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Abstract

Osteosarcoma is a prominent bone cancer that typically affects adolescents or people in late 

adulthood. Early recognition of this disease relies on imaging technologies such as x-ray 

radiography to detect tumor size and location. This paper aims to differentiate osteosarcoma from 

benign tumors by analyzing both imaging and RNA-seq data through a combination of image 

processing and machine learning. In experimental results, the proposed method achieved an Area 

Under the Receiver Operator Characteristic Curve (AUC) of 0.7272 in three-fold cross-validation, 

and an AUC of 0.9015 using leave-one-out cross-validation.

I. INTRODUCTION

More than 1,900 cancer-related deaths occur in children and adolescents every year in the 

United States. From 2007–2010, bone cancers accounted for 5% of cancer mortality in 

children less than 15 years, which increased to 15% in those aged 15–19 years [1]. 

Osteosarcoma is the most common primary bone malignancy; it has a bimodal distribution 

in age, with the first peak occurring in adolescence, and the second in older adulthood. [2]. 

A primary method of tumor diagnosis is x-ray radiography, which is used to locate the tumor 

and assess its qualities. Some typical features of osteosarcoma tumors in x-ray include a sun-

burst appearance, periosteal lifting with the formation of Codman’s triangle, and the creation 

of new bone in soft tissue, though there are variations depending on the specific type of 

osteosarcoma [3]. A timely diagnosis is needed in order to increase the chance of patient 

survival and reduce the risk of metastasis.

Previous work exists related to incorporating multimodal data for osteosarcoma 

classification. In Shen et al. [4], x-ray imaging features coupled with metabolomic data were 

used to create a random forest (RF) classification model that achieved an Area Under the 

Receiver Operator Characteristic Curve (AUC) of 0.94 (standard deviation 0.054). An 

advantage of RF is that it does not require the number of features to be smaller than the 

number of samples used for training. Studies such as [5], [6], have used RFs successfully in 

such instances. Wu et al. [5] compared the performance of RF with other classifiers in 
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discriminating normal from ovarian cancer serum samples with mass spectrometry data, 

finding that RF produced the least variation in prediction error when compared to other tree-

based classifiers. Lee et al. [6] similarly found RF to be the strongest tree-based classifier 

when using microarray data as model input.

In this paper, we propose an automated method for classification of benign and 

osteosarcoma tumors using RNA-seq and x-ray images. First, feature extraction methods to 

obtain salient information from raw RNA-seq data and x-ray images are described. Given 

the high number of features obtained, chosen methods to reduce the number of features are 

introduced. Lastly, the performance of the proposed method on an x-ray image and RNA-seq 

dataset collected by collaborators at Shanghai Jiao Tong University (SJTU) is discussed. The 

experimental results suggest that automated classification of benign and malignant tumors 

can be used to enhance computer-aided diagnosis.

II. MATERIALS AND METHODS

A. Dataset

Demographics are provided in Table I. All of the samples contain both RNA-seq data and 

plain x-ray images by collaborators at SJTU. The RNA sequencing libraries were sequenced 

in 200bp paired-end mode using the Illumina HiSeq system (Illumina, San Diego, CA, 

USA). Sample collection for this study was conducted following a Shanghai General 

Hospital IRB-approved protocol after all participants signed written informed consent. A 

schematic diagram depicting the overall classification system in presented in Fig. 1.

B. Image Processing

1) Segmentation: Imaging data consisted of plain x-ray DICOM images of the tumor 

and surrounding bone. Images were processed following the methods defined in [4]. A semi-

automated segmentation method, Graph Cut with Lazy Snapping [7], was used to segment 

images into tumor and affected bone regions before feature extraction. With Graph Cut, the 

user specifies foreground and background seeds to serve as hard constraints for the 

segmentation. Graph Cut then assigns labels to each node xi (such as 1 for foreground and 0 

for background) to minimize the Gibbs Energy E(X) on a graph with respect to the user-

defined hard constraints.

Before assigning foreground and background labels, the watershed algorithm pre-segments 

the graph into superpixels, resulting in a graph G = V, ℰ , where V represents all the small 

regions, and ℰ represents all the arcs that connect them. The energy function E(X) to 

minimize is defined as

E(X) = ∑
i ∈ V

E1 xi + λ ∑
i, j ∈ ℰ

E2 xi, xj , (1)

where E1(x), the likelihood energy, measures the cost of labeling node i as xi, and E2(xi,xj), 

the prior energy, the cost of labeling connected nodes i and j as xi and xj.
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Fig. 2 shows the Graph Cut with Lazy Snapping method applied to an x-ray image. Fig. 2a is 

the original x-ray image of the tumor and bone region. Fig. 2b shows the user-defined 

foreground seeds (green dots) and background seeds (red dots) to select the tumor regions. 

