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Abstract

Disease epidemic outbreaks on human metapopulation networks are often driven by a small

number of superspreader nodes, which are primarily responsible for spreading the disease

throughout the network. Superspreader nodes typically are characterized either by their

locations within the network, by their degree of connectivity and centrality, or by their habitat

suitability for the disease, described by their reproduction number (R). Here we introduce a

model that considers simultaneously the effects of network properties and R on supersprea-

ders, as opposed to previous research which considered each factor separately. This type

of model is applicable to diseases for which habitat suitability varies by climate or land

cover, and for direct transmitted diseases for which population density and mitigation prac-

tices influences R. We present analytical models that quantify the superspreader capacity of

a population node by two measures: probability-dependent superspreader capacity, the

expected number of neighboring nodes to which the node in consideration will randomly

spread the disease per epidemic generation, and time-dependent superspreader capacity,

the rate at which the node spreads the disease to each of its neighbors. We validate our ana-

lytical models with a Monte Carlo analysis of repeated stochastic Susceptible-Infected-

Recovered (SIR) simulations on randomly generated human population networks, and we

use a random forest statistical model to relate superspreader risk to connectivity, R, central-

ity, clustering, and diffusion. We demonstrate that either degree of connectivity or R above a

certain threshold are sufficient conditions for a node to have a moderate superspreader risk

factor, but both are necessary for a node to have a high-risk factor. The statistical model pre-

sented in this article can be used to predict the location of superspreader events in future

epidemics, and to predict the effectiveness of mitigation strategies that seek to reduce the

value of R, alter host movements, or both.

Author summary

Infectious disease outbreaks on human mobility networks often are driven by a small

number of superspreader individuals or communities, which are primarily responsible for
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propagating the disease throughout the network. In this paper, we introduce a model that

considers how the properties of the network and spatial variance in disease transmission

intensity (i.e., the reproduction number) due to social and ecological conditions interact

to influence the occurrence of superspreaders. This type of model is applicable to diseases

for which habitat suitability is influenced by climate or land cover, such as vector-borne

diseases, and to directly transmitted diseases for which population density and practices

to mitigate transmission may vary spatially. We present mathematical models that quan-

tify the superspreader capacity of a population node, based on the extent area of the dis-

ease spread attributable to that node and the rate at which the disease spreads. We validate

our models with a simulation of epidemic spread across randomly generated networks.

The statistical model presented here can be used to predict the location of superspreader

events in future epidemics and to predict the effectiveness of mitigation strategies that

seek to reduce the disease reproduction rate, alter host movements, or both.

Introduction

Network spreading phenomena, including epidemic disease spread and information diffusion

on social media, tend to be fueled by a small number of individuals in the network. Known as

the 20/80 rule or the Pareto principle [1], this pattern is apparent in a variety of infectious dis-

ease systems, including the 2003 SARS outbreak in Hong Kong [2], the 2015 MERS outbreak

in South Korea [3], and most recently, the COVID-19 pandemic [4]. The concept of super-

spreaders can be expanded from individuals to include entire communities. In a metapopula-

tion network in which each node represents a city, for example, a few nodes containing highly

trafficked airports or other transportation hubs are typically responsible for propagation of the

outbreak throughout the network [5]. The identification of these superspreader nodes is an

important topic of research in network science and spatial epidemiology, to reduce the area or

velocity of disease outbreak spread.

A node’s potential as a superspreader is often estimated based on a variety of network char-

acteristics [6]. Early studies of superspreading dynamics were based on stochastic models, in

which each node has a given probability of transmitting the disease to a neighboring node.

Therefore, nodes with more neighbors, i.e., higher connectivity, would be expected to spread

the disease to a greater portion of the network [7]. More complex models consider not only a

node’s degree of connectivity but also the connectivity of its neighbors [8]. Superspreader met-

rics that consider the structure of the entire network include centrality (i.e., the inverse of the

node’s average distance to all other nodes) and k-core values (i.e., the node’s location in the

core area of the network) [9], both of which pertain to the potential for a pathogen to dissemi-

nate from a given node to the rest of the network. Several studies develop novel definitions of

centrality that are particularly well suited to identifying superspreaders because they consider

the paths that a pathogen might take to spread through the network [10–13].

