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Abstract

TAM family tyrosine kinase receptors including Tyro3, Axl, and MerTK are the key efferocytosis 

receptors presenting on antigen-presenting cell that mediate the clearance of apoptotic cells. They 

are thought to regulate inflammatory diseases by modulating inflammatory response and 

efferocytosis. Recent studies have revealed novel roles of TAM receptors in the biosynthesis of 

specialized pro-resolving mediators (SPMs) and inflammation resolution. In this chapter, we 

discuss the central roles of TAM signaling in atherosclerosis focusing on their regulation in 

efferocytosis and inflammation resolution and highlight the unique therapeutic potential of SPMs 

in blocking the progression of atherosclerosis.

1. Introduction

Atherosclerosis, which is driven by lipoprotein disease, is characterized by non-resolving 

chronic inflammatory of the arterial intima and activation of both the innate and adaptive 

immune system. Atherosclerosis is the underlying cause of fatal heart attacks and strokes, 

which are responsible for the majority of deaths in industrialized countries (Lusis, 2000). 

Many atherosclerosis studies using different genetically modified or pharmacologically 

intervened mouse models and clinical data have demonstrated strong evidence that immune 

responses have a role in the development of atherosclerosis (Hansson et al., 2015).

In addition to established molecules affecting immune responses,

TAM family tyrosine kinase receptors including Tyro3, Axl, and MerTK have been shown to 

influence the immune system in the steady state and pathology of atherosclerosis. 

Accordingly, a deeper understanding of how TAM receptors induced cellular mechanisms in 

pathology of atherosclerosis may increase investigator focus on them as a therapeutic target. 

The TAM family tyrosine kinase receptors contain an extracellular N-terminal region 

carrying two immunoglobulin (Ig)-like domains, which mediate ligand’s binding, followed 

by two fibronectin type III (FNIII) repeats, a hydrophobic transmembrane domain, and an 

intracellular tyrosine kinase C-terminal domain (Lemke, 2013; Rothlin et al., 2015). The 

activation of TAM receptors is initiated by binding to their ligands: vitamin K-mediated γ-
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carboxylated Growth Arrest-Specific gene 6 (Gas6) (Geng et al., 2017) and Protein S 

(ProS1) (Nagata et al., 1996; Stitt et al., 1995). However, these ligands bind to their 

receptors with different affinities. Gas6 can engage with all the receptors with strongest 

affinity to Axl, then Tyro3, and with lower affinity to MerTK (Axl>Tyro3≫Mer) (Nagata et 

al., 1996). Conversely, Pros1 does not bind to Axl, and has stronger affinity binding with 

Tyro3 than MerTK (Lew et al., 2014; Zagorska et al., 2014). The TAM receptors promote 

efferocytosis, a process of apoptotic cell (AC) clearance, by binding to their ligands that 

serve as the bridging molecules that bind externalized phosphatidylserine on ACs (Geng et 

al., 2017; Lemke and Burstyn-Cohen, 2010). However, these receptors are expressed in 

myeloid efferocytes differently: MerTK is highly expressed in macrophages (Mϕs), while 

Axl and Tyro3 are prominently expressed in dendritic cells (Zagorska et al., 2014). TAM-

mediated efferocytosis elicits the production of immunosuppressive cytokines and drives 

immune evasion by inhibiting T-cell priming and activation. Hence, pan-inhibition of TAM 

receptors have been suggested as cancer therapeutics to promote an inflammatory tumor 

microenvironment and improve host antitumor immunity (Davra et al., 2016; Kasikara et al., 

2017, 2019; Kimani et al., 2016). While the role of TAM receptors has long been recognized 

in AC clearance and consequent regulation of immune response (Lemke and Burstyn-Cohen, 

2010; Lemke and Rothlin, 2008; Rothlin et al., 2007), recent work by a number of groups 

has also identified defects in TAM-induced efferocytosis and inflammation resolution as key 

causal factors for atherosclerosis progression (Ait-Oufella et al., 2008; Cai et al., 2016, 

2017, 2018). Here, we present an overview of how dysfunction of TAM receptors drives 

atherosclerosis and discuss the therapeutic implications of this concept.

