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Abstract

The von Neumann entropy, named after John von Neumann, is an extension of the classical 

concept of entropy to the field of quantum mechanics. From a numerical perspective, von 

Neumann entropy can be computed simply by computing all eigenvalues of a density matrix, an 

operation that could be prohibitively expensive for large-scale density matrices. We present and 

analyze three randomized algorithms to approximate von Neumann entropy of real density 

matrices: our algorithms leverage recent developments in the Randomized Numerical Linear 

Algebra (RandNLA) literature, such as randomized trace estimators, provable bounds for the 

power method, and the use of random projections to approximate the eigenvalues of a matrix. All 

three algorithms come with provable accuracy guarantees and our experimental evaluations 

support our theoretical findings showing considerable speedup with small loss in accuracy.
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I. INTRODUCTION

Entropy is a fundamental quantity in many areas of science and engineering. von Neumann 
entropy, named after John von Neumann, is an extension of classical entropy concepts to the 

field of quantum mechanics. Its foundations can be traced to von Neumann’s work on 

Mathematische Grundlagen der Quantenmechanik1. In his work, Von Neumann introduced 

the notion of a density matrix, which facilitated extension of the tools of classical statistical 

mechanics to the quantum domain in order to develop a theory of quantum mechanics.
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From a mathematical perspective (see Section I-A for details) the real density matrix R is a 

symmetric positive semidefinite matrix in ℝn × n with unit trace. Let pi, i = 1 … n be the 

eigenvalues of R in decreasing order; then, the entropy of R is defined as2

ℋ(R) = − ∑
i = 1

n
pi ln pi . (1)

The above definition is a proper extension of both the Gibbs entropy and the Shannon 

entropy to the quantum case. It implies an obvious algorithm to compute ℋ(R) by 

computing the eigendecomposition of R; known algorithms for this task can be prohibitively 

expensive for large values of n, particularly when the matrix becomes dense [1]. For 

example, [2] describes an entangled two-photon state generated by spontaneous parametric 

down-conversion, which can result in a sparse and banded density matrix with n ≈ 108.

Motivated by the high computational cost, we seek numerical algorithms that approximate 

the von Neumann entropy of large density matrices, e.g., symmetric positive definite 

matrices with unit trace, faster than the trivial O(n3) approach. Our algorithms build upon 

recent developments in the field of Randomized Numerical Linear Algebra (RandNLA), an 

interdisciplinary research area that exploits randomization as a computational resource to 

develop improved algorithms for large-scale linear algebra problems. Indeed, our work here 

focuses at the intersection of RandNLA and information theory, delivering novel randomized 

linear algebra algorithms and related quality-of-approximation results for a fundamental 

information-theoretic metric.

A. Background

We focus on finite-dimensional function (state) spaces. In this setting, the density matrix R 
represents the statistical mixture of k ≤ n pure states, and has the form

R =
i = 1

k
piψiψiT ∈ ℝn × n . (2)

The vectors ψi ∈ ℝn for i = 1 … k represent the k ≤ n pure states and can be assumed to be 

pairwise orthogonal and normal, while pi’s correspond to the probability of each state and 

satisfy pi > 0 and ∑i = 1
k pi = 1. From a linear algebraic perspective, eqn. (2) can be rewritten 

as

R = ΨΣpΨT ∈ ℝn × n, (3)

where Ψ ∈ ℝn × k is the matrix whose columns are the vectors ψi and Σp ∈ ℝk × k is a 

diagonal matrix whose entries are the (positive) pi’s. Given our assumptions for ψi, ΨTΨ = 

I; also R is symmetric positive semidefinite with its eigenvalues equal to pi and 

corresponding left/right singular vectors equal to ψi’s; and tr(R) = ∑i = 1
k pi = 1. Notice that 

2R is symmetric positive semidefinite and thus all its eigenvalues are non-negative. If pi is equal to zero we set pi ln pi to zero as well.
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eqn. (3) essentially reveals the (thin) Singular Value Decomposition (SVD) [1] of R. The 

Von Neumann entropy of R, denoted by ℋ(R) is equal to (see also eqn. (1))

ℋ R =
i: pi > 0

pi ln pi = − tr R ln R . (4)

The second equality follows from the definition of matrix functions [3]. More precisely, we 

overload notation and consider the full SVD of R, namely R = ΨΣpΨT, where Ψ ∈ ℝn × n is 

an orthogonal matrix whose top k columns correspond to the k pure states and the bottom n 
− k columns are chosen so that ΨΨT = ΨTΨ = In. Here Σp is a diagonal matrix whose 

bottom n−k diagonal entries are set to zero. Let h(x) = x ln x for any x > 0 and let h(0) = 0. 

Then, using the cyclical property of the trace and the definition of h(x),

−
i, pi > 0

pi ln pi = − tr Ψℎ Σp ΨT

= − tr ℎ R
= − tr R ln R .

(5)

B. Trace estimators

The following lemma appeared in [4] and is immediate from Theorem 5.2 in [5]. It implies 

an algorithm to approximate the trace of any symmetric positive semidefinite matrix A by 

computing inner products of the matrix with Gaussian random vectors.

Lemma 1. Let A ∈ ℝn × n be a positive semi-definite matrix, let 0 < ϵ < 1 be an accuracy 

parameter, and let 0 < δ < 1 be a failure probability. If g1, g2, …, gs ∈ ℝn are independent 

random standard Gaussian vectors, then, for s = ⌈20 ln(2/δ)/ϵ2⌉, with probability at least 1 − 

δ,

tr A − 1
s i = 1

s
giΤAgi ≤ ∈ · tr A .

C. Our contributions

We present and analyze three randomized algorithms to approximate the von Neumann 

entropy of density matrices. The first two algorithms (Sections II and III) leverage two 

different polynomial approximations of the matrix function ℋ(R) = − tr(R ln R): the first 

approximation uses a Taylor series expansion, while the second approximation uses 

Chebyschev polynomials. Both algorithms return, with high probability, relative-error 

approximations to the true entropy of the input density matrix, under certain assumptions. 

More specifically, in both cases, we need to assume that the input density matrix has n non-

zero eigenvalues, or, equivalently, that the probabilities pi, i = 1 … n, corresponding to the 

underlying n pure states are non-zero. The running time of both algorithms is proportional to 

the sparsity of the input density matrix and depends (see Theorems 2 and 4 for precise 

statements) on, roughly, the ratio of the largest to the smallest probability p1/pn (recall that 

the smallest probability is assumed to be non-zero), as well as the desired accuracy.
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The third algorithm (Section V) is fundamentally different, if not orthogonal, to the previous 

two approaches. It leverages the power of random projections [6], [7] to approximate 

numerical linear algebra quantities, such as the eigenvalues of a matrix. Assuming that the 

density matrix R has exactly k ⪡ n non-zero eigenvalues, e.g., there are k pure states with 

non-zero probabilities pi, i = 1 … k, the proposed algorithm returns, with high probability, 

relative error approximations to all k probabilities pi. This, in turn, implies an additive-

relative error approximation to the entropy of the density matrix, which, under a mild 

assumption on the true entropy of the density matrix, becomes a relative error approximation 

(see Theorem 10 for a precise statement). The running time of the algorithm is again 

proportional to the sparsity of the density matrix and depends on the target accuracy, but, 

unlike the previous two algorithms, does not depend on any function of the pi.

From a technical perspective, the theoretical analysis of the first two algorithms proceeds by 

combining the power of polynomial approximations, either using Taylor series or 

Chebyschev polynomials, to matrix functions, combined with randomized trace estimators. 

A provably accurate variant of the power method is used to estimate the largest probability 

pi. If this estimate is significantly smaller than one, it can improve the running times of the 

proposed algorithms (see discussion after Theorem 2). The third algorithm leverages a 

powerful, multiplicative matrix perturbation result that first appeared in [8]. Our work in 

Section V is a novel application of this inequality to derive bounds for RandNLA 

algorithms.

Finally, in Section VI, we present a detailed evaluation of our algorithms on synthetic 

density matrices of various sizes, most of which were generated using Matlab’s QETLAB 

toolbox [9]. For some of the larger matrices that were used in our evaluations, the exact 

computation of the entropy takes hours, whereas our algorithms return approximations with 

relative errors well below 0.5% in only a few minutes.

D. Prior work

The first non-trivial algorithm to approximate the von Neumann entropy of a density matrix 

appeared in [2]. Their approach is essentially the same as our approach in Section III. 

Indeed, our algorithm in Section III was inspired by their approach. However, our analysis is 

somewhat different, lever-aging a provably accurate variant of the power method, as well as 

provably accurate trace estimators to derive a relative error approximation to the entropy of a 

density matrix, under appropriate assumptions. A detailed, technical comparison between 

our results in Section III and the work of [2] is delegated to Section III-C.