None of these network-based approaches to predicting superspreader status consider the

common situation that the severity of an epidemic, characterized by either its infection rate or

its reproduction number R0, may vary in space. For instance, for vector-borne diseases, where

R0 is directly related to the habitat suitability for production of the disease vector [14], species

distribution models are developed to estimate the probability of presence of vectors based on

environmental, climate, and socioeconomic variables [15]. Directly transmitted diseases, such

as influenza, are also dependent on spatial factors as their transmission rates may depend on

environmental variables such as local temperature and relative humidity [16]. Human factors
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such as population density and efforts to mitigate disease spread, such as social distancing,

quarantines, and sanitation, also affect transmission rates of directly transmitted diseases

based on location [17]. Superimposing a metapopulation network, derived from census data

and travel routes, on a spatial map of transmission rates to produce a joint metapopulation

network/spatial R0 model is a useful and underexplored approach to visualize and analyze mul-

tiple, interacting potential drivers of pathogen spread simultaneously.

Empirical methods to determine superspreader potential typically involve simulating an

outbreak originating from a particular node and measuring the extent of disease spread, in

terms of the total number of infected nodes, a process which can be computationally intensive

for large networks [18]. This study introduces two definitions of superspreader capacity, based

on the number of nodes that become infected and the rate of the disease spread originating

from a single node, and provides analytical models to predict these based on a node’s connec-

tivity, R0, and diffusion, along with the properties of its neighbors. We validate these analytical

models using a Monte Carlo simulation, involving hundreds of randomized networks super-

imposed on random R0 spatial fields. In each simulation, the superspreader capacity of each

node is measured, along with several key metrics including degree of connectivity, clustering,

centrality, R0, and diffusion. These data are then used to construct a random forest regression

model which predicts the superspreader capacity of any node in a metapopulation network

based on its properties [19]. In theory, any real-world metapopulation network, along with a

spatial map of R0 values, can be input to this model to produce a superspreader risk map for a

potential future epidemic.

Methods

Metapopulation SIR model

The classic SIR (Susceptible-Infected-Recovered) epidemiological model is a mathematical

framework to characterize the transmission dynamics of an infectious disease. Individuals

from an at-risk population of size N are classified among three states (i.e., susceptible; infected;

or recovered). Individuals transition from the susceptible to the infected state based upon the

transmission rate β, and from the infected to the recovered state based upon the recovery rate

μ. The stochastic SIR model, used in this article, proceeds as follows:

1. The simulation time is incremented by a chosen value dt.

2. If at least one individual in the population is infected, a random selection of Susceptible

individuals become Infected, as a binomial distribution with probability 1 � 1 � b�dt
N

� �I
,

where I is the current number of infected individuals. This reflects the assumption that each

individual has an independently distributed probability of becoming infected.

3. Simultaneously, a random selection of Infected individuals become Recovered, as a bino-

mial distribution with probability μ � dt.

4. The simulation repeats, over each time step, until no infected individuals remain.

A metapopulation SIR model is an elaboration of the basic model that considers a network

of population centers or nodes, each with its own set of SIR equations, and the rates of popula-

tion migration between nodes [20]. Individuals migrate from node i to node j based on a

mobility matrix Mij, which is typically calibrated by a diffusion parameter p [21]. Here, the

processes of transmission, recovery, and migration are simulated stochastically, as described in

the Monte Carlo Method section. A node is designated as “infected” when it has at least one

infected individual. For the purposes of this study we quantify the spread of the epidemic by
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the number of infected nodes over time, as we are concerned with measuring the growing area

of the epidemic spread.