2. Defective efferocytosis and inflammation resolution in atherosclerosis

2.1 Defective efferocytosis in atherosclerosis

Atherosclerosis begins with the retention of apolipoprotein B (apoB)-containing lipoproteins 

within the subendothelial layer of arteries. These subendothelial lipoproteins, particularly 

after oxidation, generate an inflammatory stimulus that drives leukocyte influx into the 

vessel wall (Williams and Tabas, 1995, 1998). These infiltrating cells are primarily 

monocyte-derived Mϕs, which internalize cholesterol-rich lipoproteins and give rise to foam 

cells. Foam cells secrete an extracellular matrix that further promotes lipoprotein retention 

as well as pro-inflammatory cytokines that increase the recruitment of additional monocytes, 

T cells, and neutrophils. Because of these sustained inflammatory stimuli and other 

cytotoxic factors, many lesional cells become apoptotic. In early atherosclerotic lesions, 

these lesional ACs are cleared by neighboring macrophages in order to limit lesion 

cellularity (Tabas, 2005). However, in advanced atherosclerosis, efferocytosis becomes 

defective and the ACs cannot be cleared up efficiently, leading to the accumulation of 

secondarily necrotic cells and the formation of a highly inflammatory “necrotic core” 

(Linton et al., 2016; Schrijvers et al., 2005; Tabas, 2010). Large necrotic cores are a 

hallmark of advanced atherosclerotic disease that can trigger plaque rupture and acute 

thrombotic cardiovascular events (Hansson et al., 2015; Yahagi et al., 2016). Therefore, the 

efficient clearance of dead cells plays an essential role in preventing the development of 

clinically significant atherosclerotic plaques.
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2.2 Defective inflammation resolution in atherosclerosis

Inflammation resolution is an active process to counterbalance excessive inflammation and 

restore tissue homeostasis after injury without compromising host defense (Serhan, 2014). 

Failure of resolution contributes to the pathology of numerous chronic inflammatory 

diseases including atherosclerosis (Back et al., 2019). Inflammation resolution is mediated 

by bioactive lipids such as lipoxins, resolvins, protectins, and maresins, which are referred to 

as specialized pro-resolving mediators (SPMs) (Fredman et al., 2016; Serhan, 2014; Viola et 

al., 2016). These SPMs are derived from long-chain fatty acids, by lipoxygenase (LOX) 

enzymes such as 5-LOX and 12/15-LOX. The LOX enzymes promote the conversion of 

arachidonic acid (AA) to lipoxins, like LXA4, or docosahexaenoic acid (DHA) to resolvins, 

like RvD1 (Serhan et al., 1984, 2002). SPMs block inflammatory cell influx and promote the 

egress of inflammatory cells, serving to limit tissue damage and to promote tissue repair 

(Perretti and D’Acquisto, 2009; Serhan, 2010). Defective inflammation resolution is another 

hallmark of advanced atherosclerosis, which has been characterized by an imbalance 

between pro-resolving and pro-inflammatory mediators, such as leukotrienes (Fredman et 

al., 2016; Merched et al., 2008). The ratio of SPMs to leukotrienes is significantly decreased 

in advanced versus early atherosclerotic plaques in humans and mice (Fredman et al., 2016; 

Viola et al., 2016). The impaired resolution is often associated with the clinically dangerous 

features of plaques including defective efferocytosis, damage associated molecular pattern 

(DAMP)-mediated inflammation, formation of a necrotic core, and thinning of the protective 

collagen cap that overlies the core (Kojima et al., 2017; Kolodgie et al., 2004; Merched et 

al., 2008; Tabas, 2010). Consequently, there is evidence showing that administration of 

SPMs decreases plaque necrosis and inflammation (Fredman et al., 2016; Hasturk et al., 

2015; Viola et al., 2016). For instance, RvD1 led to smaller necrotic cores, enhanced rates of 

lesional efferocytosis, and thicker collagen fibrous caps when administered to high-fat-fed 

Ldlr−/− mice (atherosclerosis mouse model) (Fredman et al., 2016). Similarly, administration 

of RvD5 to high-fat-fed Apoe−/− (atherosclerosis mouse model) mice decreased 

atherosclerotic lesion size and reduced leukocyte and platelet activation (Colas et al., 2018). 

Treatment of Apoe−/− mice with RvD2 and MaR1 also promoted plaque stability by 

decreasing lesional macrophage numbers, halting expansion of necrotic cores, and 

thickening collagen fibrous caps (Viola et al., 2016).

2.3 MerTK-mediated efferocytosis and inflammation resolution

As an important efferocytosis receptor in Mϕs, MerTK plays a protective role in 

atherosclerosis by limiting the formation of the inflammatory necrotic core (Ait-Oufella et 

al., 2008; Thorp et al., 2008). Both whole MerTK-deficient and bone marrow-transplanted 

mice (Mertk−/−/Apoe−/− and Mertk− bone marrow-transplanted-Ldlr−/−) had marked 

decreases in the clearance of apoptotic bodies and the subsequent accelerated plaque 

necrosis and inflammation in their advanced atherosclerotic lesions compared with the 

control mice (Ait-Oufella et al., 2008; Thorp et al., 2008). Consistent with the role of 