Fig. 2c displays the foreground labels that minimize the Gibbs Energy. Fig. 2d is the final 

mask for the tumor region.

2) Feature Extraction: The process for extracting features is detailed in previous work 

[4] and is illustrated in Fig. 3. There are features collected from both the bone and tumor 

segmentations (tumor border clarity, distance to joint), as well as from the tumor 

segmentation alone (texture features, morphological features). Table II lists all features 

extracted from the x-ray images.

C. RNA-seq Processing

A summary of the steps taken to process RNA-seq data for analysis is presented in Fig. 4. 

First, the quality of all of the samples to be included in the analysis was verified (Section II-

C.1). Then, data were aligned to the human reference genome, and raw counts for the 

aligned reads were obtained (Section II-C.2). After this process, the count data were 

normalized (Section II-C.3) and reduced (Section II-C.4) before being input to the RF 

model.

1) Data Quality Assessment: Before aligning RNA-Seq data against the reference 

genome, FastQC version 0.11.8 [8] was used to assess the quality of the raw RNA-seq data. 

The raw FASTQ files were used as input to FastQC, which was run using default 

parameters. For each sample, FastQC generated an HTML report, showing scores and 

graphics that illustrated quality metrics such as per-base sequence quality, GC content, 

duplicate, and over-represented sequence. We examined these reports before proceeding to 

the alignment step. The overall sequence quality was deemed acceptable, and thus, no 

samples were removed from the analysis, nor was adapter trimming applied.

2) Genome Alignment and Generation of Count Data: Using STAR [9] with 

default parameters, a genome index was generated from the current human reference 

genome (hg38) and its corresponding General Transfer Format (GTF) annotation file. The 

reference genome and GTF files were obtained from the UCSC website [10], using Gencode 

V29 [11]. STAR was then used to map the raw RNA-Seq reads against the indexed reference 

genome. The maximum number of multiple alignments allowed for a read was set to 20. The 

resultant BAM file was sorted by coordinate as required by QoRTs [12]. All samples 

achieved a ratio of uniquely mapped reads greater than 76%. The aligned RNA-Seq data 

were processed via the Java utility in QoRTs [12]. The processed data were then read into R 

using the QoRTs library to generate count files. These counts, after performing the 

normalization and feature reduction described in the following sections, serve as RNA-seq 

features for the classification model.

3) Normalization of RNA-seq Count Data: With RNA-seq data, counts can vary 

from sample to sample, and should therefore be normalized. The normalization method used 

in this paper follows the example of [13], which relies on DESeq2’s [14] normalization 
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method. DESeq2 takes raw counts as input, then uses a median ratio equation [14], [15] to 

normalize the counts across samples. For each sample, DESeq2 calculates the size factor, 

then divides the sample’s raw counts by its size factor. For n transcripts and m samples, the 

size factor sj for sample j is calculated as

s j = mediani
kij

∏v = 1
m kiv

1/m , (2)

with kij the raw count for transcript i in sample j. Any transcript having a count of zero was 

excluded from this calculation, following the method from DESeq2 [15], [16].

The training data were normalized using the size factors from (2), which were also used to 

derive the size factors sj∗ for each sample j* in the test set, shown in (3).

sj∗ = mediani
kij∗

∏v = 1
m kiv

1/m (3)

In this manner, the test set is also normalized by the data in the training set. This approach is 

justified, for if the original equation from [15] was employed, i.e., using all of the data 

available for normalization, the training samples would be normalized by both themselves as 

well as the test samples, which would lead to data leakage. Likewise, the test samples would 

also be normalized by themselves, leading to overfitting and data leakage.

4) RNA-seq Feature Reduction: Due to the large number of features (counts of 

transcripts) in our RNA-seq dataset, we produced a list of genes of interest. We limited our 

inclusion of RNA-seq transcript counts to those which could be associated with the genes of 

interest. A previous literature search identified 211 genes either whose upregulation is 

associated with tumorigenesis and metastasis, or whose downregulation is associated with 

tumorigenesis and metastasis. This feature reduction step was performed to reduce potential 

noise being added to the classification model, and to limit the RNA-seq features to those 

which could be biologically relevant.

D. Machine Learning

After performing image processing and selecting the RNA-seq features of interest, the two 

data types were combined into one dataset. In this manner, every observation consisted of 

one individual, containing both features from image processing and counts from transcripts 

of interest from RNA-seq.

