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Abstract

Increased technological methods have enabled the investigation of biology at nanoscale levels. 

Such systems require the use of computational methods to comprehend the complex interactions 

that occur. The dynamics of metabolic systems have been traditionally described utilizing 

differential equations without fully capturing the heterogeneity of biological systems. Stochastic 

modeling approaches have recently emerged with the capacity to incorporate the statistical 

properties of such systems. However, the processing of stochastic algorithms is a computationally 

intensive task with intrinsic limitations. Alternatively, the queueing theory approach, historically 

used in the evaluation of telecommunication networks, can significantly reduce the computational 

power required to generate simulated results while simultaneously reducing the expansion of 

errors. We present here the application of queueing theory to simulate stochastic metabolic 

networks with high efficiency. With the use of glycolysis as a well understood biological model, 

we demonstrate the power of the proposed modeling methods discussed herein. Furthermore, we 

describe the simulation and pharmacological inhibition of glycolysis to provide an example of 

modeling capabilities.
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I. INTRODUCTION

Cellular metabolism is a complex network of enzymes, metabolites, and biomolecules that 

are required to both maintain homeostasis and appropriately react to stimuli. Biochemists 

began examining cell metabolism in the mid-19th century, and with the advancements in 

both experimental techniques and computational capacities, increasing comprehension of 
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metabolic intricacies has been realized. Metabolomic studies, as a relatively new field, are 

concerned with the detection and quantification of metabolites. The analytical side of 

metabolomics and metabolism can quickly become daunting when considering the 

complexity of the metabolome. The KEGG Compound database currently contains more 

than 18,000 metabolites and other small molecules, presenting scientists with a nearly 

impossible task to understand the complexities of metabolite dynamics [1]. Thus, the 

computational modeling and simulation of metabolic systems have become essential for 

their investigation.

Within the last decade, the pursuit of mathematical models for biological systems that can 

accurately predict cellular- and systems-level behaviors, in addition to providing quantitative 

data, is an essential area in metabolomics requiring further investigation. Furthermore, a 

quantitative model with the ability to predict phenotypic changes reliably with perturbation 

or challenges in silico could lead to scientific breakthroughs not available with traditional 

means of inquiry. Models as a whole strive to provide a better representation of reality, 

aiming to represent the system of inquiry accurately. Inclusion of all cellular components 

directly or indirectly involved are considered too complex to model with current technology. 

Consequently, assumptions and simplifications are frequently applied in place of 

“unknowns”, where details are perceived as non-pivotal and with elements such as 

stochastics omitted for simplicity. Despite these adjustments, the accuracy and competence 

of the model are still dependent on these assumptions and simplifications.

A variety of approaches are available to model the dynamics of metabolic systems; 

importantly, these include deterministic and stochastic modeling approaches. Frequently, 

kinetic models of metabolism were formed using Ordinary Differential Equations (ODE), 

providing a deterministic modeling approach that provides quantitative information on 

interactions, underlying dynamics, and system regulation components [2]. ODE models 

operate with the assumption that all reactions occur under evenly mixed homogenous 

populations with plentiful molecules available in the environment. Previously, ODEs have 

been used to simulate biochemical kinetics and biochemical networks. With historically 

limited computational power, this approach was sufficient to represent the interactions and 

dynamics occurring within basic biochemical networks. Rapoport et al. described the ability 

to determine metabolite concentrations of glycolytic intermediates in erythrocytes using a 

desktop calculator [3]. As computational power has improved over time, metabolite 

concentrations within a limited chain of reactions can now be determined in a matter of 

seconds. While ODE modeling reduces computational efforts, the assumptions and 

simplifications come at the cost of omitting noise and stochastic elements that are inherent in 

biological systems. Thus, stochastic modeling approaches could be more appropriate 

representations of in vitro and in vivo systems and provide the capacity to incorporate their 

statistical properties [2].

While ODE methods are well defined in the biological context, more recently, systems 

biology has extended the limits of what was previously computationally feasible: modeling 

the complexities of biological variation that includes the stochastic nature inherent in 

biology. There are different approaches to modeling stochastics in biological systems, with 

disparities between those often used at molecular and system levels [4]. Notably, the model 
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proposed here is flexible in its source of stochasticity, which currently employs computed 

Gaussian randomness; however, an alternative probability distribution could be easily 

substituted if desired.

Stochastic models are typically formulated by the Chemical Master Equation (CME), with 

the ability to capture simple stochastic occurrences in biological systems [5,6]. However, the 

drawback comes with the increased mathematical and computational complexity, 

considerably limiting the size of the network [7]. The Gillespie algorithm, introduced in 

1977, provides exact simulation methods to simulate the CME and can be optimized with 

the addition of Tau leaps [8,9,10]. Recent studies have also implemented the Gillespie 

algorithm with additional functions (Hill) to experiment with stochastic gene expression 

modeling in cases where expression can operate with “switch-like” behavior [11]. Still, 

attempts are being made to further improve stochastic simulation and overcome the 

computational intensity required [2,5,12–17]. In addition to the traditional ODE approaches, 

some larger gene regulatory networks have been assembled with the use of Bayesian model 

averaging [18,19]. A relatively recent approach to complex biological modeling is the 

application of queueing theory and networks/models. Similar to the Gillespie algorithm, 

queueing networks can be considered as a hidden Markov chain, and are more convenient 

than directly implementing the Gillespie algorithm [20].