Independently and in parallel with our work, [10] presented a multipoint interpolation 

algorithm (building upon [11]) to compute a relative error approximation for the entropy of a 

real matrix with bounded condition number. The proposed running time of Theorem 35 of 

[10] does not depend on the condition number of the input matrix (i.e., the ratio of the 

largest to the smallest probability), which is a clear advantage in the case of ill-conditioned 

matrices. However, the dependence of the algorithm of Theorem 35 of [10] on terms like 

(log n/ϵ)6 or n1/3nnz(A) + n nnz(A) (where nnz(A) represents the number of non-zero 

elements of the matrix A) could blow up the running time of the proposed algorithm for 

reasonably conditioned matrices.
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We also note the recent work in [4], which used Taylor approximations to matrix functions 

to estimate the log determinant of symmetric positive definite matrices (see also Section 1.2 

of [4] for an overview of prior work on approximating matrix functions via Taylor series). 

The work of [12] used a Chebyschev polynomial approximation to estimate the log 

determinant of a matrix and is reminiscent of our approach in Section III and, of course, the 

work of [2].

We conclude this section by noting that our algorithms use two tools (described, for the sake 

of completeness, in the Appendix) that appeared in prior work. The first tool is the power 

method, with a provable analysis that first appeared in [13]. The second tool is a provably 

accurate trace estimation algorithm for symmetric positive semidefinite matrices that 

appeared in [5].

II. AN APPROACH VIA TAYLOR SERIES

Our first approach to approximate the von Neumann entropy of a density matrix uses a 

Taylor series expansion to approximate the logarithm of a matrix, combined with a relative-

error trace estimator for symmetric positive semi-definite matrices and the power method to 

upper bound the largest singular value of a matrix.

A. Algorithm and Main Theorem

Our main result is an analysis of Algorithm 1 (see below) that guarantees relative error 

approximation to the entropy of the density matrix R, under the assumption that 

R = ∑i = 1
n piψiψiT ∈ ℝn × n has n pure states with 0 < ℓ ≤ pi for all i = 1 … n. The following 

theorem is our main quality-of-approximation result for Algorithm 1.

Algorithm 1

A Taylor series approach to estimate the entropy.

1: INPUT: R ∈ ℝn × n, accuracy parameter ε > 0, failure probability δ, and integer m > 0.

2:
Compute p1, the estimate of the largest eigenvalue of R, p1, using Algorithm 8 (see Appendix) with t = O(ln n)
and q = O(ln (1/δ)).

3: Set u = min{1, 6p1}.

4: Set s = ⌈20 ln(2/δ)/ε2⌉.

5: Let g1, g2, …, gs ∈ ℝn be i.i.d. random Gaussian vectors.

6: OUTPUT: return ℋ R = ln u−1 + 1
s

i = 1

s

k = 1

m
giTR In − u−1R kgi

k .

Theorem 2. Let R be a density matrix such that all probabilities pi, i = 1 … n satisfy 0 < ℓ ≤ 

pi. Let u be computed as in Algorithm 1 and let ℋ(R) be the output of Algorithm 1 on inputs 

R, m, and ϵ < 1; Then, with probability at least 1 − 2δ,

ℋ R − ℋ R ≤ 2ϵℋ R ,
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by setting m = u
ℓ ln1

ϵ . The algorithm runs in time

O u
ℓ · ln 1/ϵ

ϵ2 + ln n ln 1/δ · nnz R .

A few remarks are necessary to better understand the above theorem. First, ℓ could be set to 

pn, the smallest of the probabilities corresponding to the n pure states of the density matrix 

R. Second, it should be obvious that u in Algorithm 1 could be simply set to one and thus we 

could avoid calling Algorithm 8 to estimate p1 by p1 and thus compute u. However, if p1 is 

small, then u could be significantly smaller than one, thus reducing the running time of 

Algorithm 1, which depends on the ratio u/l. Third, ideally, if both p1 and pn were used 

instead of u and l, respectively, the running time of the algorithm would scale with the ratio 

p1/pn.

B. Proof of Theorem 2

We now prove Theorem 2, which analyzes the performance of Algorithm 1. Our first lemma 

presents a simple expression for ℋ(R) using a Taylor series expansion.

Lemma 3. Let R ∈ ℝn × n be a symmetric positive definite matrix with unit trace and whose 
eigenvalues lie in the interval [ℓ, u], for some 0 < ℓ ≤ u ≤ 1. Then,

ℋ R = ln u−1 +
k = 1

∞ tr R In − u−1R k

k .

Proof: From the definition of the von Neumann entropy and a Taylor expansion,

ℋ R = − tr R ln uu−1R
= − tr ln u R − tr R ln In − In − u−1R

= ln u−1 − tr −R
k = 1

∞ In − u−1R k

k

= ln u−1 +
k = 1

∞ tr R In − u−1R k

k .

(6)

Eqn. (6) follows since R has unit trace and from a Taylor expansion: indeed, 

ln(In − A) = − ∑k = 1
∞ Ak/k for a symmetric matrix A whose eigenvalues are all in the 

interval (−1, 1). We note that the eigenvalues of In − u−1R are in the interval [0, 1 − (ℓ/u)], 

whose upper bound is strictly less than one since, by our assumptions, ℓ/u > 0.

We now proceed to prove Theorem 2. We will condition our analysis on Algorithm 8 being 

successful, which happens with probability at least 1 − δ. In this case, u = min{1, 6p1} is an 

upper bound for all probabilities pi. For notational convenience, set C = In − u−1R. We start 

by manipulating Δ = ℋ(R) − ℋ(R)  as follows:
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Δ =
k = 1

m 1
k · 1

s i = 1

s
giTRCkgi −

k = 1

∞ 1
ktr RCk

≤
k = 1

m 1
k · 1

s i = 1

s
giTRCkgi −

k = 1

∞ 1
ktr RCk +

k = m + 1

∞ 1
ktr RCk

= 1
s i = 1

s
giT

k = 1

m
RCk/k gi − tr

k = 1

m
RCk

Δ1

+
k = m + 1

m
tr RCk /k

Δ2

.

We now bound the two terms Δ1 and Δ2 separately. We start with Δ1: the idea is to apply 

Lemma 1 on the matrix ∑k = 1
m RCk/k with s = ⌈20 ln(2/δ)/ϵ2⌉. Hence, with probability at 

least 1 − δ:

Δ1 ≤ ϵ · tr
k = 1

m
RCk/k ≤ ϵ · tr

k = 1

∞
RCk/k . (7)

A subtle point in applying Lemma 1 is that the matrix ∑k = 1
m RCk/k must be symmetric 

positive semidefinite. To prove this, let the SVD of R be R = ΨΣpΨT, where all three 

matrices are in ℝn × n and the diagonal entries of Σp are in the interval [ℓ, u]. Then, it is easy 

to see that C = In − u−1R = Ψ(In − u−1Σp)ΨT and RCk = ΨΣp(In − u−1Σp)kΨT, where the 

diagonal entries of In − u−1Σp are non-negative, since the largest entry in Σp is upper 

bounded by u. This proves that RCk is symmetric positive semidefinite for any k, a fact 

which will be useful throughout the proof. Now,

k = 1

m
RCk/k = Ψ Σp

k = 1

m
In − u−1 Σp

k/k ΨT ,

which shows that the matrix of interest is symmetric positive semidefinite. Additionally, 

since RCk is symmetric positive semidefinite, its trace is non-negative, which proves the 

second inequality in eqn. (7) as well.

We proceed to bound Δ2 as follows:

Δ2 =
k = m + 1

∞
tr RCk /k

=
k = m + 1

∞
tr RCmCk − m /k

=
k = m + 1

∞
tr CmCk − mR /k

≤
k = m + 1

∞
Cm

2 · tr Ck − mR /k

(8)
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= Cm
2 ·

k = m + 1

∞
tr RCk − m /k

≤ Cm
2 ·

k = 1

∞
tr RCk /k

(9)

≤ 1 − ℓ
u

m

k = 1

∞
tr RCk /k . (10)

To prove eqn. (8), we used von Neumann’s trace inequality3. Eqn. (8) now follows since 

Ck−mR is symmetric positive sem)definite4. To prove eqn. (9), we used the fact that tr 
(RCk)/k ≥ 0 for any k ≥ 1. Finally, to prove eqn. (10), we used the fact that ‖C‖2 = ‖In − u
−1Σp‖2 ≤ 1 − ℓ/u since the smallest entry in Σp is at least ℓ by our assumptions. We also 

removed unnecessary absolute values since tr (RCk)/k is non-negative for any positive 

integer k.

Combining the bounds for Δ1 and Δ2 gives

ℋ R − ℋ R ≤ ϵ + 1 − ℓ
u

m

k = 1

∞ tr RCk

k .

We have already proven in Lemma 3 that

k = 1

∞ tr RCk

k ≤ ℋ R − ln u−1 ≤ ℋ R ,

where the last inequality follows since u ≤ 1. Collecting our results, we get

ℋ R − ℋ R ≤ ∈ + 1 − ℓ
u

m
ℋ R .

Setting

m = u
ℓln1

ϵ

and using (1 − x−1)x ≤ e−1 (x > 0), guarantees that (1 − ℓ/u)m ≤ ϵ and concludes the proof of 

the theorem. We note that the failure probability of the algorithm is at most 2δ (the sum of 

the failure probabilities of the power method and the trace estimation algorithm).

