
Pairwise Versus Multiple Global Network Alignment

VIPIN VIJAYAN, SHAWN GU, ERIC T. KREBS, LEI MENG, TIJANA MILENKOVIĆ
Center for Network and Data Science, Department of Computer Science and Engineering, Eck 
Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA

Abstract

Biological network alignment (NA) aims to identify similar regions between molecular networks 

of different species. NA can be local or global. Just as the recent trend in the NA field, we also 

focus on global NA, which can be pairwise (PNA) and multiple (MNA). PNA produces aligned 

node pairs between two networks. MNA produces aligned node clusters between more than two 

networks. Recently, the focus has shifted from PNA to MNA, because MNA captures conserved 

regions between more networks than PNA (and MNA is thus hypothesized to yield higher-quality 

alignments), though at higher computational complexity. The issue is that, due to the different 

outputs of PNA and MNA, a PNA method is only compared to other PNA methods, and an MNA 

method is only compared to other MNA methods. Comparison of PNA against MNA must be done 

to evaluate whether MNA indeed yields higher-quality alignments, as only this would justify 

MNA’s higher computational complexity. We introduce a framework that allows for this. We 

evaluate eight prominent PNA and MNA methods, on synthetic and real-world biological 

networks, using topological and functional alignment quality measures. We compare PNA against 

MNA in both a pairwise (native to PNA) and multiple (native to MNA) manner. PNA is expected 

to perform better under the pairwise evaluation framework. Indeed this is what we find. MNA is 

expected to perform better under the multiple evaluation framework. Shockingly, we find this not 

always to hold; PNA is often better than MNA in this framework, depending on the choice of 

evaluation test.

INDEX TERMS

Computational biology; graph theory; network theory (graphs)

I. INTRODUCTION

A. MOTIVATION AND BACKGROUND

Networks can be used to model complex real-world systems in many domains, including 

computational biology. A popular type of biological networks are protein interaction 

networks (PINs). While PIN data are available for multiple species [1], the functions of 

many proteins in many species remain unknown [2], [3]. Network alignment (NA) compares 

networks to find a node mapping that conserves similar regions between the networks. Then, 
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analogous to genomic sequence alignment, NA can be used to predict protein functions by 

transferring functional knowledge from a well-studied species to a poorly-studied one 

between the species’ conserved (aligned) PIN regions [4]-[8]. While we focus on the 

biological NA of PINs, NA can be used for many applications [9], including computer vision 

[10], online social networks [11], and ontology matching [12].

NA is related to the subgraph isomorphism, or subgraph matching, problem. This problem 

asks to find a node mapping such that one network is an exact subgraph of another network. 

NA is a more general problem in that it asks to find a node mapping that best “fits” one 

network into another network, even if the first network is not an exact subgraph of the 

second. A widely used measure that quantifies this “fit” is the amount of conserved (aligned) 

edges, i.e., the size of the common conserved subgraph between the aligned networks. Since 

maximizing edge conservation is NP-hard [13], heuristic methods are needed for NA.

Like genomic sequence alignment, NA can be local or global [7], [8]. Initial research was on 

local NA, which searches for small highly conserved regions across the compared networks, 

irrespective of the overall similarity between the networks; the conserved network regions 

can, but are not required to, overlap. More recent efforts have focused on global NA, which 

searches for a node mapping that maximizes overall similarity of the compared networks 

and thus results in large but suboptimally conserved network regions. Each of local NA and 

global NA has its (dis)advantages [7], [8], [14]. Because in the recent years global NA has 

received more attention than local NA, in this paper we also focus on global NA, and 

henceforth, we refer to global NA as NA.

Also, and importantly for our study, NA methods can be pairwise or multiple [5], [8]. While 

pairwise NA (PNA) aligns two networks at once, multiple NA (MNA) can align more than 

two networks at once. Since MNA can capture conserved network regions between multiple 

networks, it is hypothesized that MNA may lead to deeper biological insights (i.e., higher-

quality alignments) compared to PNA. However, this hypothesis has not been tested yet (for 

reasons described in the following paragraphs). Because of this, and because both PNA and 

MNA have the same ultimate goal, which is to transfer knowledge from well- to poorly-

studied species, we argue that they need to be compared in order to determine which 

category of methods produce higher-quality alignments. Note that MNA is computationally 

harder than PNA, because the complexity of the NA problem can increase exponentially 

with the number of considered networks. So, a comparison of PNA and MNA in terms of 

their alignment quality can also answer whether the additional computational complexity of 

MNA is worth it.

Since typical PNA and MNA methods produce alignments of different types (Fig. 1), it has 

been difficult to compare them. Namely, when aligning two networks, PNA typically 

produces a one-to-one node mapping between the two networks, which results in aligned 

node pairs (Fig. 1(a)). When aligning more than two networks, MNA produces a node 

mapping across the multiple networks, which results in aligned node clusters. If an aligned 

cluster contains more than one node from a single network, then it is a many-to-many 
alignment (Fig. 1(d)). If each of the aligned clusters contains at most one node per network, 

then it is a one-to-one alignment (Fig. 1(b)). Typical MNA methods produce many-to-many 
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alignments (Fig. 1(d)), and they are called many-to-many MNA methods. MNA methods 

that produce one-to-one alignments (Fig. 1(b)) are called one-to-one MNA methods. MNA 

methods can also be trivially used to align pairs of networks, which results in aligned node 

clusters for many-to-many MNA methods (Fig. 1(c)) and in aligned node pairs for one-to-

one MNA methods (Fig. 1(a)).

There is sometimes confusion in the literature that one-to-one alignments are automatically 

global (i.e., outputted by global NA methods), and that many-to-many alignments are 

automatically local (outputted by local NA methods). However, this is not necessarily the 

case. First, one-to-one alignments can result in only small regions aligned to each other 

(clearly without any nodes overlapping), meaning that they are local one-to-one alignments. 

Second, many-to-many alignments can result in aligned node clusters covering nodes from 

all analyzed networks, meaning that they are global, many-to-many alignments. In other 

words, in our opinion, “local” and “global” describe how much of the networks’ nodes are 

covered by (i.e., are a part of) the given alignment, and not on whether the nodes are aligned 

in one-to-one or many-to-many fashion. It is important to note that most of the recent one-

to-one methods will not actually produce local alignments, because they require all nodes of 

the smaller networks to be mapped to nodes of the larger networks, automatically leading to 

global (one-to-one, or even more formally, injective) alignments. However, this is an 

algorithmic design choice of many existing methods rather than a requirement of any and 

every one-to-one method. As discussed above, we focus on global NA, considering both 

one-to-one and many-to-many methods.

Again, because PNA and MNA generally produce alignments of different types (aligned 

node pairs versus aligned node clusters, respectively), alignment quality measures designed 

for alignments of one type do not necessarily work for alignments of the other type. Also, 

alignment quality measures designed for alignments of two networks do not necessarily 

work for alignments of more than two networks. Due to this difficulty, when a new PNA or 

MNA method is proposed, it is only compared against other NA methods from the same 

category. However, since both PNA and MNA have the same goal of across-species 

knowledge transfer, we argue that there is a need to compare them. This is especially true 

because early evidence suggests that aligning each pair of considered networks via PNA and 

then combining the pairwise alignments into a multiple alignment spanning all of the 

networks can be superior to directly aligning all networks via MNA [15].