Queueing networks have been used broadly to describe data communication networks [21], 

patient triage at hospitals [22], the HIV infection process [23], pharmacokinetic modeling 

[24], and non-viral gene delivery [25]. Moreover, the implementation as described by Martin 

et al. [25], has incorporated other cell processes, such as mitosis or cell necrosis, which are 

challenging to implement with an ODE approach. Queuing networks have additionally been 

used to develop a simple working model of metabolism [26] and enzyme-substrate 

interactions [27]. Briefly, queueing theory is a method of approaching stochastic 

simulations, doing so in a computationally less intensive process by grouping similar types 

of molecules and reactions [28]. Queueing theory possesses the ability to potentially 

describe more complex networks that would not be practical by alternative stochastic 

methods due to extended time to execute. Advantageously, queueing networks are capable of 

1:1 mapping of biochemical pathways creating an intuitive structure that is simple to 

understand [29]. Since the advent of queueing models, some more specialized adaptations 

have been developed such as atomic routing models which have sought to optimize how 

objects (i.e. substrates) might flow through networks demonstrating implementation 

versatility [30].

We have recently developed a tool to recapitulate observed insulin responses in vitro and to 

measure the effects of Wortmannin-like inhibition on glucose uptake [31]. This system has 

provided insight into transient changes in molecule concentrations within the insulin 

signaling pathway and laid the groundwork to identify critical drug-targetable components, 

including those associated with insulin resistance. The application of queueing theory has 

provided the means to incorporate natural variation of kinetic constants and initial molecular 

concentrations, that are inherent in cells and tissues [32]. Herein, we present our current 

queueing model to simulate the stochastic effects of glucose metabolism as a demonstration 

to model more complex metabolic networks. We then provide qualitative comparisons of 
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pharmacological inhibition in both simulated conditions and metabolic data from a cancer 

cell dataset to validate the model.

II. METHODS

Investigators frequently utilize glycolysis for model development as this pathway is well 

characterized biochemically. With known experimental endpoints, one can compare results 

and validate the computational methods in development. Consequently, we have used 

glycolysis here to present the modeling of metabolic networks by queuing theory. A brief 

overview of glycolysis and glucose metabolism can be found in Berg et al. [33].

We made use of previously derived mechanistic equations employing Michaelis-Menten 

kinetics to develop this model initially. The mathematical analyses of the rate equations and 

parameters used are described in Mulukutla et al. [34]. We aimed to build upon a previously 

defined model to implement our proposed queueing approach. Thus, the parameters and 

kinetic constants for the current model were chosen to reflect the model investigated in 

Mulukutla et al. Notably, the current model applies experimental and observed initial 

metabolite molar concentrations reported by Mulquiney et al. [33]. When considering 

metabolic flux, it is essential to evaluate changes in molar concentrations instead of mass, to 

account for chemical modifications to metabolic products. Furthermore, our model accounts 

for reactions that utilize and/or produce more than one reactant or product. Concentration 

and parameter values that were either absent or substantially different between sources were 

obtained from previously published literature. Energy nucleotides and metal ions were fixed 

in our model for simplification and to centralize our model around the intermediate 

metabolites of glycolysis. Table 1 lists the initial concentrations of the metabolites measured 

in the simulation output, and Table 2 provides concentrations of additional substrates 

required for calculations, but not directly measured from the simulation.

To demonstrate the mechanics of applying queueing networks to the modeling of metabolic 

pathways, one can consider a pathway of N interacting metabolites M1, …, MN having 

initial concentrations at time instant t0 of C1(t0), …, CN(t0). Within the considered metabolic 

pathway, each metabolite M1, …, MN is involved in Ki reactions, i = 1, …, N. The 

corresponding reaction rates υi, j (C1(t), …, CN(t), t); i = 1, …, N; j = 1, …, Ki, are 

dependent on the instantaneous concentrations of the interacting metabolites at time t, as 

well as other metabolites and enzymes, and the associated time variabilities of rates are 

denoted as additional time dependency of t. The reaction rates can be positive or negative. A 

positive sign represents the production of metabolites, while a negative sign represents the 

consumption of metabolites. To find the concentration of a specific metabolite, Ci(t), at 

given time instant t, one traditionally would solve set(s) of ODEs in the form of:
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d
dtC1(t) = ∑j = 1

K1 v1, j C1(t), …, CN(t), t
d
dtC1(t) = ∑j = 1

K1 v1, j C1(t), …, CN(t), t
d
dtC2(t) = ∑j = 1

K2 v2, j C1(t), …, CN(t), t
…

d
dtCN(t) = ∑j = 1

KN vN, j C1(t), …, CN(t), t

(1)

with the initial condition C1(t0), …, CN(t0).