Network generation

For our Monte Carlo simulation, we generate a series of random population networks that

exhibit properties of scale-free, small-world, and triangulation models [22–24]. This allows us

to construct and test models that have a wide range of metrics for connectivity, clustering, and

centrality. The algorithm is as follows. A scale-free network with n nodes, each representing a

homogeneous community, is constructed from m0 seed nodes to produce a network with

degree distribution P(k)/ k−3 [22]. A forcing algorithm is used to plot this network geographi-

cally, scaled so that the average length of any edge is 1. From this, a fraction b of all edges are

rewired randomly to generate small-world properties (i.e. a short nodal distance between any

pair of nodes). Finally, to simulate node clustering, a Delaunay triangulation method is used to

connect any nodes within a certain distance threshold d. The typical uniformly distributed

random ranges of values for each parameter are as follows:

• n: 500

• m0: 1-5

• b: 0-0.1

• d: 0-1

This algorithm creates networks with an average connectivity degree of 3. The majority of

nodes have connectivity less than 10, with hub nodes ranging from 20 to 140. About one third

of networks have an average clustering coefficient of nearly 0, the rest are distributed between

0 and 0.5, with most networks between 0.25 and 0.4. The average centrality among networks

ranges from 0.14 to 0.26, with a peak at 0.18. This algorithm allows for the rapid generation of

human mobility networks that bear a resemblance to real-world case studies [25].

Monte Carlo method

After a network has been constructed, a random value of diffusion p is assigned, ranging from

0.1 to 1, and movement heterogeneity θ is assigned as 0.5. A population of 500 � n individuals

is assigned to the network, such that the population of each node N is proportional to k1+θ. All

of these individuals are initially classified as Susceptible. The mobility matrix is then defined

based on a traffic-dependent model, Mij ¼ p ðkikjÞ
y

Ak1þy
i

, where A is a calibration factor. The recovery

rate μ is set to 1, and β is assigned over a continuous spatial field with an exponential distribu-

tion with mean 1.5, to mimic spatial variability in the reproduction rate of seasonal influenza

[26]. R0 fields generated with this method tend to feature a few hot spots with multiple inci-

dences of spatial clustering. Based on this spatial field, an infection rate value βi is assigned to

each node, and a reproduction rate Ri is computed as βi/μ.

We introduce 10 infected individuals to one node chosen at random, build a tree data struc-

ture with this node at the root, and run a stochastic metapopulation SIR simulation on the net-

work. At each time interval of duration dt, the following steps are taken:

1. In each node i with at least one Infected individual, a random selection of Susceptible indi-

viduals become Infected, as a binomial distribution with probability 1 � 1 �
bidt
Ni

� �Ii
. A ran-

dom selection of Infected individuals become Recovered, as a binomial distribution with

probability μ � dt.
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2. A random selection of individuals moves from node i to each neighboring node j, as a bino-

mial distribution with probability p � dt �
k1þy
jX
k1þy

j

[27]. Each individual who moves

between nodes may be Susceptible, Infected, or Recovered.

3. If neighboring node j receives its first infected individual, the current time is recorded, and

it is added to the data tree as a subnode under node i.

An example of the data tree is shown in Fig 1. We run the simulation until there are no new

infected individuals, typically up to t = 750. For each node, we record the epidemic’s time of

Fig 1. (a) An example of a human network model with 1000 nodes and 1,000,000 individuals. A stochastic metapopulation SIR model

was processed on this network, and the red arrows represent the spread of the outbreak. (b) A data tree showing the order in which the

outbreak spread throughout the network. Nodes are sorted by the order in which they first spread the infection to a neighboring node,

and the y-axis represents the time of arrival of the epidemic.

https://doi.org/10.1371/journal.pcbi.1008674.g001
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arrival, peak prevalence, and the infection tree of the network. We repeat this simulation 20

times, each with a different initially infected node, and average our results over these iterations

to ensure that the simulation is not biased by the location of the initial outbreak. About 500

networks are processed this way, for a total of about 10,000 metapopulation SIR simulations.