B. OUR CONTRIBUTIONS

Thus, we propose an evaluation framework for a fair comparison of PNA and MNA (Fig. 2).

We evaluate PNA and MNA on synthetic networks with known true node mapping (we 

know the underlying alignment that a perfect method should output) and real-world PINs of 

different species with unknown node mapping (we do not know which protein in one species 

corresponds to which protein in the other species). The network data are discussed in 

Section II-A.

We evaluate prominent PNA and MNA methods that were published by the beginning of our 

study, were publicly available, and had user-friendly implementations. This includes four 
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PNA methods (GHOST [16], MAGNA++ [37], WAVE [18], and L-GRAAL [19]), and four 

MNA methods (Iso-RankN [20], BEAMS [21], multiMAGNA++ [22], and ConvexAlign 

[23]), which are discussed in Section II-B. Most of these methods are recent and were thus 

already shown to be superior to many past methods, e.g., IsoRank [24], MI-GRAAL [13], 

GEDEVO [25], and NETAL [26] PNA methods, plus GEDEVO-M [27], FUSE [28], and 

SMETANA [29] MNA methods. Note that newer NA methods have appeared since, such as 

SANA [30], ModuleAlign [31], SUMONA [32], and PrimAlign [33], which is why they 

were not included here. Importantly, we believe that their inclusion is not required. This is 

because our goal is not to determine the best existing (PNA or MNA) method. Instead, it is 

to properly evaluate the whole category of prominent recent PNA methods against the whole 

category of equally prominent recent and thus fairly comparable MNA methods. While the 

best existing NA method would likely change with introduction of each new method (or 

possibly even a new measure for evaluating alignment quality), the best category of NA 

approaches is less likely to change, unless there is a drastic shift in how the NA problem is 

approached and solved (or possibly even just how alignment quality is evaluated). And one 

of the purposes of our study is to determine if such a shift is needed.

We evaluate the PNA and MNA methods in terms of their alignment quality (i.e., accuracy) 

as well as running time. We evaluate alignment quality using topological and functional 

alignment quality measures. An alignment is of good topological quality if it reconstructs 

well the underlying true node mapping (when known) and if it has many conserved edges 

(i.e., if it conserves a large common subgraph between the networks). An alignment is of 

good functional quality if its aligned node pairs/clusters contain nodes with similar 

biological functions. The alignment quality measures are described in Section II-C.

We evaluate the PNA and MNA methods in both a pairwise (native to PNA) and multiple 

(native to MNA) manner, as described in Section II-D.

Section II describes the data, alignment quality measures, and evaluation framework. Section 

III describes our findings.

II. METHODS

A. DATA

We use five network sets: one synthetic network set with known true node mapping, and four 

real-world network sets with unknown true node mapping. For each network, we use only its 

largest connected component.

1) NETWORK SET WITH KNOWN TRUE NODE MAPPING—This synthetic 

network set, named Yeast+%LC, contains a high-confidence S. cerevisiae (yeast) PIN with 

1, 004 proteins and 8, 323 interactions [34], along with five lower-confidence yeast PINs 

constructed by adding 5%, 10%, 15%, 20%, or 25% of lower-confidence interactions to the 

high-confidence PIN (Supplementary Table S1). This network set has been used in many 

existing studies [7], [13], [16], [22], [35]-[37]. Since all networks have the same node set, 

we know the true node mapping. Hence, for this set, we can evaluate node correctness, i.e., 

how well the given NA method reconstructs the true node mapping (Section II-C.1).
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2) NETWORK SETS WITH UNKNOWN TRUE NODE MAPPING—The four real-

world network sets with unknown node mapping are named PHY1, PHY2, Y2H1, and Y2H2. 

Each contains PINs of four species, S. cerevisiae (yeast), D. melanogaster (fly), C. elegans 
(worm), and H. sapiens (human). The PIN data, obtained from BioGRID [1], have been used 

in recent studies [7], [22]. For each species, four PINs are created that contain the following 

protein interaction types and confidence levels: all physical interactions supported by at least 

one publication (PHY1) or at least two publications (PHY2), as well as only yeast two-

hybrid physical interactions supported by at least one publication (Y2H1) or at least two 

publications (Y2H2) (Supplementary Table S1). Just as was done in the existing studies, we 

also remove the fly and worm networks from the PHY2 and Y2H2 network sets, because 

these networks are too small and sparse (53–331 nodes and 33–260 edges), resulting in the 

PHY2 and Y2H2 network sets containing only two networks each. The four network sets 

have unknown true node mapping, and thus we cannot evaluate node correctness. However, 

we use alternative measures of alignment quality that are based on Gene Ontology 

annotations (Section II-C.2).

3) GENE ONTOLOGY (GO) ANNOTATIONS—For alignment quality measures 

(Section II-C) that rely on GO annotations of proteins [38], we use experimentally obtained 

GO annotations from the GO database from January 2016.

4) PROTEIN SEQUENCES—When NA methods use protein sequence information to 

produce an alignment (Section II-B), we use BLAST protein sequence similarities as 

captured by E-values [39]. The sequence data were acquired from the NCBI website (https://

www.ncbi.nlm.nih.gov/).

B. NA METHODS THAT WE EVALUATE

We study GHOST, MAGNA++, WAVE, and L-GRAAL PNA methods, and IsoRankN, 

BEAMS, multiMAGNA++, and ConvexAlign MNA methods.

1) PNA METHODS—Most NA methods are two-stage aligners: first, they calculate the 

similarities (based on network topology and, optionally, protein sequences) between nodes 

of the compared networks, and second, they use an alignment strategy to find high scoring 

alignments with respect to the total similarity over all aligned nodes. GHOST is a two-stage 

PNA method (Supplementary Section S1.1). An issue with two-stage methods is that while 

they find high scoring alignments with respect to total node similarity (a.k.a. node 

conservation), they do not account for the amount of conserved edges during the alignment 

construction process. But the quality of an alignment is often measured in terms of edge 

conservation. To address this, MAGNA++ directly optimizes both edge and node 

conservation while the alignment is constructed (Supplementary Section S1.1). MAGNA++ 

is a search-based (rather than a two-stage) PNA method. Search-based aligners can directly 

optimize edge conservation or any other alignment quality measure. WAVE and L-GRAAL 

were proposed as two-stage (rather than search-based) PNA methods that, just as MAGNA+

+, optimize both node and (weighted) edge conservation (Supplementary Section S1.1).
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2) MNA METHODS—IsoRankN, BEAMS, and ConvexAlign are two-stage MNA 

methods. IsoRankN optimizes node conservation. BEAMS and ConvexAlign optimize both 

node and edge conservation (Supplementary Section S1.1). On the other hand, like MAGNA

++, multiMAGNA++ is a search-based method that optimizes both edge and node 

conservation. IsoRankN and BEAMS produce many-to-many alignments. ConvexAlign and 

multiMAGNA++ produce one-to-one alignments.