Given the interdependency of concentrations C1(t0), …, CN(t0), which are frequently (and 

highly) non-linear, and further dependency of other time-varying circumstances, random 

factors, or both, achieving the solution of such sets of equations is not only computationally 

intensive, but also not guaranteed to produce a numerically stable result. The problem is 

further complicated by the fact that concentrations C1(t), …, CN(t) are always non-negative, 

and as reported by Infante et al. [38], and Erbe et al. [39], this is a non-trivial task and a 

solution may not exist presently. Unfortunately, there is no guarantee that ODE modeling a 

biological process is suited to satisfy conditions for the existence of a non-negative solution. 

This is due in part to the fact that biological processes will slow/halt once the variables 

involved drop below a certain threshold. One can force the numerical solver to produce a 

non-negative solution, for example, by using MATLAB®’s ‘NonNegative’ option in the 

‘odeset’ solver [39]. However, this significantly increases computation time, and the solution 

may not be accurate or numerically stable. This can be more problematic for those 

metabolites that are not expressed in high concentrations and/or very rapidly consumed in 

other reactions. For example, the metabolite glucose-6-phosphate (G6P) is also an 

intermediate in the Pentose Phosphate Pathway (PPP) and glycogen metabolism [40]. This 

presents an advantage with queuing theory for simulating systems where sections of 

metabolic pathways can be segmented and computationally halted instead of producing 

negative values, which better represents the nature of biological systems.

To find a method to simulate processes described by the set of ODEs (1), one can notice that 

each of the ODEs in (1) is of the form describing an average behavior of an M(t)/M(t)/c non-

depleting queue [20]. In general, the M(t)/M(t)/c queue is such a system where arrivals form 

a single queue and are governed by a time-varying Poisson process. There are c servers and 

job service times are exponentially distributed with time-varying rates. The M(t)/M(t)/c non-

depleting queues are exceptional cases of queues [22] where, for each time interval, the 

difference between corresponding arrival rate and service rate is non-negative. Massey et al. 

[20] also analyzed a general case of M(t)/M(t)/c queues, for which there is no simple method 

to describe them utilizing ODEs, but which can be depleted to zero elements in the queue or 

in other words for queues that can be emptied entirely.

Hence, the M(t)/M(t)/c queues can be used to model metabolic pathways for simulation 

purposes, and instead of solving sets of ODEs (1), one can simulate a network of 

interconnected M(t)/M(t)/c queues, provided that the concentrations C1(t), …, CN(t) are 

digitized. The arrival rates within this system are used as queues, and the service rates are 
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used as reaction rates υi, j (C1(t), …, CN(t), t) normalized to the duration of a single 

simulation time step, ΔtiΔti, and the concentration increment, Δ(Ci(t)), which denotes a finite 

change of Ci(t) in a finite time increment of Δti. It should be noted here that instead of using 

the infinitely small time increment dt, as in formula (1), we use a finite time increment, Δti, 
that leads to finite concentration increment, Δ(Ci(t)). Of course, the introduced discretization 

of concentrations introduces some quantization error, which could be minimized by 

choosing a smaller value of Δ(Ci(t)). However, by selecting a smaller value of Δ(Ci(t)), it 
could potentially lead to increased computation time because it may require a reduction in 

the time step, Δti, resulting in more simulation steps to achieve the desired simulation time 

duration. Therefore, a balance is required, and normalization of the reaction rates to achieve 

arrival and service rates for the queues is calculated according to the formula:

μi, j = vi, j(C1(t), …, CN(t), t) Δti
Δ Ci(t)

(2)

If the reaction rate υi, j (C1(t), …, CN(t), t) is positive then the corresponding normalized rate 

μi, j, is an arrival rate while if υi, j (C1(t), …, CN(t), t) is negative the corresponding 

normalized rate, μi, j, is a service rate. The instantaneous length of each queue provides a 

possible realization of a stochastic Markovian process representing variations in the 

concentration for a given metabolite. Certainly, the average changes in concentration can be 

achieved by averaging the simulation results for several simulation runs. To ensure the 

correctness of simulation, the simulation time step, Δti, and the concentration increment, 

Δ(Ci(t)), have to be selected where all μi, j are less than one, as the arrival and service rates 

are representative of probabilities for arrival and service of Δ(Ci(t)) in the given time 

interval. To ensure that a single Δ(Ci(t)) is processed in each time interval, the necessary 

condition is as follows:

μi, j ≪ 1, (3)

for j = 1, …, Ki and i = 1, …, N

However, neither the simulation time step, Δti, nor the concentration increment, Δ(Ci(t)), 
need be the same for all i = 1, …,N, but can be chosen in a way that minimizes simulation 

time while ensuring the condition (3) is satisfied. Although the time increments can be 

calculated dynamically within each step, for the current model, we have chosen constant 

time increments for every reaction. As some reaction rates are orders of magnitude different, 

there would be a misuse of simulation time if we use the shortest time increment where 

condition (3) is satisfied for every reaction. The cumulative reaction time is equal for all 

reactions, thus ensuring the conservation of molar masses. Given the stochastic nature of 

chemical reactions, where reaction rates can vary depending on environmental conditions, 

the reaction rates can be randomized by adding Gaussian (or other) noise to the kinetic 

constants used to calculate values of υi, j (C1(t), …, CN(t), t). The same can be performed at 

time instant, t0, for the initial concentrations, C1(t0), …, CN(t0).

