Skip to main content
. Author manuscript; available in PMC: 2021 Mar 18.
Published in final edited form as: IEEE Trans Inf Theory. 2018 Aug 16;66(8):5003–5021. doi: 10.1109/tit.2020.2971991

Algorithm 1.

A Taylor series approach to estimate the entropy.

1: INPUT: RRn×n, accuracy parameter ε > 0, failure probability δ, and integer m > 0.
2: Compute p~1, the estimate of the largest eigenvalue of R, p1, using Algorithm 8 (see Appendix) with t=O(lnn) and q=O(ln(1/δ)).
3: Set u=min{1,6p~1}.
4: Set s = ⌈20 ln(2/δ)/ε2⌉.
5: Let g1,g2,,gsRn be i.i.d. random Gaussian vectors.
6: OUTPUT: return H^(R)=lnu1+1si=1sk=1mgiTR(Inu1R)kgik.