3) ALIGNING USING NETWORK TOPOLOGY ONLY VERSUS USING BOTH 
TOPOLOGY AND PROTEIN SEQUENCES—In our analysis, for each method, we 

study the effect on output quality when (i) using only network topology while constructing 

alignments (T alignments) versus (ii) using both network topology and protein sequence 

information while constructing alignments (T+S alignments). For T alignments, we set 

method parameters to ignore any sequence information. All methods except BEAMS can 

produce T alignments and all methods can produce T+S alignments. For T+S alignments, we 

set method parameters to include sequence information. Supplementary Table S2 shows the 

specific parameters that we use, and Supplementary Section S1.1 justifies our parameter 

choices.

C. ALIGNMENT QUALITY MEASURES

Typical PNA methods produce alignments comprising node pairs and typical MNA methods 

produce alignments comprising node clusters. We introduce the term aligned node group to 

describe either an aligned node pair or an aligned node cluster. With this, we can represent a 

pairwise or multiple alignment as a set of aligned node groups. For formal definitions, see 

Supplementary Section S1.2.

1) TOPOLOGICAL QUALITY (TQ) MEASURES—A good NA method should 

produce aligned node groups that have internal consistency with respect to protein labels. If 

we know the true node mapping between the networks, we can let the labels be node names. 

We consider measures that rely on node names to be capturing topological quality (TQ) of 

an alignment. If we do not know the true node mapping, we let the labels be nodes’ (i.e., 

proteins’) GO terms. We consider measures that rely on GO terms to be capturing functional 

quality (FQ) of an alignment; we discuss such measures in Section II-C.2. We measure 

internal consistency of aligned protein groups in a pairwise alignment via precision, recall, 

and F-score of node correctness (P-NC, R-NC, and F-NC, respectively); these measures, 

introduced by [7], work for both one-to-one and many-to-many pairwise alignments 

(Supplementary Section S1.2.1). We do this in a multiple alignment via adjusted multiple 

node correctness (NCV-MNC); this measure, introduced by [22], works for both one-to-one 

and many-to-many multiple alignments (Supplementary Section S1.2.1).

Also, a good NA method should find a large amount of common network structure, i.e., 

produce high edge conservation. We measure edge conservation in a pairwise alignment via 

adjusted generalized S3 (NCV-GS3); this measure, introduced by [7], works for both one-to-

one and many-to-many pairwise alignments (Supplementary Section S1.2.1). We do this in a 

multiple alignment via adjusted cluster interaction quality (NCV-CIQ); this measure, 
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introduced by [22], works for both one-to-one and many-to-many multiple alignments 

(Supplementary Section S1.2.1).

Finally, for a good NA method, conserved edges should form large and dense (as opposed to 

small or isolated) conserved regions. We capture the notion of large and connected 

conserved network regions (for both pairwise and multiple alignments) via largest common 

connected subgraph (LCCS). This measure, recently extended from PNA [37] to MNA [22], 

works for both one-to-one and many-to-many alignments, and for both pairwise and 

multiple alignments (Supplementary Section S1.2.1).

2) FUNCTIONAL QUALITY (FQ) MEASURES—Per Section II-C.1, a good alignment 

should have internally consistent aligned node groups. Instead of protein names as in Section 

II-C.1, in this section we use GO terms as protein labels to measure internal consistency. 

Having aligned node groups that are internally consistent with respect to GO terms is 

important for protein function prediction.

We measure internal node group consistency with respect to GO terms in two ways. First, 

we do so via mean normalized entropy (MNE); this measure, introduced by [20] (also, see 

[22] for formal definition), works for both one-to-one and many-to-many alignments, and 

for both pairwise and multiple alignments (Supplementary Section S1.2.2). Second, we do 

so via an alternative popular measure, GO correctness (GC); this measure, recently extended 

from PNA [35] to MNA [22], works for both one-to-one and many-to-many alignments, and 

for both pairwise and multiple alignments (Supplementary Section S1.2.2).

In addition to measuring internal node group consistency, we directly measure the accuracy 

of protein function prediction. That is, we first use a protein function prediction approach 

(Section II-C.3) to predict protein-GO term associations, and then we compare the predicted 

associations to known protein-GO term associations to see how accurate the predicted 

associations are. We do so via precision, recall, and F-score measures (P-PF, R-PF, and F-PF, 

respectively); these measures work for both one-to-one and many-to-many alignments, and 

for both pairwise and multiple alignments (Supplementary Section S1.2.2).

3) PROTEIN FUNCTION PREDICTION APPROACHES—Here, we discuss how we 

predict protein-GO term associations from the given alignment. We use a different protein 

function prediction approach for each alignment type. Therefore, below, first, we discuss an 

existing approach that we use to predict protein GO-term associations from pairwise 

alignments (approach 1). Second, we discuss an existing approach that we use to predict 

these associations from multiple alignments (approach 2). Third, since the existing approach 

for multiple alignments (approach 2) is very different from the existing approach for 

pairwise alignments (approach 1), to make comparison between pairwise and multiple 

alignments (i.e., between PNA and MNA) more fair, we extend approach 1 for pairwise 

alignments into a new approach for multiple alignments (approach 3). As we show in 

Section III-E.1, our new approach 3 in general improves upon the existing approach 2. So, 

we propose approach 3 as a new superior strategy for predicting protein-GO term 

associations from multiple alignments, which is another contribution of our study.
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a: APPROACH 1. EXISTING PROTEIN FUNCTION PREDICTION FOR 
PAIRWISE ALIGNMENTS: Here, we predict protein GO-terms associations using a 

multi-step process proposed by [7]. For each protein v in the alignment that has at least one 

annotated GO term, and for each GO term g, first, we hide v’s true GO term(s). Second, we 

determine if the alignment is statistically significant with respect to g, i.e., if the number of 

aligned node pairs in which the aligned proteins share GO term g is significantly high (p-

value below 0.05 according to the hypergeometric test;see [7] for details). Repeating this 

process for all nodes and GO terms results in set X of predicted protein-GO term 

associations.

b: APPROACH 2. EXISTING PROTEIN FUNCTION PREDICTION FOR 
MULTIPLE ALIGNMENTS: Here, we predict protein GO-term associations using the 

approach of [4], as follows. For each protein v in the alignment that has at least one 

annotated GO term, and for each GO term g, first, we hide the protein’s true GO term(s). 

Second, given that v belongs to aligned node group C, we measure the enrichment of C in g 
using the hypergeometric test. If C is significantly enriched in g (p-value below 0.05; see 

[22] for details), then we predict v to be associated with g. Repeating this process for all 

nodes and GO terms results in set X of predicted protein-GO term associations.

c: APPROACH 3. NEW PROTEIN FUNCTION PREDICTION FOR MULTIPLE 
ALIGNMENTS: Here, we introduce a new approach to predict protein GO-term 

associations from a multiple alignment. First, for each node group Ci in the alignment, Ci is 

converted into a set of all possible Ci
2

 node pairs in the group. The union of all resulting 

node pairs over all groups Ci forms the set F of all aligned node pairs. Second, for each 

protein v in the alignment that has at least one annotated GO term, and for each GO term g, 

we hide v’s true GO term(s). Third, we determine if the alignment is statistically significant 

with respect to g, i.e., if the number of aligned node pairs F in which the aligned proteins 

share GO term g is significantly high (p-value below 0.05 according to the hypergeometric 

test; see Supplementary Section S1.2.3 for details). Repeating this process for all nodes and 

GO terms results in a set of predicted protein-GO term associations. Our proposed approach 

3 is identical to approach 1 except for its first step of converting a multiple alignment into a 

set of aligned node pairs.