A queue representing the concentration of a single metabolite is shown in Fig. 1. The inputs 

to the queue represent reactions leading to the production of the metabolite, and outputs 
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represent reactions that consume the metabolite. The cloud, connected to the queue via a 

bidirectional arrow, represents processes not considered (or currently unknown) that result in 

an imbalance between both aggregated inputs and outputs, to and from the queue, 

respectively. The arrivals to the queue, representing discrete increments in the concentration 

of the metabolite, are modeled by Poisson processes, while an exponential distribution 

models the service time (time intervals between two consecutive output events). These 

assumptions are consistent with classical queueing theory approaches [22]. Therefore, the 

number of arrivals in any given time interval (t, t + τ] follows a Poisson distribution with a 

parameter (μτ), such that :

P[(N(t + τ) − N(t)) = k] = e−μτ(μτ)k

k! (4)

Where N(t + τ) − N(t) = k is the number of arrivals in the interval (t, t + τ]. The time 

required for the server to process the packet is described by the exponential distribution 

using the probability distribution of a random variable X in terms of the rate parameter μ as 

follows:

f(x; μ) = μe−μx x ≥ 0,
0 x < 0 .

(5)

Therefore, the resulting arrival process at the input of a subsequent queue to which that 

output of the considered server is connected, again, follows a Poisson distribution. Assuming 

that in total, there are c-outputs from the queue, the queue can be considered as a standard 

M(t)/M(t)/c queue, as previously described.

For the description to be valid, both the sums of all arrival rates, μi, j, j = 1, …, Li, and the 

sum of all service rates μi, j, j = Li + 1, Li + 2, …, Ki* must be less than one. This condition 

can be satisfied by either reducing the duration of time increment or increasing the 

concentration. Of course, reducing the time increment increases the simulation time, as more 

simulation steps must be considered for the duration of an experiment, while increasing the 

concentration unit may reduce the accuracy of the simulation results. Therefore, a balance is 

ideal while choosing parameters. From the perspective of implementing a simulation of the 

metabolic process, it is convenient to ensure that in a given simulation step, only one 

concentration unit of a given metabolite Mi will be processed. Assuming that there are 

Ji = Ki* − Li possible reactions that can utilize metabolite Mi, the probability Pi1 that this 

occurs is given by the formula:

Pi1 = ∑j = 1
Ji μi, j∏k = 1

k ≠ j

Ji
1 − μi, k (6)

Assuming condition (3) is satisfied, (6) can be simplified to:
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Pi1 = ∑j = 1
Ji μi, j (7)

The conditional probability, Pi{j|1}, states if one concentration unit is processed in a 

simulation step, it is processed in the reaction associated with the reaction rate μi, j, which is 

given from the definition as:

Pi{j ∣ 1} = Pi j ∩ 1
Pi1

=
μi, j∏k = 1

k ≠ j

Ji
1 − μi, k

∑l = 1
Ji μi, l∏k = 1

k ≠ j

Ji
1 − μi, k

= μi, j

∑l = 1
Ji μi, l

∏k = 1
k ≠ j

Ji
1 − μi, k

∏k = 1
k ≠ j

Ji
1 − μi, k

= μi, j

∑l = 1
Ji μi, l

1 − μi, j
1 − μi, l

= μi, j

1 − μi, j ∑l = 1
Ji μi, l

1 − μi, l

(8)

Where Pi {j∩1} denotes the probability where in this specific simulation step only one 

concentration unit is processed and only in the reaction associated with the reaction rate μi, j.

Again, if (3) is satisfied, (8) simplifies to:

Pi{j ∣ 1} = μi, j

∑l = 1
Ji μi, l

(9)

Notably, current metabolomics datasets are often incomplete or semiquantitative data, and 

some connections between metabolites remain undefined. To account for unknown or 

missing reactions, an additional input/output pathway is included in our model for every 

metabolite considered, as illustrated in Fig. 1 as a dashed line connection which can be 

bidirectional. The rate μi* is determined as the rate which balances the steady-state value of 

the concentration Ci(t). If in steady-state, there is an outflow of metabolite Mi, with a 

resulting metabolite concentration unequal to the steady-state value that will require scaling 

by a factor equal to the ratio of the actual concentration and the steady-state concentration. 