3Indeed, for any two matrices A and B, tr (AB) ≤ ∑i σi(A)σi(B), where σi(A) (respectively σi(B)) denotes the i-th singular value of A 
(respectively B). Let ‖·‖2 to denote the induced-2 matrix or spectral norm, then ‖A‖2 = σ1(A) (its largest singular value). Given that 
each singular value of A is upper bounded by σ1(A) then we can rewrite tr(AB) ≤ ‖A‖2 ∑i πi(B); if B is symmetric positive 
semidefinite, tr(B) = ∑i σi(B).
4This can be proven using an argument similar to the one used to prove eqn. (7).
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Finally, we discuss the running time of Algorithm 1, which is equal to O(s · m · nnz(R)). Since 

s = O ln(1/δ)
ϵ2  and m = O u ln(1/ϵ)

ℓ , the running time becomes (after accounting for the 

running time of Algorithm 8)

O u
ℓ · ln 1/ϵ

ϵ2 + ln n ln 1/δ · nnz R .

III. AN APPROACH VIA CHEBYSCHEV POLYNOMIALS

Our second approach is to use a Chebyschev polynomial-based approximation scheme to 

estimate the entropy of a density matrix. Our approach follows the work of [2], but our 

analysis uses the trace estimators of [5] and Algorithm 8 and its analysis. Importantly, we 

present conditions under which the proposed approach is competitive with the approach of 

Section II.

A. Algorithm and Main Theorem

The proposed algorithm leverages the fact that the von Neumann entropy of a density matrix 

R is equal to the (negative) trace of the matrix function R ln R and approximates the 

function R ln R by a sum of Chebyschev polynomials; then, the trace of the resulting matrix 

is estimated using the trace estimator of [5].

Let fm(x) = ∑w = 0
m αwTw(x) with α0 = u

2 (ln u
4 + 1), α1 = u

4 (2ln u
4 + 3), and αw = ( − 1)w

w3 − w
 for w ≥ 

2. Let Tw(x) = cos(w · arccos((2/u)x − 1)) and x ∈ [0, u] be the Chebyschev polynomials of 

the first kind for any integer w > 0. Algorithm 2 computes u (an upper bound estimate for 

the largest probability p1 of the density matrix R) and then computes fm(R) and estimates its 

trace. We note that the computation giTfm(R)gi can be done efficiently using Clenshaw’s 

algorithm; see Appendix C for the well-known approach.

Algorithm 2

A Chebyschev polynomial-based approach to estimate the entropy.

1: INPUT: R ∈ ℝn × n, accuracy parameter ε > 0, failure probability δ, and integer m > 0.

2:
Compute p1, the estimate of the largest eigenvalue of R, p1, using Algorithm 8 (see Appendix) with t = O(lnn)
and q = O(ln(1/δ)).

3: Set u = min{1, 6p1}.

4: Set s = ⌈20 ln(2/δ)/ε2⌉.

5: Let g1, g2, …, gs ∈ ℝn be i.i.d. random Gaussian vectors.

6: OUTPUT: ℋ(R) = − 1
s ∑i = 1

s giTfm(R)gi.

Our main result is an analysis of Algorithm 2 that guarantees a relative error approximation 

to the entropy of the density matrix R, under the assumption that R = ∑i = 1
n piψiψiT ∈ ℝn × n
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has n pure states with 0 < ℓ ≤ pi for all i = 1 … n. The following theorem is our main quality-

of-approximation result for Algorithm 2.

Theorem 4. Let R be a density matrix such that all probabilities pi, i = 1 … n satisfy 0 < ℓ ≤ 

pi. Let u be computed as in Algorithm 1 and let ℋ(R) be the output of Algorithm 2 on inputs 

R m, and ϵ < 1; Then, with probability at least 1 − 2δ,

ℋ R − ℋ R ≤ 3ϵℋ R ,

by setting m = u
2ϵℓ ln 1/ 1 − ℓ . The algorithm runs in time

O u
ℓ ln 1/ 1 − ℓ · 1

ϵ2.5 + ln n ln 1/δ · nnz R .

The similarities between Theorems 2 and 4 are obvious: same assumptions and directly 

comparable accuracy guarantees. The only difference is in the running times: the Taylor 

series approach has a milder dependency on ϵ, while the Chebyschev-based approximation 

has a milder dependency on the ratio u/ℓ, which controls the behavior of the probabilities pi. 

However, for small values of ℓ (ℓ → 0),

ln 1
1 − ℓ = ln 1 + ℓ

1 − ℓ ≈ ℓ
1 − ℓ ≈ ℓ .

Thus, the Chebyschev-based approximation has a milder dependency on u but not 

necessarily ℓ when compared to the Taylor-series approach. We also note that the discussion 

following Theorem 2 is again applicable here.

B. Proof of Theorem 4

We will condition our analysis on Algorithm 8 being successful, which happens with 

probability at least 1−δ. In this case, u = min{1, 6p1} is an upper bound for all probabilities 

pi. We now recall (from Section I-A) the definition of the function h(x) = x ln x for any real 

x ∈ (0, 1], with h(0) = 0. Let R = ΨΣpΨT ∈ ℝn × n be the density matrix, where both Σp and 

Ψ are matrices in ℝn × n. Notice that the diagonal entries of Σp are the pis and they satisfy 0 

< ℓ ≤ pi ≤ u ≤ 1 for all i = 1…n.

Using the definitions of matrix functions from [3], we can now define h(R) = Ψh(Σp)ΨT, 

where h(Σp) is a diagonal matrix in ℝn × n with entries equal to h(pi) for all i = 1 … n. We 

now restate Proposition 3.1 from [2] in the context of our work, using our notation.

Lemma 5. The function h(x) in the interval [0, u] can be approximated by

fm x =
w = 0

m
αwTw x ,
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where α0 = u
2 (ln u

4 + 1), α1 = u
4 (2ln u

4 + 3), and αw = ( − 1)wu
w3 − w

 for w ≥ 2. For any m ≥ 1,

ℎ x − fm x ≤ u
2m m + 1 ≤ u

2m2,

for x ∈ [0, u].

In the above, Tw(x) = cos(w · arccos((2/u)x − 1)) for any integer w ≥ 0 and x ∈ [0, u]. Notice 

that the function (2/u)x − 1 essentially maps the interval [0, u], which is the interval of 

interest for the function h(x), to [−1, 1], which is the interval over which Chebyschev 

polynomials are commonly defined. The above theorem exploits the fact that the 

Chebyschev polynomials form an orthonormal basis for the space of functions over the 

interval [−1, 1].

We now move on to approximate the entropy ℋ(R) using the function fm(x). First,

−tr fm R = − tr
w = 0

m
αwTw R

= − tr
w = 0

m
αwΨTw Σp ΨT

= −
w = 0

m
αwtr Tw Σp

= −
w = 0

m
αw

i = 1

n
Tw pi

= −
i = 1

n

w = 0

m
αwTw pi .

(11)

Recall from Section I-A that ℋ(R) = − ∑i = 1
n ℎ(pi). We can now bound the difference 

between tr(−fm(R)) and ℋ(R). Indeed,

ℋ R − tr −fm R = −
i = 1

n
ℎ pi +

i = 1

n

w = 0

m
αwTw pi

≤
i = 1

n
ℎ pi −

w = 0

m
αwTw pi

≤ nu
2m2 .

(12)

The last inequality follows by the final bound in Lemma 5, since all pi’s are in the interval 

[0, u].

Recall that we also assumed that all pis are lower-bounded by ℓ > 0 and thus
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ℋ R =
i = 1

n
pi ln 1

pi
≥ nℓ ln 1

1 − ℓ . (13)

We note that the upper bound on the pis follows since the smallest pi is at least ℓ > 0 and thus 

the largest pi cannot exceed 1 − ℓ < 1. We note that we cannot use the upper bound u in the 

above formula, since u could be equal to one; 1 − ℓ is always strictly less than one but it 

cannot be a priori computed (and thus cannot be used in Algorithm 2), since ℓ is not a priori 

known.

We can now restate the bound of eqn. (12) as follows:

ℋ R − tr −fm R ≤ u
2m2ℓ ln 1/ 1 − ℓ

ℋ R ≤ ϵℋ R , (14)

where the last inequality follows by setting

m = u
2 ∈ ℓ ln 1/ 1 − ℓ . (15)

Next, we argue that the matrix −fm(R) is symmetric positive semidefinite (under our 

assumptions) and thus one can apply Lemma 1 to estimate its trace. We note that

−fm R = Ψ −fm Σp ΨT ,

which trivially proves the symmetry of −fm(R) and also shows that its eigenvalues are equal 

to −fm(pi) for all i = 1 … n. We now bound

−fm pi − pi ln 1
pi

= −fm pi + pi ln pi
= pi ln pi − fm pi
≤ u

2m2 ≤ ϵℓ ln 1
1 − ℓ,

where the inequalities follow from Lemma 5 and our choice for m from eqn. (15). This 

inequality holds for all i = 1 … n and implies that

−fm pi ≥ pi ln 1
pi

− ϵℓ ln 1
1 − ℓ ≥ 1 − ϵ ℓ ln 1

1 − ℓ,

using our upper (1 − ℓ < 1) and lower (ℓ > 0) bounds on the pis. Now ϵ ≤ 1 proves that −fm(pi) 

are non-negative for all i = 1 … n and thus −fm(R) is a symmetric positive semidefinite 

matrix; it follows that its trace is also non-negative.