4) STATISTICAL SIGNIFICANCE OF ALIGNMENT QUALITY SCORES—Since 

PNA and MNA methods result in different output types (as they produce alignments that 

differ in the number and sizes of aligned node groups for the same networks), to allow for as 

fair as possible comparison of the different NA methods, we do the following. For each NA 

method, each pair/set of aligned networks, and each alignment quality measure, we compute 

the statistical significance (i.e., p-value) of the given alignment quality score. Then, we take 

the significance of each alignment quality score into consideration when comparing the NA 

methods (as explained in Section II-D.3). We compute the p-value of a quality score of an 

alignment as described in Supplementary Section S1.2.4.
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D. EVALUATION FRAMEWORK

Given a network set, to fairly compare PNA and MNA, we compare the NA methods when 

aligning all possible pairs of networks in the set (pairwise evaluation framework, Section II-

D.1), as well as when aligning all networks in the set at once (multiple evaluation 

framework, Section II-D.2). PNA is expected to perform better under the pairwise evaluation 

framework (which is native to PNA), and MNA is expected to perform better under the 

multiple evaluation framework (which it is native to MNA).

1) PAIRWISE EVALUATION (PE) FRAMEWORK—In the PE framework, given a 

network set, we compare NA methods using pairwise alignments of all possible pairs of 

networks in the set. Due to the various ways that a pairwise alignment of two networks can 

be created using PNA or MNA methods, we categorize the pairwise alignments into the 

following three categories. Specifically:

• We apply PNA to all possible network pairs, denoting the resulting alignments as 

the PE-P-P alignment category. Here, since all PNA methods are one-to-one, 

their pairwise alignments will be one-to-one.

• We apply MNA to all possible network pairs, denoting the resulting alignments 

as the PE-M-P alignment category. Here, if an MNA method is many-to-many, 

then its pairwise alignments will also be many-to-many. Otherwise, they will be 

one-to-one.

• We apply MNA to the whole network set and break the resulting multiple 

alignment into all possible pairwise alignments, as illustrated in Fig. 3(a). 

Specifically, given a multiple alignment spanning all of the networks (in our Fig. 

3(a) illustration, three), we create a pairwise alignment for every pair of networks 

(i.e., three pairs) as follows: for the two networks in a given pair, we remove 

every node from the multiple alignment that is not a part of the two networks, 

which results in a pairwise alignment of the two networks. We denote the 

resulting pairwise alignments as the PE-M-M alignment category. Again, for a 

one-to-one or many-to-many MNA method, its pairwise alignments will also be 

one-to-one or many-to-many, respectively.

In the PE framework, we align all pairs of networks within each of the five analyzed network 

sets (Yeast+%LC, PHY1, PHY2, Y2H1, and Y2H2; Section II-A). We evaluate using all 

alignment quality measures for pairwise alignments, namely F-NC, NCV-GS3, and 

LCCSTQ measures as well as MNE, GC, and F-PF FQ measures (Section II-C).

2) MULTIPLE EVALUATION (ME) FRAMEWORK—In the ME framework, given a 

network set, we compare NA methods using the resulting multiple alignments of the set. 

Due to the various ways that a multiple alignment of a network set can be created, we 

categorize the multiple alignments in the following three categories. Specifically:

• We apply PNA to all possible network pairs and combine the resulting pairwise 

alignments into a multiple alignment that spans all networks in the set using a 

variation of a method introduced by [15], as illustrated in Figs. 3(b)–(c) and 

Supplementary Section S1.3. In more detail, given pairwise alignments of all 
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networks pairs in the set (in our Fig. 3(b)–(c) illustrations, three pairs of 

networks, (G1, G2), (G2, G3), and (G1, G3)), produced by PNA, we combine the 

pairwise alignments into a multiple alignment as follows. First, we select a 

“scaffold” network (in our illustration, G2). Second, we create a set of node 

groups consisting of the pairwise alignments between the scaffold network and 

the other networks (in our illustration, (G1, G2) and (G2, G3)). Third, we merge 

node groups that have at least one node in common. This procedure yields a 

multiple alignment of all networks in the set. We denote the resulting alignment 

as the ME-P-P alignment category. Here, even though all PNA methods are one-

to-one, their pairwise-combined-to-multiple alignments will be many-to-many.

• We apply MNA to all possible network pairs and combine the resulting pairwise 

alignments into a multiple alignment that spans all networks in the set using the 

same variation of the method introduced by [15] as above (Fig. 3(b)–(c) and 

Supplementary Section S1.3), denoting the resulting alignment as the ME-M-P 

alignment category. Here, independent of whether an MNA method is one-to-one 

or many-to-many, its pairwise-combined-to-multiple alignments will be many-to-

many.

• We apply MNA to the whole network set to align all networks at once, denoting 

the resulting alignment as the ME-M-M category. Here, if an MNA method is 

one-to-one, its direct multiple alignments will also be one-to-one. Otherwise, 

they will be many-to-many.

In the ME framework, we align each of the analyzed network sets that has more than two 

networks (Yeast%+LC, PHY1, and Y2H1; Section II-A). We evaluate using all alignment 

quality measures for multiple alignments, namely NCV-MNC, NCV-CIQ, and LCCS TQ 

measures as well as MNE, GC, and F-PF FQ measures (Section II-C).

3) COMPARING THE PERFORMANCE OF NA METHODS—We compare two NA 

methods in terms of their alignment quality (i.e., accuracy) and running time.

In terms of alignment quality, given a network pair/set and an alignment quality measure 

(i.e., in a given evaluation test), we compare two NA methods as follows. Let x and y be the 

methods’ respective alignment quality scores. If both x and y are significant (p-values below 

0.001; Section II-C.4) and are within 1% of each other x − y
x + y /2 < 0.01 , then the two 

methods are tied. They are also tied if both x and y are nonsignificant. If both x and y are 

significant and not tied, then the method with the best score is superior. If x is significant 

and y is not, then the method with score x is superior, and vice versa.

Given k network pairs/sets and l alignment quality measures, i.e., given k × l evaluation 

tests, for each evaluation test, we rank all methods from the best one to the worst one, as 

follows. Given the methods’ alignment quality scores, for methods with non-significant 

scores, we rank the methods last. For methods with significant scores, we perform the 

following procedure. If a given method has the best alignment quality score, then we give it 

rank 1 (as the 1st best method). We give the next best performing method rank 2, and so on. 

