strained mode. The first group consists of /a/ and /e/ for which the modal quality 

appeared to be more similar to strained than to breathy. The second group consists 

of /i/, /o/, /u/, where the trend was the other way around.

Based on this observation, we concluded that the constructed system similarly to a speech 

recognizer that differentiated between modal, breathy, and strained versions of vowels. The 
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constructed system pooled all vowels into a single model and created what is referred to as a 

universal background model in speech recognition. In our case, we had successfully trained 

breathy, modal, and strained voice quality vowel models.

The obtained classification provided an insight into the distribution of modes in the feature 

space, but did not explain the correlation between hard automatic and soft perception scores. 

Our initial assumption was that the utterances with higher CAPE-V scores would cluster 

more tightly around the mixture centers, and thus have higher probability, but the analysis 

found no correlation between classification soft scores and CAPE-V scores. Pearson’s 

correlation coefficient was zero for strained and rough scores and 0.31 for breathy. This 

observation would indicate that utterances perceived as more breathy, rough, or strained did 

not cluster more tightly around mixture centers. More work is warranted to tie MFCC 

features to CAPE-V ratings.

B. Prototype Waveforms

Although the results demonstrated that MFCCs can be used to accurately classify different 

voice quality dimensions, the analysis thus far has not provided insights into which aspects 

of the waveform were considered important for the classifier; i.e., what do prototype 

waveforms for modal, breathy, strained, and rough dimensions look like? To answer the 

question, class conditional probabilities of each MFCC vector were tied to the corresponding 

frame and the prototype waveforms were estimated using the weighted average computed as:

Oproto(j) = 1
N ∑

i = 1

N p Oi j
∑j p Oi j Oi, (1)

where Oproto(j) was the prototype observation vector for class j and p(Oi|j) was the 

probability of vector Oi being generated by class j. In order to avoid using frames from 

utterances with different content or from different speakers, prototype waveforms were 

estimated from a single utterance which achieved the highest average class probability for 

given voice quality. The primary problem was a random time delay between frames since the 

feature extraction used a fixed window-shift without any pitch synchronization. This 

problem disallowed a simple averaging as each frame was effectively time-shifted in respect 

to other frames. The solution employed in this study made use of auto-correlation function 

to detect the time-shifts between the current frame and the reference frame. The reference 

frame was selected at random.

The second problem was the deviation in F0 within an utterance. The within utterance 

difference reached 2.23%, 1.13%, 2.02% and 17.5% for breathy, modal, strained and rough 

quality respectively. These values were computed as a relative difference in percent with 

respect to the mean value. The choice to report relative values instead of absolute values (in 

Hz) was to penalize participants with low F0, for which a small absolute deviation causes a 

significant error in the number of samples during F0 normalization. The differences were 

minimal, which leads to conclusion that participants were very consistent in producing 

vowels with a stable F0. The only notable difference was the rough quality. This observation 

was not surprising as rough quality is known to lack a periodic structure, which makes 
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application of any F0 detection algorithm challenging. However, in order to produce as 

truthful waveforms as possible, the subharmonic-to-harmonic ratio [56] pitch detection 

algorithm was used to estimate F0 in each frame, and that frame was then either stretched or 

compressed with respect to the reference frame.

Figures 4, 5, and 6 illustrate the prototype waveforms for the acoustic, GIF, and EGG 

signals. The actual averaging was done by selecting a reference frame at random and then 

stretching or compressing the time axis to accommodate for the F0 difference for all 

consecutive frames. The phase synchronization was performed afterward as the auto-

correlation function gives more accurate results in cases that the signals have the same F0. 

The frames were also averaged in relation to their number so that the resulting waveforms 

could be compared in terms of their amplitudes among each other.

The prototype waveforms can provide an intuitive method for interpreting why certain 

signals were classified into specific classes. For example, breathy voicing is often defined by 

both turbulent airflow and the absence of a discontinuity at the moment of glottal closure. 

However, the reconstructed prototype waveforms from the acoustic and GIF signal appear to 

capture the absence of a discontinuity at the moment of glottal closure, but it seems as 

though the model did not use any information from high-frequency noise content. In other 

words, the classifier relied primarily on pulse characteristics that did not involve noise/

turbulence. The prototype signal for strained voice quality shows increased high-frequency 

harmonic content in the acoustics, increased glottal waveform skewing and increased 

maximum flow declination rate in the GIF, and the highest peak (i.e., highest degree of 

tissue contact) in the EGG (all expected effects of strained voice quality). The rough 

prototype waveform is difficult to interpret since high probability utterances were scattered 

throughout the MFCC hyper-space, meaning that the prototype waveform could look 

dramatically different despite minimal decreases in the cumulative probability metric.

C. Prototype MFCC vectors

The MFCCs are high-level features that were designed to emulate the human auditory 

system. Despite their great success in speech recognition, speaker identification or music 

retrieval, a clear interpretation exits only for the first two coefficients. The zeroth coefficient 

corresponds to the energy across all frequencies and the first is the ratio between the low- 

and high-frequency components. These two characteristics were evident by looking at 

averaged MFCC vectors extracted from the prototype waveforms illustrated in Figure 7. The 

breathy quality displayed the lowest MFCC[0], which indicated that its waveforms had the 

lowest overall energy. Strained quality displayed the lowest MFCC[1], which corresponded 

with hypothesis of increased high-frequency energy described in Section I-A.