We can now apply the trace estimator of Lemma 1 to get
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tr −fm R − − 1
s i = 1

s
giTfm R gi ≤ ϵ · tr −fm R . (16)

For the above bound to hold, we need to set

s = 20 ln 2/δ /ϵ2 . (17)

We now conclude as follows:

ℋ R − ℋ R ≤ ℋ R − tr −fm R + tr −fm R − − 1
s i = 1

s
giTfm R gi

≤ ϵℋ R + ϵtr −fm R
≤ ϵℋ R + ϵ 1 + ϵ ℋ R
≤ 3ϵℋ R .

The first inequality follows by adding and subtracting −tr(fm(R)) and using sub-additivity of 

the absolute value; the second inequality follows by eqns. (14) and (16); the third inequality 

follows again by eqn. (14); and the last inequality follows by using ϵ ≤ 1.

We note that the failure probability of the algorithm is at most 2δ (the sum of the failure 

probabilities of the power method and the trace estimation algorithm). Finally, we discuss 

the running time of Algorithm 2, which is equal to O(s · m · nnz(R)). Using the values for m 
and s from eqns. (15) and (17), the running time becomes (after accounting for the running 

time of Algorithm 8)

O u
ℓ ln 1/ 1 − ℓ · 1

ϵ2.5 + ln n ln 1/δ · nnz R .

C. A comparison with the results of [2]

The work of [2] culminates in the error bounds described in Theorem 4.3 (and the ensuing 

discussion). In our parlance, [2] first derives the error bound of eqn. (12). It is worth 

emphasizing that the bound of eqn. (12) holds even if the pis are not necessarily strictly 

positive, as assumed by Theorem 4: the bound holds even if some of the pis are equal to 

zero.

Unfortunately, without imposing a lower bound assumption on the pis it is difficult to get a 

meaningful error bound and an efficient algorithm. Indeed, the error implied by eqn. (12) 

(without any assumption on the pis) necessitates setting m to at least Ω( n) (perhaps up to a 

logarithmic factor, as we will discuss shortly). To understand this, note that the entropy of 

the density matrix R ranges between zero and ln k, where k is the rank of the matrix R, i.e., 

the number of non-zero pi’s. Clearly, k ≤ n and thus ln n is an upper bound for ℋ(R). Notice 

that if ℋ(R) is smaller than n/(2m2), the error bound of eqn. (12) does not even guarantee 

that the resulting approximation will be positive, which is, of course, meaningless as an 

approximation to the entropy.

Kontopoulou et al. Page 13

IEEE Trans Inf Theory. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In order to guarantee a relative error bound of the form ϵℋ(R) via eqn. (12), we need to set 

m to be at least

m ≥ n
2ϵℋ R , (18)

which even for “large” values of ℋ(R) (i.e., values close to the upper bound ln n) still 

implies that m is O(ϵ−1/2 n/ln n). Even with such a large value for m, we are still not done: 

we need an efficient trace estimation procedure for the matrix −fm(R). While this matrix is 

always symmetric, it is not necessarily positive or negative semi-definite (unless additional 

assumptions are imposed on the pis, like we did in Theorem 4).

IV. APPROACHES FOR HERMITIAN DENSITY MATRICES

Hermitian, instead of symmetric, positive definite matrices, frequently arise in quantum 

mechanics. The analyses of Sections II and III focus on real density matrices; we now 

briefly discuss how they can be extended to Hermitian density matrices. Recall that both 

approaches follow the same algorithmic scheme. First, the dominant eigenvalue of the 

density matrix is estimated via the power method; a trace estimation follows using Gaussian 

trace estimators on either the truncated Taylor expansion of a suitable matrix function or on 

a chebyshev polynomial approximation of the same matrix function. Interestingly, the Taylor 

expansions, as well as the chebyshev polynomial approximations, both work when the input 

matrix is complex. However, the estimation of the dominant eigenvalue of R poses a 

theoretical difficulty: to the best of our knowledge, there is no known bound for the accuracy 

of the power method in the case where R is complex. Lemma 14 guarantees relative error 

approximations to the dominant eigenvalue of real matrices, but we are not aware of any 

provable relative error bound for the complex case. To avoid this issue we will be using one 

as a (loose) upper bound for the dominant eigenvalue.

The crucial step in order to guarantee relative error approximations to the entropy of a 

Hermitian positive definite matrix is to guarantee relative error approximations for the trace 

of a Hermitian positive definite matrix. Lemma 1 assumes symmetric positive semi-definite 

matrices; we now prove that the same lemma can be applied on Hermitian positive definite 

matrices to achieve the same guarantees.

Theorem 6. Every Hermitian matrix A ∈ ℂn × n can be expressed as

A = B + iC, (19)

where B ∈ ℝn × n is symmetric and C ∈ ℝn × n is anti-symmetric (or skew-symmetric). If 

A ∈ ℂn × n is positive semi-definite, then B is also positive semi-definite.

Proof: The proof is trivial and uses the fact that for any Hermitian (symmetric) positive 

semi-definite matrix all eigenvalues are real and greater than zero.

Theorem 7. The trace of a Hermitian matrix A ∈ ℂn × n expressed as in eqn. (19) is equal to 
the trace of its real part:
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tr A = tr B .

Proof: Using tr(A) = tr(AT), it is easy to see that

tr A = tr B + iC = tr B + itr C
= tr BT + itr CT = tr B .

The last equality follows by noticing that the only way for the equality to hold for a skew-

symmetric matrix C is if tr(CT) = −tr(CT). This is true only if C is the all-zeros matrix.

In words, Theorem 7 states that the trace of a Hermitian matrix equals the trace of its real 

part. Similarly, Theorem 6 states that the real part of a Hermitian positive semi-definite 

matrix is symmetric positive semi-definite. combining both theorems we conclude that we 

can estimate the trace of a Hermitian positive definite matrix up to relative error, using the 

Gaussian trace estimator of Lemma 1 on its real part. Therefore, both approaches generalize 

to Hermitian positive definite matrices using one as an upper bound instead of u for the 

dominant eigenvalue. Algorithms 3 and 4 are modified versions of Algorithms 1 and 2 

respectively that work on Hermitian inputs (the function Re(·) returns the real part of its 

argument in an entry-wise manner).

Algorithm 3

A Taylor series approach to estimate the entropy.

1: INPUT: R ∈ ℂn × n, accuracy parameter ε > 0, failure probability δ, and integer m > 0.

2: Set s = [20 ln(2/δ)/ε2].

3: Let g1, g2, …, gs ∈ ℝn be i.i.d. random Gaussian vectors.

4: OUTPUT: return ℋ R = 1
s

i = 1

s

k = 1

m giT (Re[R In − R k])gi
k .

Algorithm 4

A Chebyschev polynomial-based approach to estimate the entropy.

1: INPUT: R ∈ ℂn × n, accuracy parameter ϵ > 0, failure probability δ, and integer m > 0.

2: Set s = [20 ln(2/δ)/ε2].

3: Let g1, g2, …, gs ∈ ℝn be i.i.d. random Gaussian vectors.

4: OUTPUT: ℋ R = − 1
s i = 1

s giT (Re[fm R)])gi.

Theorems 8 and 9 are our main quality-of-approximation results for Algorithm 3 and 4.
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Theorem 8. Let R be a complex density matrix such that all probabilities pi, i = 1 … n 

satisfy 0 < ℓ ≤ pi. Let ℋ(R) be the output of Algorithm 3 on inputs R, m, and ϵ < 1. Then, 
with probability at least 1 − δ,

ℋ(R) − ℋ(R) ≤ 2ϵℋ(R),

by setting i = 1
ℓ ln1

ϵ . The algorithm runs in time

O ln 1/ϵ
ℓ · ϵ2 · ln 1/δ · nnz R .

Theorem 9. Let R be a density matrix such that all probabilities pi, i = 1 … n satisfy 0 < ℓ ≤ 

pi. Let ℋ(R) be the output of Algorithm 4 on inputs R, m, and ϵ < 1. Then, with probability 
at least 1 − δ,

ℋ R − ℋ R ≤ 3ϵℋ R ,

by setting m = 1
2ϵℓ ln 1/ 1 − ℓ . The algorithm runs in time

O 1
ℓ ln 1/ 1 − ℓ · 1

ϵ2.5 ln 1/δ · nnz R .

V. AN APPROACH VIA RANDOM PROJECTION MATRICES

Finally, we focus on perhaps the most interesting special case: the setting where at most k 
(out of n, with k ⪡ n) of the probabilities pi of the density matrix R of eqn. (2) are non-zero. 

in this setting, we prove that elegant random-projection-based techniques achieve relative 

error approximations to all probabilities pi, i = 1 … k. The running time of the proposed 

approach depends on the particular random projection that is used and can be made to 

depend on the sparsity of the input matrix.