If a given method is tied with the next best performing method, then we rank both methods 
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with the superior (i.e., lower) rank. The subsequent methods are ranked as if the previous 

methods were not tied. For example, if methods a and b are tied, they are both given rank 1, 

and if method c is not tied with method a or method b, then method c is given rank 3). We 

call this resulting rank for a given evaluation test an evaluation test rank. We calculate the 

overall ranking of an NA method by taking the mean of its ranks over all k×l evaluation 

tests. To evaluate whether the overall rankings of two methods are significantly different 

from each other, we apply the one-tailed Wilcoxon signed-rank test on the k×l evaluation 

test ranks of the two methods.

We also compare the NA methods with respect to their running times. Specifically, for each 

network pair/set, for each alignment category in the PE and ME frameworks, we give the 

fastest method rank 1, the second fastest method rank 2, and so on. Each method is restricted 

to use a maximum of 64 cores.

III. RESULTS AND DISCUSSION

In Section III-A, we compare the quality of T alignments and T+S alignments. In Sections 

III-C and III-D, we compare PNA against MNA in the PE and ME framework, respectively, 

in terms of TQ and FQ accuracy as well as running time. In Section III-E, we compare PNA 

against MNA exclusively in terms protein function prediction accuracy, as the main goal of 

biological NA is to predict protein functions in one species from protein functions in another 

species, based on the species’ network alignment.

A. T VERSUS T+S ALIGNMENTS

Network topology alone can be used to find good alignments of PINs [35]. But protein 

sequence information can be used to complement network topology in order to produce 

superior alignments [40]. Due to the complementarity of network topology and protein 

sequence information, we expect T+S alignments to have higher alignment quality than T 

alignments. In fact, we verify this. Namely, for each NA method, we compare the given 

method’s T alignments to their corresponding T+S alignments, in terms of TQ and FQ 

measures, under the PE and ME frameworks (Fig. 4). We find the following.

For networks with known true node mapping, T+S alignments are superior to the 

corresponding T alignments in almost all cases. Note that as already recognized by [22], for 

these networks, i.e., for the Yeast+%LC network set, the superiority of T+S alignments over 

T alignments is not a surprising result. This is because this dataset contains networks that all 

have the same set of nodes. Consequently, it contains many inter-network pairs of nodes that 

are the same proteins. Sequence similarities of such matching node pairs are higher than 

those of other non-matching node pairs. These matching inter-network node pairs can likely 

form aligned node groups that have very high intra-group sequence similarity due to the 

node pairs containing identical proteins. This could explain the superiority of T+S 

alignments over T alignments for the set of networks with known node mapping.

Even for the sets of networks with unknown node mapping (PHY1, PHY2, Y2H1, Y2H2), 

whose networks contain different node sets, we still see that T+S alignments are overall 

superior to T alignments. Namely, only in terms of TQ, T alignments are somewhat superior 
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to T S alignments, but T+S alignments are still superior to or tied with the corresponding T 

alignments in just under a half of all cases. In terms of FQ, T+S alignments are superior to 

or tied with the T alignments in almost all evaluation tests.

So, we conclude that T+S alignments are overall superior to T alignments. Because of this, 

because T+S alignments are more relevant in the computational biology domain, and 

because of space constraints, henceforth, we mainly analyze T+S alignments. Importantly, 

our findings for T+S alignments also hold for T alignments (Supplementary Fig S6).

Due to space constraints, for additional results on the similarity (overlap) of the alignments 

produced the different NA methods, which demonstrate that using protein sequence 

information overall yields alignment consistency between the different NA methods, see 

Supplementary Section S1.4 and Supplementary Figs. S1–S3.

B. METHOD COMPARISON: EVALUATION DETAILS

In Fig. 5, we compare PNA and MNA over all evaluation tests (where a test is a combination 

of a network pair/set and an alignment quality measure) for T+S alignments; analogous 

comparison for T alignments is shown in Supplementary Fig. S6. In this section, we discuss 

how we evaluate and compare PNA and MNA. We show the results of the comparison in 

Section III-C for the PE evaluation framework and in Section III-D for the ME evaluation 

framework.

In all of Sections III-B, III-C, and III-D, when we refer to an “NA method”, we mean the 

combination of a PNA or MNA method and an alignment category (Section II-D). Namely, 

there are 12 NA methods in the PE framework (four PNA methods associated with the PE-P-

P category and four MNA methods associated with each of the PE-M-M and PE-M-P 

categories) and 12 NA methods in the ME framework (four PNA methods associated with 

the ME-P-P category and four MNA methods associated with each of the ME-M-M and 

ME-M-P categories). We analyze the NA methods via three views, described below and 

visualized in Fig. 5:

• View I: Overall ranking of the NA methods, as described in Section II-D.3. Since 

there are 12 methods in a given (PE or ME) framework, the possible ranks range 

from 1 to 12. The lower the rank, the better the given method. The “p1-value” 

column shows the statistical significance of the difference between the ranking of 

the 1st best ranked method and each other method. The “p2-value” column shows 

the statistical significance of the difference between the ranking of the 2nd best 

ranked method and each other method. The “Non. sig. (fail)” column shows the 

fraction of all evaluation tests in which the alignment quality score is not 

statistically significant, and, in brackets, the fraction of evaluation tests in which 

the given NA method failed to produce an alignment.

• View II: Pie charts showing the fraction of evaluation test ranks that fall into the 

1–4, 5–8, and 9–12 rank bins out of all evaluation test ranks in the given 

alignment category. For example, for the PE framework, in the PE-P-P alignment 

category, 56%, 26%, and 18% of the evaluation test ranks fall into ranks 1–4, 5–

8, and 9–12, respectively, totaling to 100% of the evaluation test ranks in the PE-
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P-P alignment category. The pie charts allow us to compare the three alignment 

categories rather than individual NA methods in each category. The larger the pie 

chart for the better (lower) ranks, and the smaller the pie chart for the worse 

(higher) ranks, the better the alignment category. For example, in the PE 

framework, PE-P-P has the most evaluation tests ranked 1–4 and the fewest 

evaluation tests ranked 9–12, followed by PE-M-P, followed by PE-M-M. This 

implies that PE-P-P is superior to PE-M-P and PE-M-M.

• View III: Overall ranking of an NA method versus its running time, as described 

in Section II-D.3. In order to allow for easier comparison between the different 

alignment categories, “Average” shows the average running times and average 

rankings of the methods in each alignment category.

C. METHOD COMPARISON: RESULTS IN THE PE FRAMEWORK

We expect that under the PE framework, PNA will perform better than MNA. This is exactly 

what we observe. So, the most interesting and shocking results of our study do not originate 

from this section. Instead, they originate from Section III-D below, when comparing PNA 

and MNA in the ME framework.

Namely, in the PE framework, the overall ranking of the PNA methods (T+S alignments 

from the PE-P-P category) is generally better (lower) than the overall ranking of the MNA 

methods (T+S alignments from the PE-M-P and PE-M-M categories) (View I of Fig. 5). An 

exception is multiMAGNA++’s alignments from the PE-M-P category (multiMAGNA++ 

directly applied to network pairs), whose overall ranking is also very good (low). This could 

be due to multiMAGNA++ being a one-to-one MNA method, which might have caused it to 

behave similarly as PNA methods (all of which are also one-to-one) when it is used to align 

only two networks. This is further supported by the fact that the only other considered one-

to-one MNA method, ConvexAlign, and specifically its PE-M-P version, is also ranked 

better (lower) than the remaining two many-to-many MNA methods, IsoRankN and 

BEAMS. Nonetheless, ConvexAlign still has worse (higher) ranking than any PNA method 

(View I of Fig. 5).