To create the classification of osteosarcoma or benign tumor, RF [17] was used. In each 

model, the number of trees used was 50, the square root of the total number of features was 

selected for each decision split, and the minimum leaf size was 1. RF models were 

constructed using both three-fold cross-validation and leave-one-out cross-validation.

1) Three-Fold Cross-Validation: For three-fold cross-validation (CV), three folds of 

observations were created, with each fold containing 2 benign observations and 3–4 of 
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osteosarcoma. The observations in each fold were selected randomly, and there was no 

overlap among each of the folds. Two folds were used to train the RF model, and the third 

fold was used to test performance. This was repeated, utilizing each fold once as the test 

fold. Before data were input to the model, principal component analysis (PCA) was applied 

to the training folds to reduce the feature space. The test fold was scaled by the training 

folds, and the coefficients from PCA applied to the training folds were used to yield the 

principal components (PCs) for the test fold, in order to prevent data leakage.

2) Leave-One-Out Cross-Validation: For this method, all observations except one 

were used as a training set for the RF model, and the last observation was used to test 

performance. This was repeated so that each observation was used once for testing. Before 

data were input to the model, PCA was applied to the training set to reduce the feature 

space. The test observation was scaled by the training data, and the coefficients from PCA 

applied to the training set were used to yield the PCs for the test set.

III. RESULTS & DISCUSSION

In this study, a RF model was created using features extracted from RNA-seq and x-ray 

image data to classify a given tumor as benign or osteosarcoma. A dataset was developed, 

containing imaging features as well as RNA-seq counts from transcripts associated with 

genes from a relevant literature search. Before training each model, PCA was performed to 

reduce the feature space of the imaging features combined with transcript counts in the 

training set. Three-fold and leave-one-out CV were used to assess performance. Performing 

three-fold CV with RF trained on only one PC achieved an AUC of 0.7272. The 

performance results of three-fold CV with one PC are displayed in Table III. Performing 

leave-one-out CV achieved AUC of 0.9015 when 2 PCs were used to train the model. The 

performance results are displayed in Table IV.

One major concern when performing this study was limiting the number of variables to train 

the model. Thousands of transcripts were aligned to the genome. Thus, PCA was used to 

capture the variance explained by those features, while limiting the number of features 

exposed to the model.

Increasing the number of PCs increases the amount of information being provided to the 

model, so it is expected that additional PCs lead to higher AUC, as shown in Table IV. 

However, performance in both three-fold and leave-one-out CV did not significantly 

improve after adding more PCs than those displayed, which may indicate that a large amount 

of information introduced is noise.

Limitations of this study include small sample size and class imbalance. The small number 

of observations in this study reduces the ability to assess the generalizability of this 

classification method. For example, because there were only 6 benign cases, a difference of 

1 incorrect classification could result in large changes in specificity. Additionally, there are 

almost twice as many osteosarcoma cases as benign tumor cases in our dataset. Despite 

these limitations, the results suggest that the models created in this study may be used to 
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assist clinicians in accurately distinguishing between benign and malignant tumors in target 

patient populations.
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Fig. 1: 
A schematic diagram of the proposed classification system.
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Fig. 2: 
Graph Cut with Lazy Snapping applied to tumor segmentation. [4]
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Fig. 3: 
The image processing techniques utilized for feature extraction.
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Fig. 4: 
Processing RNA-seq data to obtain counts.
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Table I:

Characteristics of Patients

Tumor Type Mean Age (SD) Sex

Benign 40.33 (12.48) 5 Male, 1 Female

Osteosarcoma 22.73 (16.14) 4 Male, 7 Female
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Table II:

Features from Image Processing

Morphological Features Mean, Standard Deviation, Entropy, Kurtosis, Skewness, Convex Area, Eccentricity, Perimeter, Major Axis Length, 
Minor Axis Length, Solidity

Texture Features Contrast, Correlation, Energy, Homogeneity from gray-level co-occurrence matrix; Mean, Standard Deviation, 
Kurtosis, Skewness, and Entropy from Approximation, Horizontal Detail, Vertical Detail, and Diagonal Detail 
Coefficients

Other Features Distance to Joint, Tumor Border Clarity
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Table III:

Average Performance of the Random Forest Model with Three-Fold Cross-Validation

PCs AUC F1 Sensitivity Specificity Accuracy

1 0.7272 0.8462 1 0.3333 0.9647
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Table IV:

Average Performance of the Random Forest Model with Leave-One-Out Cross-Validation

PCs AUC F1 Sensitivity Specificity Accuracy

1 0.4470 0.8148 1 0.1667 0.7059

2 0.9015 0.9091 0.9091 0.8333 0.8824
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