MerTK-mediated efferocytosis in atherosclerosis, Mϕ Ca2+/calmodulin-dependent protein 

kinase IIγ (CaMKIIγ) promoted the development of necrotic atherosclerotic plaques by 

preventing MerTK expression through the inhibition of the transcription factors ATF6 and 

LXRα (Doran et al., 2017). Similarly, the immunoproteasome subunit β5i was recently 

shown to decrease MerTK expression in Mϕs and enhance necrotic core area in 
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atherosclerotic lesions (Liao et al., 2020). In terms of the mechanism of MerTK-mediated 

efferocytosis, MerTK binds apoptotic cells through the bridging molecules Gas6 or protein S 

and mediates their uptake via actin signaling pathways (Lemke and Burstyn-Cohen, 2010; 

Tibrewal et al., 2008). Axl, the other TAM receptor, has been shown to have no effect in 

atherosclerosis disease progression that transfer of Axl deficient bone marrow cells to Ldlr
−/− mice did not affect the lesional efferocytosis, size of necrotic core and lesion compared 

to wild-type bone marrow-transplanted Ldlr−/− mice (Subramanian et al., 2016). Hence, this 

study may suggest that MerTK is a dominantly acting efferocytosis receptor during lesional 

AC clearance whereas Axl, prominently expressed on dendritic cells, does not have 

significant effect on efferocytosis.

Efferocytosis can stimulate SPM formation (Dalli and Serhan, 2012; Schwab et al., 2007) 

and consistent with this concept, we have elucidated a novel role for MerTK in SPM 

biosynthesis (Cai et al., 2016, 2017, 2018). MerTK activation with ligands or ACs stimulates 

SPM biosynthesis by promoting the cytoplasmic localization of nonphosphorylated 5-LOX 

(Cai et al., 2016, 2018) in Mϕs. Mechanistically, MerTK activates ERK in Mϕs, leading to 

an increase in the expression of sarcoplasmic/endoplasmic reticulum calcium ATPase 2 

(SERCA2), which decreases the cytosolic Ca2+ concentration and suppresses the activity of 

CaMKII. This in turn reduces the activities of p38 MAP kinase and MAPKAP kinases MK2, 

resulting in the increased abundance of the nonphosphorylated, cytoplasmic form of 5-LOX 

and enhances SPM biosynthesis (Fig. 1) (Cai et al., 2018). Our in vivo studies showed that 

MerTK deficiency delayed the resolution of sterile peritonitis and hind limb ischemia-

reperfusion (I/R)-induced lung injury by suppressing the biosynthesis of SPMs including 

lipoxins and resolvins (Cai et al., 2016).

2.4 MerTK cleavage by ADAM17

MerTK is known to undergo ectodomain cleavage mediated by the metalloproteinase 

ADAM17 in the presence of inflammatory stimuli (Sather et al., 2007; Thorp et al., 2011). 

In the atherosclerotic plaques, the byproducts of polyunsaturated fatty acid oxidation and 

inflammatory mediators can activate ADAM17 (Garbin et al., 2013). Interestingly, Mϕs near 

the necrotic core of human atheromas have lower MerTK and higher ADAM17 than 

peripheral lesional Mϕs (Garbin et al., 2013). Therefore, MerTK cleavage may contribute to 

defective efferocytosis and failed inflammation resolution in advanced atherosclerosis. We 

recently showed that soluble Mer (sol-Mer), the product of MerTK cleavage from the human 

carotid artery was positively correlated with necrosis and that plaques of symptomatic 

patients had higher levels of sol-Mer compared with those of asymptomatic patients, while 

cell-surface MerTK in Mϕ-rich areas in plaques from symptomatic patients was less than 

that in asymptomatic patients (Cai et al., 2017). To test the role of MerTK cleavage in vivo, 

we first identified proline-485 as the MerTK cleavage site and showed that cells expressing 

MerTK lacking residues 483–488 maintained MerTK-dependent efferocytosis under 

cleavage-inducing conditions (Thorp et al., 2011), and then we created a mouse in which the 

Mertk locus was replaced by cleavage-resistant MertkΔ483–488 (MertkCR). As expected, 

MertkCR is protective in different mouse models: In the sterile peritonitis model, 

efferocytosis and inflammation resolution were improved in MertkCR mice, as indicated by 

the increased Mϕ-internalized apoptotic neutrophils and SPM levels in the exudates (Cai et 
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al., 2016); In the I/R-induced lung injury model, MertkCR mice had increased circulating 

levels of SPMs and less lung injury (Cai et al., 2016); In the diet-induced atherosclerosis 

model, MertkCR mice exhibited improved efferocytosis, smaller necrotic cores, thicker 

fibrous caps, and increased ratio of pro-resolving versus pro-inflammatory lipid mediators in 

the atherosclerotic lesions (Fig. 2) (Cai et al., 2017). Consistent with our studies, MertkCR 

mice displayed improved levels of efferocytosis, reduced infarct size, and improved cardiac 

function following myocardial ischemia-reperfusion (DeBerge et al., 2017). Moreover, a 

recent study showed that preventing MerTK cleavage plays a beneficial role in aging as aged 

MertkCR mice restored senescence-reduced efferocytosis and increased the ratio of pro-

resolving versus pro-inflammatory lipid mediators compared with the aged control mice 

(Rymut et al., 2020).