Conversely, during inflow the scaling is inversely proportional. As previously mentioned, we 

have used queues to describe additional biological pathways and have provided detailed 

explanations of the proposed queueing theory methods [41,42]. Additionally, the 

pseudocode of the queueing theory application is provided as a supplementary file.

Simulations were performed on an Intel® Core ™i7–2600 CPU @ 3.40 GHz, RAM 32 GB 

running MATLAB® R2017b.
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III. RESULTS

For the current study, our interest was in exploring the feasibility of modeling enzymatic 

reactions to simulate the dynamics of glycolysis utilizing queues with the addition of 

stochastics. Briefly, queueing theory is a mathematical tool used to describe, model, and 

analyze waiting lines (i.e. queues) [43]. At the molecular level, metabolites are produced and 

consumed through enzymatic reactions forming queues of metabolites. Production or 

absorption of the metabolite adds to the appropriate queue length, whereas consumption 

reduces metabolites and the queue length. Discrete random processes describe both 

production and consumption of a given metabolite, referred to as “arrival” and “service” 

processes, respectively [44]. Queues can be easily interconnected, have been successfully 

used to model internet function, and are well suited to metabolic networks as they are quite 

similar [21]. Our previous work demonstrates the ability to accurately simulate conditions 

seen in vivo using a fraction of the computing power of classical quantitative approaches 

[31]. We have adjusted our approach with queues to model metabolic pathways given 

mechanistic rate equations of all glycolytic reactions and validated experimental metabolite 

data.

As a core metabolic pathway common to all lifeforms, glycolysis is the enzymatic 

breakdown of glucose into a usable form of energy, additionally supplying intermediate 

metabolites as “building blocks” for connecting pathways that further support life. Naturally, 

glycolysis provides a scaffold to begin extending our model to incorporate additional 

sections of the metabolome.

For the initial development of our model, we made use of previously derived mechanistic 

equations employing Michaelis-Menten kinetics. For model simulations, all intermediate 

metabolites were represented by different queues, as described in the methods section. The 

queues representing metabolites are connected if there is a reaction converting one 

metabolite into another. Fig. 2 illustrates the assembled queueing network representing 

glycolysis from glucose to pyruvate.

For the stochastic simulations presented, the rate equations and model parameters were used 

as they are indicated in the literature (Table 1 and Table 2). Notably, the illustrated 

simulation pathways mimic a diagrammatic representation of metabolic flow similar to 

traditional biochemical illustrations. Thus, it can be more readily comprehended than sets of 

complex ODE equations which can quickly become daunting. Highlighting the significance 

of the approach, the current methods enabled rapid alteration of parameters and additional 

simulations under a variety of selected in silico conditions. For example, due to the rapid 

catalytic conversion of 3-PG and 2-PG in combination with the low metabolic 

concentrations as separate queues, the metabolites 3-PG and 2-PG were readily depleted 

given the 1 microsecond time scale used for the metabolite calculations. As the conversion 

from 3-PG to 2-PG is not a rate-limiting reaction, 3-PG and 2-PG were grouped into a single 

queue, avoiding the need to decrease simulation time step and unnecessary increases to 

simulation time.
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Biological systems and reactions are inherently stochastic processes. Consequently, 

stochastic elements such as randomness and variation were incorporated into the model 

simulations. Reaction rates were randomized during simulation by adding an arbitrarily 

defined 10% Gaussian noise to the kinetic constants used to calculate values of υi, j (·). The 

same adjustment was included for the initial concentrations at time instant t0 for all 

glycolytic intermediates. During simulations, each cell is calculated independently; that is, 

concentrations of each molecule in the metabolic network are stochastic and bound by error 

values listed in the literature. The queueing theory approach causes the actual concentrations 

of given molecule types to be simulated as separate queues within each cell. The probability 

of a movement happening at any time slice from one queue to the next is determined by the 

relevant normalized reaction speed. Movements between storages occur at a particular time 

instant if a randomly drawn number from the interval [0,1] at that time instant is smaller 

than the normalized reaction speed governing the movement.

After simulations have been performed for every considered cell, the results are averaged 

over the cell population. In the current model, variations of 10% glucose levels are randomly 

computed for every simulated second. The simulations were run using a 1 microsecond time 

step, and random variations in the values of kinetic constants used in calculating reaction 

rates were introduced every second to simulate intrinsic biochemical noise. Initial 

concentrations were randomized by including an arbitrarily defined 10% Gaussian noise to 

reflect variability among cells in the population. The effect of such randomization on the 

simulated level of pyruvate is shown in Fig. 3. In Fig. 3A, it is evident that increased 

variability leads to greater dynamic range of pyruvate among cells. Additionally, increased 

variability resulted in an increased simulated average for pyruvate: a result of metabolite 

amounts bound at or above 0 with no set upper limits.