Next, we break down the results into those for networks with known versus unknown node 

mapping, and also, into those for TQ versus FQ measures (View II of Fig. 5); additional, 

even more detailed results for the PE framework are shown in Supplementary Table S14. For 

networks with known mapping, we find that PNA performs better than MNA in terms of 

both TQ and FQ. For networks with unknown mapping, PNA performs better than MNA in 

terms of TQ, while in terms of FQ, the situation is not as clear.

Namely, for networks with unknown mapping and FQ, as can be seen in View II of Fig. 5, 

MNA falls into the best (lowest) ranks 1–4 in more of the evaluation tests than PNA This 

implies that MNA is better than PNA. However, at the same time, MNA also falls into the 

worst (highest) ranks 9–12 in more of the evaluation tests than PNA. This implies that MNA 

is worse than PNA. Because we are interested in comparing the whole category of the 

considered PNA approaches against the whole category of the considered MNA approaches 

(per our discussion in Section I-B), the above two results combined could be interpreted as 
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MNA and PNA being comparable for networks with unknown mapping and FQ. On the 

other hand, for the same networks (with unknown mapping) and TQ, as well as for networks 

with known mapping and both TQ and FQ, PNA falls into the best ranks 1–4 in more of the 

evaluation tests than MNA, and at the same time, PNA falls into the worst ranks 9–12 in 

fewer of the evaluation tests than MNA, which means that PNA is superior to MNA.

Another observation is as follows (Supplementary Tables S4–S7). For evaluation tests in 

which PNA is clearly superior in terms of method rankings to MNA (again, with the 

exception of multiMAGNA++’s PE-M-P version), which are tests excluding networks with 

unknown mapping and FQ, the best-ranked PNA method (MAGNA++ or WAVE) is 

significantly superior to the best-ranked MNA method (multiMAGNA++’s PE-M-M 

version, followed by all other MNA methods that are all similarly ranked), with p-values 

below 1.8 × 10−6. On the other hand, for tests where it is unclear which of PNA and MNA is 

better, which are tests involving networks with unknown mapping or FQ, the best-ranked 

MNA method (ConvexAlign’s PE-M-P version) is only marginally better than the best-

ranked PNA method (MAGNA++), with p-values between 0.048 and 0.332. This justifies 

referring to PNA and MNA as comparable for networks with unknown mapping and FQ, and 

to PNA as being superior in all other cases.

Next, we want to comment on the two MNA methods that perform well in at least some 

evaluation tests in the PE (pairwise) framework: multiMAGNA++ and ConvexAlign. Both 

of these methods produce one-to-one mappings, unlike the other two MNA methods, 

BEAMS and IsoRankN, which produce many-to-many mappings. Given that all PNA 

(pairwise) methods are also one-to-one, it might not be surprising that the two one-to-one 

MNA methods also perform well in the PE framework. This could be because the existing 

measures for pairwise alignment accuracy favor one-to-one mappings. However, we believe 

that it is not just the one-to-one aspect of multiMAGNA++ and ConvexAlign that is relevant. 

First, while multiMAGNA++ performs reasonably well in all tests (networks with both 

known and unknown node mappings, and both TQ and FQ), ConvexAlign performs poorly 

for networks with known mapping or TQ but exceptionally well (marginally better than 

multiMAGNA++) for networks with unknown mapping and FQ. So, even though both 

methods are one-to-one, each has its unique (dis)advantages. Second, in Section III-D, 

which evaluates the methods in the ME (multiple) framework, of the four MNA methods, it 

is again multiMAGNA++ and ConvexAlign that perform the best.This is despite the fact that 

the existing measures for multiple alignment accuracy do not necessarily favor one-to-one 

mappings, and some (especially FQ) actually favor many-to-many mappings.

A likely reason why ConvexAlign performs well only for networks with unknown node 

mapping and FQ is because its parameter values that were recommended and pre-set by its 

authors and that we use (Supplementary Section S1.1) were determined via cross-validation, 

by optimizing FQ (GO term similarity of mapped nodes) in alignments of networks with 

unknown node mapping (PPI networks of mouse and human) [23]. Hence, ConvexAlign is 

semi-supervised, i.e., pre-trained to achieve high FQ scores, which makes it biased 

compared to the other considered NA methods, all of which are unsupervised.

VIJAYAN et al. Page 14

IEEE Access. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1) ACCURACY VERSUS RUNNING TIME—The PNA methods are not only more 

accurate in general (as demonstrated above), but on average they are also at least somewhat 

if not much faster (View III of Fig. 5). In fact, no MNA method has both better running time 

and better ranking than any PNA method, while many PNA methods have both better 

running time and better ranking than every MNA method. Additional results where each 

method is restricted to use a single core are shown in Supplementary Fig. S4.

D. METHOD COMPARISON: RESULTS IN THE ME FRAMEWORK

We expect that under the ME framework, MNA will perform better than PNA. Shockingly, 

we do not find this. Instead, our results reveal the opposite trends, which match those 

observed under the PE framework. So, the most interesting results of our study originate 

from this section.

Namely, in the ME framework, the overall ranking of the PNA methods (T+S alignments 

from the ME-P-P category) is generally better (lower) than the overall ranking of the MNA 

methods’ T+S alignments from the ME-M-M category, which in turn is generally better than 

the overall ranking of the MNA methods’ T+S alignments from the ME-M-P category (View 

I of Fig. 5). Again, multiMAGNA++ is an exception: its alignments from the ME-M-P 

category (multiMAGNA++ first being applied to network pairs and then its pairwise 

alignments being combined into a multiple alignment) are ranked very good (low).

When we inspect the ranking of the methods in more detail (View II of Fig. 5), again, we 

find similar trends as in the PE framework. Namely, for networks with known mapping, we 

find that PNA performs better than MNA in terms of both TQ and FQ. For networks with 

unknown mapping, PNA performs better than MNA in terms of TQ. In terms of FQ, just as 

under the PE framework, MNA falls into the best (lowest) ranks in more of the evaluation 

tests than PNA, but at the same time, MNA also falls into the worst (highest) ranks in more 

of the evaluation tests than PNA. Additional, even more detailed results for the ME 

framework are shown in Supplementary Table S15.

Another result also applies to the ME framework: of the MNA methods, multiMAGNA++ 

and ConvexAlign perform better than BEAMS and IsoRankN, where multiMAGNA++ 

performs consistently well across all tests, and ConvexAlign performs extremely well only 

for networks with unknown node mapping and FQ (Supplementary Tables S8–S11).

Notice that under the ME framework, the best (PNA or MNA) methods are all one-to-one. 