In addition to sol-Mer, increased soluble Axl (sol-Axl), the product of Axl cleavage has been 

detected in plasma of acute coronary syndrome patients compared to control individuals (Liu 

et al., 2015). Interestingly, sol-Axl associates with Gas6 levels in mouse serum (Budagian et 

al., 2005). These findings suggest that sol-Axl may neutralize Gas6 in serum and block its 

interaction to TAM receptors, especially to MerTK and decrease MerTK-AC interaction, 

consequently efferocytosis. As mentioned above, deficiency of myeloid Axl does not show 

any significant effect in the progression of atherosclerotic lesion, therefore sol-Axl may 

influence pathology of atherosclerosis not through Axl-mediated efferocytosis but through 

sol-Axl/Gas6/MerTK axis.

3. Conclusions and future directions

MerTK is fundamentally protective in cardiovascular diseases by facilitating the clearance of 

apoptotic cell debris and enhancing the inflammation resolution response. Therefore, 

enhancing MerTK synthesis or blocking its cleavage may represent novel therapeutic 

approaches to cardiovascular diseases. However, this approach must consider the possible 

adverse effects, given that MerTK is detrimental in cancer and pathologic liver fibrosis 

(Caetano et al., 2019; Cai et al., 2020; Petta et al., 2016). Future studies will be required to 

understand why MerTK signaling fails to stimulate resolution in non-atherosclerosis 

inflammatory diseases including in liver fibrosis.

Given that chronic inflammation plays an important role in the progression of 

atherosclerosis, therapeutic targeting of inflammation has been considered as a 

complementary strategy to LDL reduction for lowering the risk of atherosclerotic vascular 

disease. For instance, the CANTOS trial (Canakinumab Anti-inflammatory Thrombosis and 

Outcomes Study) has recently demonstrated the efficacy of targeting interleukin IL1β for 

reducing cardiovascular events in patients with a history of myocardial infarction 

independently of the role of lipids, highlighting the promise of therapy directed toward 

inflammation in cardiovascular disease (Ridker et al., 2011). However, the anti-

inflammatory drug therapy has the potential to compromise host defense (Fallahi-Sichani et 

al., 2012; St Clair et al., 2004), and in CANTOS there was a significant increase in the 

number of fatal infections associated with canakinumab therapy (Ridker et al., 2017). 

Therefore, administration of exogenous SPMs that actively boost resolution without 

compromising host defense may present a novel promising therapeutic strategy for 
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cardiovascular diseases. Indeed, some SPMs have already been tested in clinical trials for 

other chronic inflammatory diseases. For example, RvE1 analogue has been used to treat 

ocular inflammation and pain (ClinicalTrials.gov, NCT00799552 and NCT00941018) (Basil 

and Levy, 2016). LXA4 decreases LTC4−initiated bronchoprovocation in patients with 

asthma and reduces the severity of infantile eczema (Christie et al., 1992; Wu et al., 2013). 

Despite our understanding of the protective roles of SPMs in atherosclerosis, more 

mechanistic studies still need to be done to fully understand how SPMs are synthesized and 

metabolized and how they work on their effector cells to carry out the resolution processes.
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Fig. 1. 
The signaling pathway of MerTK-mediated inflammation resolution. MerTK activation by 

Gas6, protein S, or apoptotic cells activates ERK, which is followed by the induction of 

SERCA2 expression. The decrease in the concentration of intracellular Ca2+ (Ca2+ i) caused 

by the increased SERCA abundance suppresses CaMKII activity, which then reduces the 

activities of the kinases p38 and MK2. The decrease in MK2 activity promotes the 

cytoplasmic localization of 5-LOX, leading to SPM production and inflammation resolution.
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Fig. 2. 
MerTK-mediated efferocytosis and inflammation resolution in atherosclerosis. In early 

plaque, intact MerTK promotes efferocytosis and SPM biosynthesis, favoring the formation 

of stable plaque. However, in advanced atherosclerosis, cleavage of MerTK results in 

decreased efferocytosis and decreased SPMs, leading to the formation of necrotic core and 

unstable plaque. SMC, smooth muscle cell; AC, apoptotic cell; Sol-Mer, soluble MerTK.
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