A. Glycolytic Flux

Previously, Mulukutla et al. aimed to assess the regulation of different isoforms of three rate-

limiting glycolytic enzymes on overall pathway flux and behavior. The rate-limiting 

enzymes of glycolysis, hexokinase (HK), phosphofructokinase (PFK), the bifunctional 

enzyme phosphofructokinase-2/ fructose 2,6-bisphosphatase (PFKFB), and pyruvate kinase 

(PK), each have multiple isoforms and may be expressed in combination within a single cell 

in a cell-type dependent manner. We considered regulatory mechanisms of PFK, PFKFB, 

and PK by including parameters and terms in the rate equations to consider the feedback 

inhibition and activation, keeping both upper and lower glycolytic regulatory loops active in 

our simulations. The feedback considered consists of F26BP (an important activator of 

glycolytic flux) and F16BP activation of PFK, F16BP activation of PK, and PEP inhibition 

of PFKFB activity. The parameters set to simulate the feedback loops are as follows: 

K_PFKf16bp=0.65 mM and K_PKf16bp=0.04 mM. The PFKFB kinase/phosphatase (K/P) 

ratio, the ratio between the kinase and phosphatase activity, was set to 0.1 by adjusting the 

value of the PFKFBPase Vmax leaving the kinase Vmax at its original value. Different K/P 

ratios are given in the literature based on specific tissue and cell type. The range varies from 

less than 1 to 710 depending on the isoform of PFKFB expressed and the tissue type in 

which it is found. Notably, PFKFB is highly dependent on signaling and hormonal 

regulation, which can transiently change the K/P ratio given the stimulus. Signaling 
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regulation was not considered in this model, though this component is of interest for further 

study. Thus, we aimed to keep F26BP relatively constant throughout the initial steady-state 

testing to keep the flux toward a stable level. We found that the K/P ratio of 0.1 kept F26BP 

and all other metabolites constant over time with the given the parameters used. Therefore, 

the 0.1 K/P ratio was used to further test the ability of the model to simulate metabolite 

changes. Simulations were repeated for 30 cells, and once completed, the average 

concentrations of each metabolite per cell were graphed as a function of time (Fig. 4).

B. Gapdh Inhibition

In vitro experiments and model simulations were performed to assess the performance of the 

proposed queueing approach. The rationale being that biologically known endpoints 

documented in literature can be used as benchmarks to demonstrate the model efficacy. 

FK866 is a noncompetitive inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), 

the enzyme that supplies the majority of the intracellular pool of NAD+, a required substrate 

for the GAPDH reaction. Extensive research has characterized the effects of FK866 on high 

glycolytic flux in cancer cells [45–48]. Under limited NAD+ concentrations, the GAPDH 

reaction represents a bottleneck in glycolysis, producing a block in the glycolytic flux. 

Experimental results show the upper-level glycolytic metabolites, including G6P, F6P, 

F16BP, GAP, and DHAP accumulate while the lower-level glycolytic metabolites, 13BPG, 

3PG/2PG, PEP, and PYR, decrease as substrates become unavailable. Thus, we hypothesized 

that with the reduction of GAPDH activity and, consequently, simulation of enzyme 

inhibition in silico, the model should be able to mimic the qualitative metabolic trends seen 

in vitro. Notably, kinetics and enzyme concentrations for the specific cancer cell lines were 

unknown; to account for the differences between the cancerous and non-cancerous 

simulations, the reaction rates were scaled. The effects of FK866 are presented in the 

experimental data provided by [47] in Fig. 5, and by the present model outcomes of GAPDH 

activity inhibition in Fig. 6.

GAPDH activity was reduced by adjusting the Vmax of the reaction catalyzed by GAPDH. 

Inhibition was simulated by varying GAPDH activity between 0% and 90%, with each 

inhibitory level run as a separate simulation for a population of 30 cells. The simulated 

results of GAPDH inhibition of G6P+F6P, F16BP, GAP+DHAP, and PEP, are plotted as 

dose-response curves in Fig. 6 to reproduce the effect of metabolite changes from 

experimental pharmacological inhibition of two cancerous cell lines (Fig. 5). The FK866 

inhibitor concentrations, used in both A2780 ovarian and HCT116 colorectal cancer cell 

lines in vitro, were compared to in silico reduction of the percent GAPDH activity. Of note, 

we assume that at the lowest FK866 concentration (0.3 nM) used in vitro does not inhibit 

GAPDH activity.

F16BP and PEP were reported as individual metabolites in the two cancer cell lines, A2780 

and HCT116. The comparison of the simulated and experimental data is presented in Fig. 5 

and 6. Due to difficulties in distinguishing isobaric metabolites from one another, G6P+F6P 

and GAP+DHAP were grouped in the experimental data, and the sum of these metabolites 

are reported. The model was able to determine the individual metabolite concentrations; 

however, following each simulation, the two metabolites from the model data (G6P+F6P and 
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GAP+DHAP) were added for a closer comparison to the experimental data. Moreover, the 

data was normalized so that each experiment (in vitro and in silico) began with the same 

metabolite concentration, again for a clearer comparison of the actual changes occurring as 

FK866 doses increased (experimental) and as GAPDH inhibition increased (model 

simulations).