A. Algorithm and Main Theorem

The proposed algorithm uses a random projection matrix Π to create a “sketch” of R in order 

to approximate the pis. In words, Algorithm 5 creates a sketch of the input matrix R by post-

multiplying R by a random projection matrix; this is a well-known approach from the 

RandNLA literature (see [6] for details). Assuming that R has rank at most k, which is 

equivalent to assuming that at most k of the probabilities pi in eqn. (2) are non-zero (e.g., the 

system underlying the density matrix R has at most k pure states), then the rank of RΠ is 

also at most k. In this setting, Algorithm 5 returns the non-zero singular values of RΠ as 

approximations to the pi, i = 1 … k.
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Algorithm 5

Approximating the entropy via random projection matrices

1: INPUT: Integer n (dimensions of matrix R) and integer k (with rank of R at most k ⪡ n, see eqn. (2)).

2: Construct the random projection matrix Π ∈ ℝn × s (see Section V-B for details on Π and s).

3: Compute R = RΠ ∈ ℝn × s.

4: Compute and return the (at most) k non-zero singular values of R, denoted by pi, i = 1 … k.

5: OUTPUT: pi, i = 1 … k and ℋ(R) = ∑i = 1
k pi ln 1

pi
.

The following theorem is our main quality-of-approximation result for Algorithm 5.

Theorem 10. Let R be a density matrix with at most k ⪡ n non-zero probabilities and let ϵ < 

1/2 be an accuracy parameter. Then, with probability at least 0.9, the output of Algorithm 5 

satisfies

pi2 − pi2 ≤ ϵpi2

for all i = 1 … k. Additionally,

ℋ R − ℋ R ≤ ϵℋ R + 3
2ϵ .

Algorithm 5 (combined with Algorithm 7 below) runs in time

O nnz R + nk4/ϵ4 .

Comparing the above result with Theorems 2 and 4, we note that the above theorem does not 

necessitate imposing any constraints on the probabilities pi, i = 1 … k. instead, it suffices to 

have k non-zero probabilities. The final result is an additive-relative error approximation to 

the entropy of R (as opposed to the relative error approximations of Theorems 2 and 4); 

under the mild assumption ℋ(R) ≥ ϵ, the above bound becomes a true relative error 

approximation5.

B. Two constructions for the random projection matrix

We now discuss two constructions for the matrix Π and we cite two bounds regarding these 

constructions from prior work that will be useful in our analysis. The first construction is the 

subsampled Hadamard Transform, a simplification of the Fast Johnson-Lindenstrauss 

Transform of [14]; see [15], [16] for details. We do note that even though it appears that 

Algorithm 7 is always better than Algorithm 6 (at least in terms of their respective 

5Recall that ℋ(R) ranges between zero and ln k.
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theoretical running times), both algorithms are worth evaluating experimentally: in 

particular, prior work [17] has reported that Algorithm 6 often outperforms Algorithm 7 in 

terms of empirical accuracy and running time when the input matrix is dense, as is often the 

case in our setting. Therefore, we choose to present results (theoretical and empirical) for 

both well-known constructions of Π (Algorithms 6 and 7).

Algorithm 6

The subsampled Randomized Hadamard Transform

1: INPUT: integers n, s > 0 with s ⪡ n.

2: Let S be an empty matrix.

3: For t = 1, …, s (i.i.d. trials with replacement) select uniformly at random an integer from {1, 2, …, n}.

4: If i is selected, then append the column vector ei to S, where en ∈ ℝn is the i-th canonical vector.

5: Let H ∈ ℝn × n be the normalized Hadamard transform matrix.

6: Let D ∈ ℝn × n be a diagonal matrix with Dii = +1 , with probability 1/2
−1 , with probability 1/2

7: OUTPUT: Π = DHS ∈ ℝn × s.

The following result has appeared in [7], [15], [16].

Lemma 11. Let U ∈ ℝn × k such that UTU = Ik and let Π ∈ ℝn × s be constructed by 
Algorithm 6. Then, with probability at least 0.9,

n
kUTΠΠTU − Ik 2 ≤ ϵ,

by setting s = O (k + logn) · logk
ϵ2 .

Our second construction is the input sparsity transform of [18]. This major breakthrough 

was further analyzed in [19], [20] and we present the following result from [19, Appendix 

A1].

Lemma 12. Let U ∈ ℝn × k such that UTU = Ik and let Π ∈ ℝn × k be constructed by 
Algorithm 7. Then, with probability at least 0.9,

UTΠΠTU − Ik 2 ≤ ϵ,

by setting s = O(k2/ϵ2).

We refer the interested reader to [20] for improved analyses of Algorithm 7 and its variants.

Kontopoulou et al. Page 18

IEEE Trans Inf Theory. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 7

An input-sparsity transform

1: INPUT: integers n, s > 0 with s ⪡ n.

2: Let S be an empty matrix.

3: For t = 1, …, n (i.i.d. trials with replacement) select uniformly at random an integer from {1, 2, …, s}.

4: If i is selected, then append the row vector eiT  to S, where ei ∈ ℝs is the i-th canonical vector.

5: Let D ∈ ℝn × n be a diagonal matrix with Dii = +1 , with probability 1/2
−1 , with probability 1/2

6: OUTPUT: Π = DS ∈ ℝn × s.

C. Proof of Theorem 10

At the heart of the proof of Theorem 10 lies the following perturbation bound from [8] 

(Theorem 2.3).

Theorem 13. Let DAD be a symmetric positive definite matrix such that D is a diagonal 
matrix and Aii = 1 for all i. Let DED be a perturbation matrix such that ‖E‖2 < λmin(A). Let 
λj be the i-the eigenvalue of DAD and let λi′ be the i-th eigenvalue of D(A + E)D. Then, for 

all i,

λi − λi′ ≤
E 2

λmin A .

We note that λmin(A) in the above theorem is a real, strictly positive number6. Now consider 

the matrix RΠΠTRT; we will use the above theorem to argue that its singular values are good 

approximations to the singular values of the matrix RRT. Recall that R = ΨΣpΨT where Ψ 
has orthonormal columns. Note that the eigenvalues of RRT = ΨΣp

2ΨT  are equal to the 

eigenvalues of the matrix Σp
2; similarly, the eigenvalues of ΨΣpΨTΠΠTΨΣpΨT are equal to 

the eigenvalues of ΣpΨTΠΠTΨΣp. Thus, we can compare the matrices

ΣpIkΣp and ΣpΨTΠΠTΨΣp.

In the parlance of Theorem 13, E = ΨTΠΠTΨ − Ik. Applying either Lemma 11 (after 

rescaling the matrix Π) or Lemma 12, we immediately get that ‖EA‖2 ≤ ϵ < 1 with 

probability at least 0.9. Since λmin (Ik) = 1, the assumption of Theorem 13 is satisfied. We 

note that the eigenvalues of ΣpIkΣp are equal to pi2 for i = 1 … k (all positive, which 

guarantees that the matrix ΣpIkΣp is symmetric positive definite, as mandated by Theorem 

13) and the eigenvalues of ΣpΨTΠΠTΨΣp are equal to pi
2, where pi are the singular values of 

6This follows from the fact that A is a symmetric positive definite matrix and the inequality 0 ≤ ‖E‖2 < λmin(A).
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ΣpΨTΠ. (Note that these are exactly equal to the outputs returned by Algorithm 5, since the 

singular values of ΣpΨTΠ are equal to the singular values of ΨΣpΨTΠ = RΠ). Thus, we can 

conclude:

pi2 − p i
2 ≤ ϵpi2 . (20)

The above result guarantees that all pis can be approximated up to relative error using 

Algorithm 5. We now investigate the implication of the above bound to approximating the 

von Neumann entropy of R. Indeed,

i = 1

k
pi ln 1

pi
≤

i = 1

k
1 + ϵ 1/2pi ln 1

1 − ϵ 1/2pi

≤ 1 + ϵ 1/2
i = 1

k
pi ln 1

pi
+

i = 1

k
pi ln 1

1 − ϵ 1/2

= 1 + ϵ 1/2ℋ R + 1 + ϵ
2 ln 1

1 − ϵ
≤ 1 + ϵ 1/2ℋ R + 1 + ϵ

2 ln 1 + 2ϵ

≤ 1 + ϵ ℋ R + 3
2ϵ .

In the second to last inequality we used 1/(1 − ϵ) ≤ 1 + 2ϵ for any ϵ ≤ 1/2 and in the last 

inequality we used ln(1 + 2ϵ) ≤ 2ϵ for ϵ ∈ (0, 1/2). Similarly, we can prove that:

i = 1

k
pi ln 1

pi
≥ 1 − ϵ ℋ R − 1

2ϵ .

Combining, we get

i = 1

k
pi ln 1

pi
− ℋ R ≤ ϵℋ R + 3

2ϵ .

We conclude by discussing the running time of Algorithm 5. Theoretically, the best choice is 

to combine the matrix Π from Algorithm 7 with Algorithm 5, which results in a running time

O nnz R + nk4/ϵ4 .