D. Study Limitations

There are several limitations to the methods presented in this article. First, is the uneven 

distribution of data in terms of voice qualities. The participants were instructed how to utter 

the vowels in all qualities, but our subsequent auditory-perceptual screening revealed that 

people sometimes did not produce the desired or pure quality, which resulted in an uneven 

spread of data. This problem naturally complicated the process of training the classifiers and 
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lowered the statistical significance for rough quality in particular. Second, the auditory-

perceptual screening was performed by a single expert listener. The listener achieved good-

to-high intra-rater reliability, but this fact is to be expected, as multiple studies showed 

higher intra-rater than inter-rater reliability scores. Third, the analysis does not provide an 

interpretation of the results achieved with MFCCs as only first two coefficients were 

successfully tied to known voice mode characteristics. Finally, the study is done using data 

from participants mimicking prompted voice qualities. Even though the extracted prototype 

waveforms correlated well with known voice characteristics, further research is needed to 

successfully transfer the conclusions reached in the article to objective voice quality 

assessment of pathological voice.

V. Conclusion

This article analyzed the suitability of different features sets combined in the COVAREP 

features set for the purpose of voice quality classification. The article later focused on the 

analysis of MFCCs using the acoustic voice signal, acoustic-based GIF signal, and EGG 

waveform and compared them to COVAREP features. All three signals were derived from 

vocally healthy speakers who produced breathy, modal, strained, and rough voice. 

Utterances were perceptually evaluated using the CAPE-V protocol, and dichotomous labels 

were acquired for subsequent classification. The experimental framework used the setup 

commonly used for speech recognition. The experiments proved that COVAREP features 

can successfully distinguish between breathy, modal, and strained voice quality dimensions. 

The best overall results were achieved for the full COVAREP set. Out of three analyzed 

COVAREP subset, the HMPD measures performed the best, followed by the glottal source 

features and then by the FWCEP features. Future work calls for voice quality analysis of 

connected speech data and the fusion of the MFCC feature space with other voice quality 

measures in the time, spectral, and cepstral domains.
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Fig. 1. 
A 15 ms segment of time-synchronized a) acoustic, b) glottal inverse filtered (GIF), and d) 

electroglottography (EGG) signals of the vowel /a/ in modal voice quality for a female 

speaker.
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Fig. 2. 
Magnitude spectra of a) acoustic, b) glottal inverse filtered (GIF), and d) electroglottography 

(EGG) signals.
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Fig. 3. 
Average accuracy for breathy, modal, strained and rough modes for DNN, RF and SVM 

classifiers using the full COVAREP feature set.
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Fig. 4. 
Prototype acoustic signal for a) breathy, b) modal, c) strained, and d) rough quality.
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Fig. 5. 
Prototype glottal inverse filtered signal for a) breathy, b) modal, c) strained, and d) rough 

quality.
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Fig. 6. 
Prototype electroglottograph speech signal for a) breathy, b) modal, c) strained, and d) rough 

quality.
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Fig. 7. 
Prototype MFCC vectors for prototype waveforms for breathy, modal, strained, and rough 

quality.
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Borsky et al. Page 25

TABLE I

Confusion matrix between prompt and perception labels for breathy (B), modal (M), strained (S) and rough 

(R) qualities. Overall agreement was 71.2% (κ = 0.6). Utterances with “pure” voice quality are in bold.

Perception

B M S R

Prompt

B 164 8 0 0

M 21 311 11 7

S 7 86 93 8

R 43 5 69 88

Pure 178 410 108 38
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TABLE II

Performance of the GMM-based VAD with MFCCs in terms of equal error rate (EER), sensitivity and 

specificity.

Breathy Modal Strained Rough

EER [%] 3.3 2.8 4.1 10.3

sensitivity 0.96 0.97 0.95 0.89

specificity 0.99 1.00 1.00 1.00
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TABLE III

The list of analyzed features

Glottal Source fea. Spectral env. fea. HMPD fea.

NAQ, QOQ, H1H2, HRF, PSP, MDQ, PeakSlope R_d, creak FWCEP, MFCC PDM, PDD
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TABLE IV

Number of utterances (utt.) and frames for each voice quality.

Breathy Modal Strained Rough

utt. 178 410 108 38

frames 22 632 65 215 13 792 3 158
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TABLE V

Classification accuracy [%] for full COVAREP feature set and its subsets for acoustic voice quality 

classification.

SVM RF GMM DNN

Full 79.97±1.4 79.79±1.4 68.12±1.7 76.98±1.5

GlotS 70.98± 1.6 75.2±1.5 66.49±1.7 74.76±1.6

FWCEP 71.25± 1.6 73.71±1.5 64.44±1.8 71.6±1.6

HMPD 74.11± 1.6 78.47±1.5 49.86±1.8 76.7±1.5
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TABLE VI

Classification accuracy [%] with MFCCs for acoustic (ACO), glottal inverse-filtered (GIF) and 

electroglottogram (EGG) signals with RF classifier.

Static Static+Δ Static+ΔΔ

Acoustic 73.4±1.6 74.52±1.6 74.15±1.6

GIF 66.49±1.7 69.17±1.6 69.71±1.6

EGG 55.85±1.8 56.25±1.8 56.79±1.7

ACO+GIF 75.2±1.5 75.06±1.5 75.61±1.5

ACO+EGG 72.01±1.6 71.93±1.7 72.88±1.6

GIF+EGG 68.52±1.7 69.34±1.7 69.34±1.7

ACO+GIF+EGG 75.34±1.6 73.56±1.6 73.29±1.6
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TABLE VII

Bhattacharyya distance DB(p, q) for each pair of breathy (B), modal (M), and strained (S) voice modes and 

each vowel.

B-B M-M S-S B-M B-S M-S

/a/ 0.15 0.006 0.05 1.95 3.75 1.91

/e/ 0.14 0.006 0.04 2.09 4.08 1.90

/i/ 0.15 0.006 0.03 1.76 3.35 2.11

/o/ 0.15 0.006 0.04 1.77 3.24 2.11

/u/ 0.18 0.006 0.11 2.86 6.99 5.31
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