In silico, we observed increases in all upper glycolytic metabolites with inhibition of 

GAPDH, supporting the metabolic data of NAMPT inhibition. The lower glycolytic 

metabolite, PEP, showed reduction following increased inhibition of GAPDH, in agreement 

with the results seen in the experimental data. Using a K/P ratio of 0.1, F26BP was the only 

metabolite that did not change mean values over time throughout the course of GAPDH 

inhibition at any level. Notably, the experimental data showed a wide range of metabolite 

concentrations with similar inhibitory doses, between and within both cell lines. For 

example, the G6P+F6P concentration in the HCT116 cell line increased from 0.052 mM to 

0.512 mM with the highest FK866 treatment, and in the two separate experiments with the 

A2780 cells, the metabolite concentrations increased to only 0.18 mM and 0.13 mM (Fig. 

5A).

The inhibition simulations aimed to observe the overall trend of metabolite changes, 

intended for a qualitative comparison. There are slight variations present between the 

experimental data and the model data. Still the results are similar or within range of the 

experimental data; in the model simulation, the F16BP concentration increased from 0.0022 

mM to 0.0548 mM at the highest inhibition level, while the F16BP concentration in the 

HCT116 cell line rose from 0.0022 mM to 0.0496 mM at the highest FK866 treatment (Fig. 

5A–6A). Specific kinetics and prior knowledge of experimental data may aid in reproducing 

results that are more consistent in the future.

By comparing the simulation results with the experimental one, it can be noticed that in both 

in vitro and in silico cases, significant changes in observed metabolite concentrations appear 

to occur at specific drug dosage in vitro and 90% inhibition of GAPDH activity in silico. 

Therefore, one can speculate that roughly 90% of GAPDH inhibition is achieved with a dose 

of around 5 nM of FK866. Although a further increase of GAPDH inhibition in silico 

simulations causes further significant changes in the metabolite concentrations, this is only 

partially observed in vitro with higher doses of FK866.

IV. CONCLUSION

This paper presents a computational model of glycolysis constructed as a queueing network; 

a modeling approach widely used in modeling telecommunication packet networks. 

Dynamic modeling of biological systems, while exceptionally useful, poses computational 

challenges and in reproducing natural stochastic variation. The application of queueing 

theory in dynamic modeling may provide a method to overcome such challenges. The 

current applications of this work hold promise for advancing computational biology and 

biochemical research. The queueing theory represents a mainstay modeling approach of 

telecommunication networks with application to simulate intracellular metabolism. By 

viewing enzymes as “gates” and their substrates as “packets,” we have reduced the 
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computational complexity of the simulation to the advantage of much more rapid 

calculation. Previously, we have shown that we can model intracellular mechanisms and do 

so while capturing the random variation inherent with living cells [25, 29].

Research techniques in metabolomics have evolved rapidly since their introduction. 

Modeling strategies must be flexible to accommodate novel information and amend the data 

as needed. The modularity of queues provides a suitable approach for further model 

extension, whether that be additional metabolic reactions, parameter refinement, or 

multiscale modeling approaches. Moreover, this approach enables the ability to simulate 

biochemical reactions stochastically without the need to implement or solve stochastic 

algorithms. As seen above, GAP and DHAP were represented experimentally as a 

combination of metabolic intermediates, due to their chemical similarities. Although mass 

spectrometry has become increasingly sensitive for detecting small molecules, isobaric 

metabolites are often difficult to distinguish from one another. This is the case not only for 

several metabolic intermediates of glycolysis but also for additional metabolic pathways. An 

advantage to the in silico mechanistic modeling of metabolic networks is the ability to 

represent such metabolites as individual entities investigating distinct metabolic reactions 

and the dynamics of each metabolite providing a more in-depth observation of the 

intracellular interactions.

The need for models to be informed from and then simulate data using metabolomics 

sources represents a significant advance in future possibilities with this approach. Due to the 

ability to change variables and quickly analyze the resulting metabolic effects, investigators 

can simulate the effects of drugs or mutations on such processes. In all, the ability to 

accurately and quickly simulate intracellular and intratissue pathways represents a 

considerable leap forward in the ability to understand the central biochemical underpinnings 

of cellular life. The advancement of technology in both experimental biology and 

computational systems has allowed scientific discovery and investigation on the chemical 

level. Elucidation of intracellular metabolite and chemical dynamics can provide valuable 

insight into how cells utilize cellular components to grow, respond to environmental stimuli, 

and ultimately support life. We believe queues have potential to simulate metabolic reactions 

with greater efficacy by including stochastic elements to modeled pathways as described 

here. An additional advantage of the queueing approach is a more natural and intuitive fit for 

biological pathways as they are frequently represented in the field and depicted in models of 

metabolism [29]. In summary, the current study presents the application of queuing theory as 

a beneficial modeling approach for simulating metabolic pathway dynamics and predicting 

the effects of pharmacological inhibition.
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Fig. 1. 
Example Queue. Queue representing concentration Ci(t) of the metabolite Mi; μi, j, j = 1, …, 

Li, are arrival rates as corresponding to processes resulting in production of metabolite Mi; 

μi, j, j = Li + 1, Li + 2, …, Ki*, are service rates corresponding to processes using metabolite 

Mi. Ki* = number of reactions that involve metabolite Mi within the model. Additional input/

output pathways are included as dashed lines to account for unknown or missing reactions. 