D. The Hermitian case

The above approach via random projections critically depends on Lemmas 11 and 12, 

which, to the best of our knowledge, have only been proven for the real case. These results 

are typically proven using matrix concentration inequalities, which are well-explored for 

sums of random real matrices but less explored for sums of real complex matrices. We leave 

it as an open problem to extend the theoretical analysis of our approach to the Hermitian 

case.
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VI. EXPERIMENTS

In this section we report experimental results in order to demonstrate the practical efficiency 

of our algorithms. We show that our algorithms are both numerically accurate and 
computationally efficient. Our algorithms were implemented in Matlab R2016a on a 

compute node with two 10-Core Intel Xeon-E5 processors (2.60GHz) and 512 GBs of 

RAM.

We generated random density matrices for most of which we used the QETLAB Matlab 

toolbox [9] to derive (realvalued) density matrices of size 5, 000 × 5, 000, on which most of 

our extensive evaluations were run. We also tested our methods on a much larger 30, 000 × 

30, 000 density matrix, which was close to the largest matrix that Matlab would allow us to 

load. We used the function RandomDensityMatrix of QETLAB and the Haar measure; we 

also experimented with the Bures measure to generate random matrices, but we did not 

observe any qualitative differences worth reporting. Recall that exactly computing the Von-

Neumann entropy using eqn. (1) presumes knowledge of the entire spectrum of the matrix; 

to compute all singular values of a matrix we used the svd function of Matlab. The accuracy 

of our proposed approximation algorithms was evaluated by measuring the relative error; 

wall-clock times were reported in order to quantify the speedup that our approximation 

algorithms were able to achieve.

A. Empirical results for the Taylor and Chebyshev approximation algorithms

We start by reporting results on the Taylor and Chebyshev approximation algorithms, which 

have two sources of error: the number of terms that are retained in either the Taylor series 

expansion or the Chebyshev polynomial approximation and the trace estimation that is used 

in both approximation algorithms. We will separately evaluate the accuracy loss that is 

contributed by each source of error in order to understand the behavior of the proposed 

approximation algorithms.

Consider a 5, 000 × 5, 000 random density matrix and let m (the number of terms retained in 

the Taylor series approximation or the degree of the polynomial used in the Chebyshev 

polynomial approximation) range between five and 30 in increments of five. Let s, the 

number of random Gaussian vectors used to estimate the trace, be set to {50,100,200, 300}. 

Recall that our error bounds for Algorithms 1 and 2 depend on u, an estimate for the largest 

eigenvalue of the density matrix. We used the power method to estimate the largest 

eigenvalue (let λmax be the estimate) and we set u to λmax and 6λmax. Figures 1 and 2 show 

the relative error (out of 100%) for all combinations of m, s, and u for the Taylor and 

Chebyshev approximation algorithms. It is worth noting that we also report the error when 

no trace estimation (NTE) is used in order to highlight that most of the accuracy loss is due 

to the Taylor/Chebyshev approximation and not the trace estimation.

We observe that the relative error is always small, typically close to 1-2%, for any choice of 

the parameters s, m, and u. The Chebyshev algorithm returns better approximations when u 
is an overestimate for λmax while the two algorithms are comparable (in terms of accuracy) 

where u is very close to λmax, which agrees with our theoretical results. We also note that 

estimating the largest eigenvalue incurs minimal computational cost (less than one second). 
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The NTE line (no trace estimation) in the plots serves as a lower bound for the relative error. 

Finally, we note that computing the exact Von-Neumann entropy took approximately 1.5 

minutes for matrices of this size.

The second dataset that we experimented with was a much larger density matrix of size 30, 

000 × 30, 000. This matrix was the largest matrix for which the memory was sufficient to 

perform operations like the full SVD. Notice that since the increase in the matrix size is six-

fold compared to the previous one and SVD’s running time grows cubically with the input 

size, we expect the running time to compute the exact SVD to be roughly 63 · 90 seconds, 

which is approximately 5.4 hours; indeed, the exact computation of the Von-Neumann 

entropy took approximately 5.6 hours. We evaluated both the Taylor and the Chebyshev 

approximation schemes by setting the parameters m and s to take values in the sets {5, 10, 

15, 20} and {50, 100, 200}, respectively. The parameter u was set to λmax, where the latter 

value was computed using the power method, which took approximately 3.6 minutes. We 

report the wall-clock running times and relative error (out of 100%) in Figures 5 and 4.

We observe that the relative error is always less than 1% for both methods, with the 

Chebyshev approximation yielding almost always slightly better results. Note that our 

Chebyshev-polynomial-based approximation algorithm significantly outperformed the exact 

computation: e.g., for m = 5 and s = 50, our estimate was computed in less than ten minutes 

and achieved less than .2% relative error.

The third dataset we experimented with was the tridiagonal matrix from [12, Section 5.1]:

A =

2 −1 0 … 0
−1 2 −1 ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ −1 2 −1
0 … 0 −1 2

(21)

This matrix is the coefficient matrix of the discretized onedimensional Poisson equation:

f x = −
d2vx
dx

defined in the interval [0, 1] with Dirichlet boundary conditions v(0) = v(1) = 0. We 

normalize A by dividing it with its trace in order to make it a density matrix. Consider the 5, 

000 × 5, 000 normalized matrix A and let m (the number of terms retained in the Taylor 

series approximation or the degree of the polynomial used in the Chebyshev polynomial 

approximation) range between five and 30 in increments of five. Let s, the number of 

random Gaussian vectors used for estimating the trace be set to 50, 100, 200, or 300. We 

used the formula

λi = 4
2nsin2 iπ

2n + 2 , i = 1, …, n (22)
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to compute the eigenvalues of A (after normalization) and we set u to λmax and 6λmax. 

Figures 6 and 7 show the relative error (out of 100%) for all combinations of m, s, and u for 

the Taylor and Chebyshev approximation algorithms. We also report the error when no trace 

estimation (NTE) is used.

We observe that the relative error is higher than the one observed for the 5, 000 × 5, 000 

random density matrix. We report wall-clock running times in Figure 8. The Chebyshev-

polynomial-based algorithm returns better approximations for all choices of the parameters 

and, in most cases, is faster than the Taylor-polynomial-based algorithm, e.g. for m = 5, s = 

50 and u = λmax, our estimate was computed in about two seconds and achieved less 

than .5% relative error.

We further considered a 108 × 108 tridiagonal matrix of the form of eqn. (21). Although an 

exact computation of the singular values of A is not feasible (at least with our computational 

resources), such a computation is not necessary since eqn. (22) provides a closed formula for 

its eigenvalues and, thus, its entropy. Let m (the number of terms retained in the Taylor 

series approximation or the degree of the polynomial used in the Chebyshev polynomial 

approximation) be equal to five or ten and let s, the number of random Gaussian vectors 

used to estimate the trace be equal to 50 or 100. Figures 9 and 10 show the relative error (out 

of 100%) and the runtime, respectively, for all combinations of m and s for both the Taylor 

and Chebyshev approximation algorithms. We observe that in both cases we estimated the 

entropy in less than ten minutes with a relative error below 0.15%.

The fourth dataset we experimented with includes 5, 000 × 5, 000 density matrices whose 

first top-k eigenvalues follow a linear decay and the remaining 5, 000 – k a uniform 

distribution. Let k, the number of eigenvalues that follow the linear decay, take values in the 

set {50, 1000, 3500, 5000}. Let m, the number of terms retained in the Taylor series 

approximation or the degree of the polynomial used in the Chebyshev polynomial 

approximation, range between five and 30 in increments of five. Let s, the number of 

random Gaussian vectors used to estimate the trace, be set to {50, 100, 200, 300}. The 

estimate of the largest eigenvalue u is set to λmax. Figures 11 to 14 show the relative error 

(out of 100%) for all combinations of k, m, s, and u for the Taylor and Chebyshev 

approximation algorithms.

We observe that the relative error is decreasing as k increases. It is worth noting that when k 
= 3,500 and k = 5, 000 the Taylor-polynomial-based algorithm returns better relative error 

approximation than the Chebyshev-polynomial-based algorithm. In the latter case we 

observe that the relative error of the Taylor-based algorithm is almost zero. This observation 

has a simple explanation. Figure 15 shows the distribution of the eigenvalues in the four 

cases we examine. We observe that for k = 50 the eigenvalues are spread in the interval (10
—2, 10−4); for k = 1, 000 the eigenvalues are spread in the interval (10−3, 10−4); while for k 
= 3, 500 or k = 5, 000 the eigenvalues are of order 10−4. It is well known that the Taylor 

polynomial returns highly accurate approximations when it is computed on values lying 

inside the open disc centered at a specific value u, which, in our case, is the approximation 

to the dominant eigenvalue. The radius of the disk is roughly r = λm+1/λm, where m is the 

degree of the Taylor polynomial. If r ≤ 1 then the Taylor polynomial converges; otherwise it 
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diverges. Figure 16 shows the convergence rate for various values of k. We observe that for k 
= 50 the polynomial diverges, which leads to increased errors for the Taylor-based 

approximation algorithm (reported error close to 23%). In all other cases, the convergence 

rate is close to one, resulting in negligible impact to the overall error.