Because all considered PNA methods are one-to-one, one might suspect that PNA may be 

overall better than MNA in the ME framework not because of the “pairwise” part but simply 

because of the “one-to-one” part, possibly because one might suspect our evaluation 

measures in the ME framework to favor one-to-one methods. However, we argue that this is 

not the case, as follows.

First, if we could show that any existing one-to-one method performed worse than any 

existing many-to-many method in our ME framework, this would suffice to show that our 

ME framework does not favor one-to-one-methods. While for our considered methods it is 

the case that one-to-one (PNA or MNA) methods are superior to many-to-many (MNA) 
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methods, this could be simply because the considered one-to-one methods are more recent 

and thus more powerful than the considered many-to-many methods. Indeed, when we add 

to our ME evaluation an older (and thus inferior) one-to-one MNA method, GEDEVO-M 

[27], we find that this one-to-one method is outperformed by the considered many-to-many 

MNA methods (Supplementary Tables S16–S20). If one-to-one methods had some 

advantage over many-to-many methods in our ME framework, this would not have 

happened. So, a method’s performance in our ME framework does not seem to be directly 

related to it being one-to-one or many-to-many.

Second, by design, our evaluation measures do not favor one-to-one methods. Namely, recall 

that many of our evaluation measures were proposed by studies that introduced or analyzed 

many-to-many NA methods (Section II-C). An example is one of our considered FQ 

measures, mean normalized entropy (MNE), which originates from the IsoRankN study 

[20], where IsoRankN is one of the considered many-to-many MNA methods. So, MNE is 

unlikely to favor one-to-one methods, as it was proposed in the many-to-many context. 

Actually, when we mirror the exact same MNE evaluation as in the IsoRankN study (see 

[20] for details) on the methods we consider here (rather than combine MNE with our other 

FQ measures as done so far in the paper), the considered one-to-one methods still perform 

well (i.e., the best of all considered one-to-one methods is still better than the best of all 

considered many-to-many methods) (Supplementary Tables S12–S13). That is, even a 

measure designed explicitly for many-to-many alignments still ranks one-to-one-alignments 

better than many-to-many alignments. This additionally confirms that the overall superiority 

of the considered one-to-one (PNA or MNA) methods over the considered many-to-many 

(MNA) methods in the ME framework is likely because the one-to-one methods actually 

yield higher-quality alignments.

In summary, with these two findings in mind, it is more likely that the considered one-to-one 

methods perform better than the considered many-to-many methods in the ME framework 

because recent studies have focused on one-to-one alignments. Consequently, increased 

research in this area has likely led to better methodological advancements of one-to-one 

methods compared to many-to-many methods, explaining the one-to-one methods’ superior 

performance.

1) ACCURACY VERSUS RUNNING TIME—When we compare the overall rankings 

of the NA methods to their running times (View III of Fig. 5), again, we find similar trends 

as in the PE framework: the PNA methods are not only more accurate (as demonstrated 

above), but on average they are also faster.

Since the PNA methods must align every pair of networks in order to produce a multiple 

alignment, and since this results in a quadratically increasing running time with respect to 

the number of networks k, we ask whether there is some value of k at which PNA might 

become less efficient (i.e., slower) than MNA. Due to space constraints, we present this 

discussion in Supplementary Section S1.5 and Supplementary Table S3. Additional results 

where each method is restricted to use a single core are shown in Supplementary Fig. S5.
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E. METHOD COMPARISON FOCUSING ON ACCURACY OF PROTEIN FUNCTION 
PREDICTION

1) NEW FUNCTION PREDICTION APPROACH UNDER THE ME FRAMEWORK
—Here, we focus on addressing a potential issue with the existing approach for protein 

function prediction for multiple alignments, which we have used up to this point. As 

discussed in Section II-C.3, since the existing approach for multiple alignments (approach 2) 

is very different than the existing approach for pairwise alignments (approach 1), to make 

comparison between pairwise and multiple alignments (i.e., between PNA and MNA) more 

fair, we extend approach 1 for pairwise alignments into a new approach for multiple 

alignments (approach 3).

Then, we compare the new approach 3 against the existing approach 2, in hope that approach 

3 will outperform approach 2. If so, in our subsequent analyses, we will use approach 3 for 

protein function prediction for multiple alignments. This way, comparing results of 

approaches 1 and 3 will be much more fair than comparing results of approaches 1 and 2. 

Consequently, we will be able to more fairly compare PNA against MNA.

Indeed, we find that our new approach 3 overall outperforms the existing approach 2 (Fig. 6 

and Supplementary Fig. S7). Specifically, approach 3 is overall comparable to approach 2 

for networks with known node mapping (marginally inferior in terms of precision, 

marginally superior in terms of recall) and it is superior to approach 2 for networks with 

unknown node mapping (in terms of both precision and recall).

For networks with known node mapping, the number of predictions made by approach 3 is 

just 0.5%−5.8% larger than that made by approach 2, depending on the NA method, as 

shown in Supplementary Fig. S7 (with the exception of ConvexAlign, which produces up to 

54% more predictions under approach 3 than under approach 2). The slightly more 

predictions by approach 3 could explain its slightly lower precision and slightly higher 

recall. But the differences in the number of predictions as well as accuracy of these two 

approaches on networks with known mapping are so minor (within 2%−5%) that we 

consider them as comparable.

For networks with unknown node mapping, the number of predictions made by approach 3 

is 2%−72% smaller than the number of predictions made by approach 2, depending on the 

NA method (with exception of ConvexAlign and BEAMS, which in one instance produce 

6% and 158% more predictions, respectively, under approach 3). While the fewer 

predictions under approach 3 could explain higher precision of approach 3 compared to 

approach 2, interestingly, approach 3 also results in higher recall than approach 2, despite 

the latter making more predictions (Fig. 6).

2) PROTEIN FUNCTION PREDICTION UNDER PE VERSUS ME 
FRAMEWORKS—Next, we compare protein function prediction accuracy between the PE 

and ME frameworks, relying on approach 1 for pairwise alignments and on the fairly 

comparable approach 3 for multiple alignments. For analogous results where we use the 

existing approach 2 for the ME framework, see Supplementary Fig. S10.
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For both the network sets with known and unknown node mapping, the predictions under the 

PE framework have higher precision while the predictions under the ME framework have 

higher recall (Fig. 7 and Supplementary Fig. S8. Note that here, higher precision and lower 

recall for the PE framework compared to the ME framework could be due to somewhat 

fewer predictions under the PE framework than under the ME framework. Also, note that for 

networks with known node mapping, both sets of predictions have impressively high 

precision and recall scores, so any difference in their scores (1%−6%) can be considered 

marginal. This is not the case for networks with unknown node mapping, where the scores 

are lower. In this case, the superiority of the PE framework’s precision over the ME 

framework’s precision (17%) is more pronounced than the superiority of the ME 

framework’s recall over the PE framework’s recall (8%). Additionally, achieving higher 

precision might be more preferred than achieving higher recall in the task of protein function 

prediction by experimental scientists who would potentially validate the predictions. Thus, 

we can argue that overall the PE framework (i.e., pairwise alignments) results in more 

accurate predictions than the ME framework (i.e., multiple alignments).