Queue adapted from Wysocki et al. 2017, Simulation of Central Glucose Metabolism Using 

Queueing Network, IEEE International Conference on Electro Information Technology 

(EIT), Lincoln, NE, 2017, pp. 217–222.
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Fig. 2. 
Simulated metabolic pathway from glucose to pyruvate. Arrows denote the modeled 

reactions. Vi, i = 0, …, 10, and V3A, V3B, are the reaction rates; for bidirectional arrows, 

the direction is determined by the sign of the corresponding reaction rate with the positive 

direction being from the top down. GLC, glucose; G6P, glucose 6-phosphate; F6P, fructose 

6-phosphate; F16BP, fructose 1,6-bisphosphate; F26BP, fructose 2,6-bisphosphate; GAP 

glyceraldehyde 3-phosphate; DHAP, dihydroxyacetone phosphate; 13BPG, 1,3-

bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, 

phosphoenolpyruvate; PYR, pyruvate.
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Fig. 3. 
Effect of random variability of initial concentrations of all glycolytic intermediates and 

kinetic constants on the simulated concentration of pyruvate. A) Means and standard 

deviations calculated over populations of 100 independent cells with variability applied to 

the concentrations of the metabolites of interest and the enzymes involved in all of the 

glycolysis reactions. The percent variability is derived from a zero mean Gaussian with a 

standard deviation of x/3 and is multiplied by the nominal concentration value. The initial 

concentrations of the metabolites of interest are chosen that way, and for the concentration 

of other enzymes involved, the operation is repeated every second, while the simulation step 

is 0.1 millisecond. Computation time for simulating 100 cells for 300 seconds with 0.1 

millisecond time step was 36,767.18 seconds. B) Two individual cells, 10% variability of 

initial concentrations and 10% Gaussian noise. C) Two individual cells, 20% variability of 

initial concentrations and 20% Gaussian noise. D) Two individual cells, 50% variability of 

initial concentrations and 50% Gaussian noise.
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Fig. 4. 
Steady-state glycolytic flux. Metabolite concentrations were simulated with an input of 5 

mM glucose over a span of 1200 seconds to model an unperturbed and constant state.
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Fig. 5. 
Effects of FK866 on metabolite concentrations in vitro. A) Experimental metabolomics data 

measuring G6P and F6P concentrations with the inhibitor FK866 in (solid blue and dashed 

green lines) A2780 and (red) HCT116 cancer cells, B) effects of FK866 on FBP 

concentrations in vitro, C) effects of FK866 on G6P and F6P concentrations in vitro, D) 

effects of FK866 on PEP concentrations in vitro.

Clement et al. Page 23

IEEE Access. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Effects of GAPDH Inhibition on metabolite concentrations in silico. A) G6P and F6P, B) 

FBP, C) GAP and DHAP, D) PEP. In all cases, the Vmax of GAPDH was varied between 0 

and 100 percent of its initial value to simulate varying levels of enzyme inhibition.
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TABLE I

Initial Concentrations of Glycolytic Metabolites

Metabolite Concentration(mM) Reference

GLC 5.0 [35]

G6P 0.039 [35]

F6P 0.013 [36]

F1,6BP 0.00231 [35]

F2,6BP 0.004 [36]

DHAP 0.02 [35]

GAP 0.00194 [36]

1,3BPG 0.000369 [36]

3PG 0.069 [35]

2PG 0.01 [36]

PEP 0.017 [35]

PYR 0.0586 [36]

Table 1 shows the intracellular concentrations for each metabolic intermediate. Metabolite concentrations (mM) are used in each simulation to 
initiate the model and are dynamic throughout the simulations.
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TABLE II

Additional Metabolites and Energy Nucleotides

Metabolite Concentration(mM) Reference

MgATP 1.52 [35]

MgADP 0.11 [35]

NAD 0.0599 [35]

NADH 0.000245 [35]

Pi 1.0 [35]

Mg 0.4 [35]

ATP 0.159 [35]

ADP 0.0937 [35]

AMP 0.03 [35]

H+ 0.0000721 [37]

2,3BPG 3.1 [35]

GSH 3.2 [35]

ALA 0.2 [36]

G16BP 0.106 [35]

Intracellular concentrations required for rate equation calculations. The listed metabolites influence the kinetics of the reactions but were held 
constant for simulations to highlight concentration changes observed in glycolytic intermediates directly.
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