In all four cases, the Chebyshev-polynomial based algorithm behaves better or similar to the 

Taylor-polynomial based algorithm. It is worth noting that when the majority of the 

eigenvalues are clustered around the smallest eigenvalue, then to achieve relative error 

similar to the one observed for the QETLAB random density matrices, more than 30 

polynomial terms need to be retained, which increases the computational time of our 

algorithms. The increase of the computational time as well as the increased relative error can 

be justified by the large condition number that these matrices have (remember that for both 

approximation algorithms the running time depends on the approximate condition number 

u/l). As an example, for k = 50, the condition number is in the order of hundreds which is 

significant larger than the roughly constant condition number when k = 5, 000.

B. Empirical Results for the Hermitian Case

Our last dataset is a random 5, 000 × 5, 000 complex density matrix generated using the 

QETLAB Matlab toolbox. We used the function RandomDensityMatrix of QETLAB and the 

Haar measure. Let m (the number of terms retained in the Taylor series approximation or the 

degree of the polynomial used in the Chebyshev polynomial approximation) range between 

five and 30 in increments of five. Let s, the number of random Gaussian vectors used to 

estimate the trace, be set to {50, 100, 200, 300}. Figures 17 and 18 show the relative error 

(out of 100%) for all combinations of m, s, and u for the Taylor-based and Chebyshev-based 

approximation algorithms respectively.

We observe that the relative error is always small, typically below 1%, for any choice of the 

parameters s and m. The NTE line (no trace estimation) in the plots serves as a lower bound 

for the relative error. We note that computing the exact Von-Neumann entropy took 

approximately 52 seconds for matrices of this size. Finally, our algorithm seems to 

outperform exact computation of the von-Neumann entropy by approximating it in about ten 

seconds (for the Taylor-based approach) with a relative error of 0.5% using 100 random 

Gaussian vectors and retaining ten Taylor terms (see Fig. 19) or in about 18 seconds (for the 

Chebyshev-based approach) with a relative error of 0.2% using 50 random Gaussian vectors 

and five Chebyshev polynomials (see Fig. 20) .

C. Empirical results for the random projection approximation algorithms

In order to evaluate our third algorithm, we generated low-rank random density matrices 

(recall that the algorithm of Section V works only for random density matrices of rank k 
with k ⪡ n). Additionally, in order to evaluate the subsampled randomized Hadamard 

transform and avoid padding with allzero rows, we focused on values of n (the number of 

rows and columns of the density matrix) that are powers of two. Finally, we also evaluated a 

simpler random projection matrix, namely the Gaussian random matrix, whose entries are all 

Gaussian random variables with zero mean and unit variance.
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We generated low rank random density matrices with exponentially (using the QETLAB 

Matlab toolbox) and linearly decaying eigenvalues. The sizes of the density matrices we 

tested were 4, 096 × 4, 096 and 16, 384 × 16, 384. We also generated much larger 30, 000 × 

30, 000 random matrices on which we only experimented with the Gaussian random 

projection matrix.

We computed all the non-zero singular values of a matrix using the svds function of Matlab 

in order to take advantage of the fact that the target density matrix has low rank. The 

accuracy of our proposed approximation algorithms was evaluated by measuring the relative 

error; wall-clock times were reported in order to quantify the speedup that our 

approximation algorithms were able to achieve.

We start by reporting results for Algorithm 5 using the Gaussian, the subsampled 

randomized Hadamard transform (Algorithm 6), and the input-sparsity transform (Algorithm 

7) random projection matrices. Consider the 4, 096 × 4, 096 low rank density matrices and 

let k, the rank of the matrix, be 10, 50, 100, and 300. Let s, the number of columns of the 

random projection matrix, range from 50 to 1,000 in increments of 50. Figures 21 and 22 

depict the relative error (out of 100%) for all combinations of k and s. We also report the 

wall-clock running times for values of s between 300 and 450 at Figure 23.

We observe that in the case of the random matrix with exponentially decaying eigenvalues 

and for all algorithms the relative error is under 0.3% for any choice of the parameters k and 

s and, as expected, decreases as the dimension of the projection space s grows larger. 

Interestingly, all three random projection matrices returned essentially identical accuracies 

and very comparable wall-clock running time results. This observation is due to the fact that 

for all choices of k, after scaling the matrix to unit trace, the only eigenvalues that were 

numerically non-zero were the 10 dominant ones.

In the case of the random matrix with linearly decaying eigenvalues (and for all algorithms) 

the relative error increases as the rank of the matrix increases and decreases as the size of the 

random projection matrix increases. This is expected: as the rank of the matrix increases, a 

larger random projection space is needed to capture the “energy” of the matrix. Indeed, we 

observe that for all values of k, setting s = 1, 000 guarantees a relative error under 1%. 

Similarly, for k = 10, the relative error is under 0.3% for any choice of s.

The running time depends not only on the size of the matrix, but also on its rank, e.g. for k = 

100 and s = 450, our approximation was computed in about 2.5 seconds, whereas for k = 

300 and s = 450, it was computed in less than one second. Considering, for example, the 

case of k = 300 exponentially decaying eigenvalues, we observe that for s = 400 we achieve 

relative error below 0.15% and a speedup of over 60 times compared to the exact 

computation. Finally, it is observed that all three algorithms returned very comparable wall-

clock running time results. This observation could be due to the fact that matrix 

multiplication is heavily optimized in Matlab and therefore the theoretical advantages of the 

Hadamard transform did not manifest themselves in practice.

The second dataset we experimented with was a 16,384 × 16,384 low rank density matrix. 

We set k = 50 and k = 500 and we let s take values in the set {500, 1000, 1500, …, 3000, 
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3500}. We report the relative error (out of 100%) for all combinations of k and s in Figure 

24 for the matrix with exponentially decaying eigenvalues and in Figure 25 for the matrix 

with linearly decaying eigenvalues. We also report the wall-clock running times for s 

between 500 and 2,000 in Figure 26. We observe that the relative error is typically around 

1% for both types of matrices, with running times ranging between ten seconds and four 

minutes, significantly outperforming the exact entropy computation which took 

approximately 3.6 minutes for the rank 50 approximation and 20 minutes for the rank 500 

approximation.

The last dataset we experimented with was a 30, 000 × 30, 000 low rank density matrix on 

which we ran Algorithm 5 using a Gaussian random projection matrix. We set k = 50 and k 
= 500 and we let s take values in the set {500, 1000, 1500, …, 3000, 3500}. We report the 

relative error (out of 100%) for all combinations of k and s in Figure 27 for the matrix with 

exponentially decaying eigenvalues and in Figure 28 for the matrix with the linearly 

decaying eigenvalues. We also report the wall-clock running times for s ranging between 

500 and 2, 000 in Figure 29. We observe that the relative error is typically around 1% for 

both types of matrices, with the running times ranging between 30 seconds and two minutes, 

outperforming the exact entropy which was computed in six minutes for the rank 50 

approximation and in one hour for the rank 500 approximation.

VII. CONCLUSIONS AND OPEN PROBLEMS

We presented and analyzed three randomized algorithms to approximate the von Neumann 

entropy of density matrices. Our algorithms leverage recent developments in the RandNLA 

literature: randomized trace estimators, provable bounds for the power method, the use of 

random projections to approximate the singular values of a matrix, etc. All three algorithms 

come with provable accuracy guarantees under assumptions on the spectrum of the density 

matrix. Empirical evaluations on 30, 000 × 30, 000 synthetic density matrices support our 

theoretical findings and demonstrate that we can efficiently approximate the von Neumann 

entropy in a few minutes with minimal loss in accuracy, whereas an the exact computation 

takes over 5.5 hours.

An interesting open problem would be to consider the estimation of the cross entropy. The 

cross entropy is a measure between two probability distributions and is particularly 

important in information theory. Algebraically, it can be defined as ℋ(S, R) = − tr(SlogR), 
where S ∈ ℂn × n and R ∈ ℂn × n are density matrices with a full set of pure states. One can 

further extend our polynomial-based approaches using the Taylor expansion or the 

Chebyshev polynomials to approximate the matrix Γ = S log R. The case where both or one 

of the density matrices have an incomplete set of pure states is an open problem: if R is low-

rank, then our first two approaches would not work for the reasons discussed in Section V. 

However, if the only low rank matrix is S, then our first two approaches would still work: S 
is only appearing in the trace estimation part, and having eigenvalues equal to zero does not 

affect the positive semi-definiteness of Γ. When R is of low rank then one might be able to 

use our random projection approaches to reduce its dimensionality and/or the dimensionality 

of S.
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The most important open problem is to relax (or eliminate) the assumptions associated with 

our three key technical results without sacrificing our running time guarantees. It would be 

critical to understand whether our assumptions are, for example, necessary to achieve 

relative error approximations and either provide algorithmic results that relax or eliminate 

our assumptions or provide matching lower bounds and counterexamples.
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Appendix A: The power method

We consider the well-known power method to estimate the largest eigenvalue of a matrix. In 

our context, we will use the power method to estimate the largest probability pi for a density 

matrix R.

Algorithm 8 requires O(qt(n + nnz(A))) arithmetic operations to compute p1. The following 

lemma appeared in [4], building upon [13].

Lemma 14. Let p1 be the output of Algorithm 8 with q = ⌈4.82 log(1/δ)⌉ and t = log 4n . 

Then, with probability at least 1 − δ,

1
6 p1 ≤ p1 ≤ p1 .

Algorithm 8

Power method repeated q times.