IV. CONCLUSION

We introduce an evaluation framework for a fair comparison of PNA against MNA, in order 

to test the hypothesis that MNA can capture deeper biological insights, i.e., produce higher-

quality alignments, compared to PNA. We find that (i) the considered PNA methods produce 

pairwise alignments that are of higher quality than the corresponding pairwise alignments 

produced by the considered MNA methods, and (ii) the PNA methods produce multiple 

alignments that are of higher quality than the corresponding multiple alignments produced 

by the MNA methods. Also, using the pairwise alignments leads to higher protein function 

prediction accuracy than using the multiple alignments. Importantly, in addition to PNA 

being overall more accurate, it is also overall faster than MNA. This holds both both of T+S 

alignments and T alignments.

In our evaluation, i.e., thus far in the paper, we have aimed to compare the two categories of 

approaches, PNA and MNA, rather than to identify which specific NA method (whether of 

the PNA or MNA type) is the best, for reasons discussed in Section I-B. Only here, we 

briefly comment on the performance of the best approach(es) in each category.

In the PNA category, most of the considered approaches, and especially MAGNA++, 

perform well consistently across the different scenarios (in both PE and ME framework, for 

both networks with known and unknown node mapping, and for both TQ and FQ), with 

some exceptions (Supplementary Tables S4–S11). In the MNA category, only multiMAGNA

++ works well consistently across all scenarios. Additionally, ConvexAlign works well for 

FQ and networks with unknown node mapping.

However, no method is always the best (i.e., has an overall rank of 1 over all evaluation 

tests). Namely, while in both PE and ME frameworks several PNA methods and the 

multiMAGNA++ MNA method achieve very good (low) overall ranks in the 1–2 range for 

networks with known node mapping or TQ, for networks with unknown node mapping and 

FQ, overall ranks start at about 4 (Supplementary Tables S4–S11). That is, for networks with 
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unknown mapping and FQ, even the best methods (ConvexAlign and multiMAGNA++) 

work well for some but not all networks or alignment quality measures. So, there seems to 

be a lot more room for improvement on how to better perform PNA or MNA to improve FQ 

(the quality of functional predictions) from networks with unknown mapping (PPI networks 

of different species). Fig. 7 further signals this, given low prediction accuracy under both the 

PE and ME frameworks.

Importantly, the best approaches in our study in terms of FQ are of the one-to-one type, 

which we hypothesize is because of heavier recent focus on and thus methodological 

advancements of such methods compared to those of the many-to-many type, per our 

discussion in Section III-D. But one-to-one alignments cannot capture gene duplication 

events that exist in biological networks [41], which require existence of paralogs, i.e., a gene 

in one network being mapped to multiple genes in the same or another network. While 

many-to-many alignments can in theory capture these events, the considered many-to-many 

methods do not perform well in terms of FQ. So, developing better many-to-many methods 

might be a crucial future step in NA research.

Since we demonstrate in the ME framework that PNA can (by integrating pairwise 

alignments) produce multiple alignments that are superior to multiple alignments produced 

by MNA, we believe that any new MNA methods should be compared not just to existing 

MNA methods but also to existing PNA methods using our evaluation framework, to 

properly judge the quality of alignments that they produce. Our suggestion is similar to that 

of [7], who evaluated local versus global NA (rather than PNA versus MNA) and concluded 

that any new NA method should be compared against existing local as well as global NA 

methods.

Moreover, in the ME framework, PNA can produce multiple alignments that are superior to 

multiple alignments produced by MNA even with the simple variation of the pairwise 

alignment integration strategy (i.e., scaffolding procedure) introduced by [15]. Any more 

sophisticated scaffolding procedure that might be developed in the future will yield even 

more superior PNA-based multiple alignments and consequently even further emphasize the 

superiority of PNA over MNA. In other words, for MNA to gain advantage over PNA, a 

drastic redesign of the current MNA algorithmic principles might be needed.

In summary, our current results suggest that perhaps it might be sufficient to focus on the 

faster PNA and integration of pairwise alignments into multiple ones rather than on the 

slower MNA. Of course, with development of newer approaches, the conclusions from our 

study might change. It is crucial that we (the NA community) gain in-depth understanding of 

practical implications of one-to-one versus many-to-many, pairwise versus multiple, local 

versus global, and other types of NA. This understanding is even more crucial given recent 

shift from traditional NA of static and homogeneous (single node type and single edge type) 

networks towards dynamic [42]-[44] or heterogeneous [45], [46] NA, as well as from data-

uninformed (i.e., unsupervised) to data-driven (i.e., supervised) NA [47].
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FIGURE 1. 
Illustration of different alignment types.
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FIGURE 2. 
Overview of our PNA versus MNA evaluation framework.
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FIGURE 3. 
Illustration on a set of three networks (G1, G2, and G3) of how we convert: (a) a multiple 

alignment to pairwise alignments, (b) one-to-one pairwise alignments to a multiple 

alignment, and (c) many-to-many pairwise alignments to a multiple alignment.
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FIGURE 4. 
Comparison of the quality of T alignments versus the corresponding T+S alignments, under 

each of the PE and ME frameworks. Each bar shows the number of cases (here, a case refers 

to a combination of NA method, a network pair/set, and an alignment quality measure) in 

which the T alignment is superior, the T+S alignment is superior, or the two alignments are 

tied (i.e., within 1% of each other’s accuracy). The cases are separated into network pairs/

sets with known true node mapping and network pairs/sets with unknown true node 

mapping.
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FIGURE 5. 
Alignment category comparison results for each of the PE and ME frameworks over all 

evaluation tests for T+S alignments. The alignment categories (i.e., PE-P-P, etc.) are color-

coded. View I. Overall ranking of the NA methods. The “Overall rank” column shows the 

rank of each method averaged over all evaluation tests, along with the corresponding 

standard deviation (in brackets). View II. Alternative view of ranking of the NA methods. 

Each pie chart shows the fraction of evaluation test ranks that fall into the 1–4, 5–8, and 9–

12 rank bins out of all evaluation test ranks in the given alignment category. The pie charts 

are color-coded with respect to alignments of network pairs/sets with known and unknown 

node mapping, and TQ and FQ measures. View III. Overall ranking of an NA method versus 

its running time for the Y2Hn1 network set. The size of each point visualizes the overall 

ranking of the corresponding method over all evaluation tests, corresponding to the “Overall 

rank” column in View I; the larger the point size, the better the method.
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FIGURE 6. 
Comparison of protein function prediction accuracy between the new (approach 3) versus 

existing (approach 2) prediction approach for multiple alignments. Each bar on the left of 

the figure shows the number of cases (i.e., alignments) in which the new approach is 

superior, the existing approach is superior, or the two approaches are tied. Each table shows 

the precision, recall, and number of predictions averaged over all tests. In parentheses, we 

show standard deviations. The results are separated into network sets with known and 

unknown node mapping.
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FIGURE 7. 
Comparison of protein function prediction accuracy under the the PE and ME frameworks. 

The figure can be interpreted the same way as Fig. 6. Here, we use new approach 3 for the 

ME framework.
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