• INPUT: SPD matrix A ∈ ℝn × n, integers q, t > 0.

• For j = 1, …, q

  1) Pick uniformly at random a vector x0
j{ + 1, − 1}n

.

  2) For i = 1, …, t

   – xi
j = A · xi − 1

j
.

  3) Compute: p1
j =

xt
jTAxt

j

xt
jTxt

j
.

• OUTPUT: p1 = maxj = 1…qp1
j

.

The running time of Algorithm 8 is O((n + nnz(A))log(n)log(1
δ )).

Kontopoulou et al. Page 27

IEEE Trans Inf Theory. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix B: The Clenshaw Algorithm

We briefly sketch Clenshaw’s algorithm to evaluate Chebyshev polynomials with matrix 

inputs. Clenshaw’s algorithm is a recursive approach with base cases bm+2(x) = bm+1(x) = 0 

and the recursive step (for k = m, m − 1, …, 0):

bk x = αk + 2xbk + 1 x − bk + 2 x . (23)

(See Section III for the definition of αk.) Then,

fm x = 1
2 α0 + b0 x − b2 x (24)

Using the mapping x → 2(x/u) − 1, eqn. (23) becomes

bk x = αk + 2 2
ux − 1 bk + 1 x − bk + 2 x . (25)

In the matrix case, we substitute x by a matrix. Therefore, the base cases are Bm+2(R) = 

Bm+1(R) = 0 and the recursive step is

Bk R = αkIn + 2 2
uR − In Bk + 1 R − Bk + 2 R (26)

for k = m, m − 1, …, 0. The final sum is

fm R = 1
2 α0In + B0 R − B2 R . (27)

Using the matrix version of Clenshaw’s algorithm, we can now rewrite the trace estimation 

gT fm(R)g as follows. First, we right multiply eqn. (26) by g,

Bk R g = αkIng + 2 2
uR − In Bk + 1 R g − Bk + 2 R g,

yk = αkg + 2 2
uR − In yk + 1 − yk + 2 .

(28)

Eqn. (28) follows by substituting yi = Bi(R)g. Multiplying the base cases by g, we get ym+2 

= ym+1 = 0 and the final sum becomes

gTfm R g = 1
2 α0 gTg + gT y0 − y2 . (29)

Algorithm 9 summarizes all the above.

Algorithm 9

Clenshaw’s algorithm to compute gT fm(R)g.

1: INPUT: αi, i = 0, …, m, R ∈ ℝn × n, g ∈ ℝn
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2: Set ym+2 = ym+1 = 0

3: for k = m, m − 1, …, 0 do

4:  yk = αkg + 4
u Ryk + 1 − 2yk + 1 − yk + 2

5: end for

6: OUTPUT: gTfm(R)g = 1
2 (α0(gTg) + gT(y0 − y2))
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Fig. 1. 
Relative error for 5, 000 × 5, 000 density matrix using the Taylor and the Chebyshev 

approximation algorithms with u = λmax.
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Fig. 2. 
Relative error for 5, 000 × 5, 000 density matrix using the Taylor and the Chebyshev 

approximation algorithms with u = λmax.
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Fig. 3. 
Time (in seconds) to run the approximate algorithms for the 5, 000 × 5, 000 density matrix 

for m = 5. Exactly computing the Von-Neumann entropy took approximately 90 seconds.
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Fig. 4. 
Relative error for 30, 000 × 30, 000 density matrix using the Taylor and the Chebyshev 

approximation algorithms with u = λmax.
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Fig. 5. 
Wall-clock times: Taylor approximation (blue) and Chebyshev approximation (red) for 

u = λmax. Exact computation needed approximately 5.6 hours.
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Fig. 6. 
Relative error for 5, 000 × 5, 000 tridiagonal density matrix using the Taylor and the 

Chebyshev approximation algorithms with u = λmax.
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Fig. 7. 
Relative error for 5, 000 × 5, 000 tridiagonal density matrix using the Taylor and the 

Chebyshev approximation algorithms with u = 6λmax.
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Fig. 8. 
Wall-clock times: Taylor approximation (blue) and Chebyshev approximation (red) for m = 

5. Exact computation needed approximately 30 seconds.
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Fig. 9. 
Relative error for the 108 × 108 tridiagonal density matrix using the Taylor and the 

Chebyshev approximation algorithms with u = λmax.
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Fig. 10. 
Wall-clock times: Taylor approximation (blue) and Chebyshev approximation (red) for the 

108 × 108 triadiagonal density matrix. Exact computation using the Singular Value 

Decomposition was infeasible using our computational resources.
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Fig. 11. 
Relative error for 5, 000 × 5, 000 density matrix with the top-50 eigenvalues decaying 

linearly using the Taylor and the Chebyshev approximation algorithms with u = λmax.
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Fig. 12. 
Relative error for 5, 000 × 5, 000 density matrix with the top-1000 eigenvalues decaying 

linearly using the Taylor and the Chebyshev approximation algorithms with u = λmax.
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Fig. 13. 
Relative error for 5, 000 × 5, 000 density matrix with the top-3500 eigenvalues decaying 

linearly using the Taylor and the Chebyshev approximation algorithms with u = λmax.
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Fig. 14. 
Relative error for 5, 000 × 5, 000 density matrix with the top-5000 eigenvalues decaying 

linearly using the Taylor and the Chebyshev approximation algorithms with u = λmax.
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Fig. 15. 
Eigenvalue distribution of 5, 000 × 5, 000 density matrices with the top-k = {50, 1000, 3500, 

5000} eigenvalues decaying linearly and the remaining ones (5, 000 – k) following a 

uniform distribution.
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Fig. 16. 
Convergence radius of the Taylor polynomial for the 5, 000 × 5, 000 density matrices with 

the top-k = {50, 1000, 3500, 5000} eigenvalues decaying linearly and the remaining ones (5, 

000 – k) following a uniform distribution.
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Fig. 17. 
Relative error for 5, 000 × 5, 000 density matrix using the approximation algorithm.
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Fig. 18. 
Relative error for 5, 000 × 5, 000 density matrix using the Chebyshev approximation 

algorithm.
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Fig. 19. 
Time (in seconds) to run the Taylor-based algorithm for the 5, 000 × 5, 000 density matrix 

for all combinations of m and s. Exactly computing the Von-Neumann entropy took 

approximately 52 seconds, designated by the straight horizontal line in the figure.
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Fig. 20. 
Time (in seconds) to run the Chebyshev-based algorithm for the 5, 000 × 5, 000 density 

matrix for all combinations of m and s. Exactly computing the Von-Neumann entropy took 

approximately 52 seconds, designated by the straight horizontal line in the figure.
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Fig. 21. 
Relative error for the 4, 096 × 4, 096 rank-k density matrix with exponentially decaying 

eigenvalues using Algorithm 5 with the Gaussian (red), the subsampled randomized 

Hadamard transform (blue), and the input sparsity transform (black) random projection 

matrices.
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Fig. 22. 
Relative error for the 4, 096 × 4, 096 rank-k density matrix with linearly decaying 

eigenvalues using Algorithm 5 with the Gaussian (red), the subsampled randomized 

Hadamard transform (blue), and the input sparsity transform (black) random projection 

matrices.
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Fig. 23. 
Wall-clock times: Algorithm 5 on 4, 096 × 4, 096 random matrices, with the Gaussian 

(blue), the subsampled randomized Hadamard transform (red) and the input sparsity 

transform (orange) projection matrices. The exact entropy was computed in 1.5 seconds for 

the rank-10 approximation, in eight seconds for the rank-50 approximation, in 15 seconds 

for the rank-100 approximation, and in one minute for the rank-300 approximation.
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Fig. 24. 
Relative error for the 16, 384 × 16, 384 rank-k density matrix with exponentially decaying 

eigenvalues using Algorithm 5 with the Gaussian (red), the subsampled randomized 

Hadamard transform (blue), and the input sparsity transform (black) random projection 

matrices.
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Fig. 25. 
Relative error for the 16, 384 × 16, 384 rank-k density matrix with linearly decaying 

eigenvalues using Algorithm 5 with the Gaussian (red), the subsampled randomized 

Hadamard transform (blue), and the input sparsity transform (black) random projection 

matrices.
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Fig. 26. 
Wall-clock times: Algorithm 5 with the Gaussian (blue), the subsampled randomized 

Hadamard transform (red) and the input sparsity transform (orange) projection matrices. The 

exact entropy was computed in 1.6 minutes for the rank 50 approximation and in 20 minutes 

for the rank 500 approximation.
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Fig. 27. 
Relative error for the 30, 000 × 30, 000 rank-k density matrix with exponentially decaying 

eigenvalues using Algorithm 5 with the Gaussian random projection matrix for k = 50 (red) 

and for k = 500 (blue).
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Fig. 28. 
Relative error for the 30, 000 × 30, 000 rank-k density matrix with linearly decaying 

eigenvalues using Algorithm 5 with the Gaussian random projection matrix for k = 50 (red) 

and for k = 500 (blue).
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Fig. 29. 
Wall-clock times: rank-50 approximation (blue) and rank-500 approximation (red). Exact 

computation needed about six minutes and one hour respectively.
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