Superspreader capacity and risk factor

For each simulation, we define two metrics of superspreader capacity for each node:

1. Probability-dependent superspreader capacity: the total number of children, including

subchildren, of each node on the tree graph. This is analogous to the definition of nodal

scope introduced by [28].

2. Time-dependent superspreader capacity: the average rate, in nodes per unit time, at

which the disease spreads from each node to each of its children.

Each metric is averaged for each node over the 20 simulations run, so that the starting point

of the epidemic does not bias our numerical results more than about 20%. Each node is

assigned a probability-dependent and time-dependent risk index, ranging from 0 to 1, based

on its superspreader capacity among all nodes in its network. We hypothesize that risk indices

for probability-dependent and time-dependent superspreader capacity will be strongly corre-

lated, but that time-dependent superspreader risk will be less influenced by the starting point

of the epidemic.

We run a random forest model using the randomForest package in R [29] to process a

model with risk index as the response (ranging from 0 to 1), and with Ri, degree of connectiv-

ity, centrality, clustering, and diffusion as predictor variables. The output is a statistical model

which takes as input a metapopulation network with an Ri value for each node and outputs a

superspreader risk factor index for each node in the network.

Table of variables

Table 1 gives a list of key variables in our metapopulation model and their definition.

Results

This section is divided into three parts. First, we derive analytically a formula for the probabil-

ity-dependent superspreader capacity, the expected number of nodes to which a certain node

Table 1. A list of key variables used in this article and their definitions.

Symbol Meaning

n number of nodes in the network

N total population of a certain node

I(t) number of infected individuals of a certain node

β infection rate of the disease in a certain node

μ recovery rate of the disease

R, R0 reproduction rate of the disease in a certain node

diffusion p the fraction of a nodal population that migrates per unit time

θ heterogeneity of movement of the network

κ the probability that an individual migrates from one specific node to another per unit time

degree of connectivity k the number of adjacent nodes connected to a certain node

centrality the reciprocal of a node’s average distance to all other nodes in the network

clustering the fraction of a node’s neighbors that are also connected to each other

https://doi.org/10.1371/journal.pcbi.1008674.t001
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is predicted to spread an epidemic. We apply this formula to various randomly generated net-

works and discuss the correlation between degree of connectivity, reproduction rate R, and

superspreader capacity. Next, we derive the time-dependent superspreader capacity, defined as

the velocity at which a given node spreads the epidemic to its neighbors, and compare our two

definitions of superspreader capacity. Finally, we use a Monte Carlo simulation to develop a

Random Forest model relating several network parameters and reproduction rate to a node’s

risk of becoming a superspreader site.

Probability-Dependent superspreader capacity in uncorrelated graphs

To derive a formula for probability-dependent superspreader capacity, consider an uncorre-

lated network with nodes of varying degree and vector habitat suitability. Within this network,

consider a single node i with degree ki and reproduction number Ri. This node is adjacent to

one node from which the epidemic originated, along with k − 1 other uninfected nodes. These

k − 1 nodes can be decomposed as k − 1 = k1 + k2 + k3, where

• k1 = the number of nodes with R� 1

• k2 = the number of nodes with R’ 1 (typically between 0.8 and 1.2, say)

• k3 = the number of nodes with R< 1

The node will almost certainly spread the outbreak to its neighbors with R� 1, and

although infected individuals may travel to neighboring nodes with R< 1, it is very unlikely

that an outbreak will be able to take root there. Only nodes with R’ 1 require special

consideration.

The probability that node i of degree ki and reproduction number Ri will cause an outbreak

in an adjacent node j of degree kj and reproduction number Rj is given by

PðoutbreakÞ ¼ 1 � ðRjÞ
� l

Ri
ij with l

Ri
ij ¼ dij

aNi

m
ð1Þ

The matrix dij represents the mobility matrix from node i to node j, generally a function only

of their respective degrees, Ni is the population of node i, and μ is the recovery rate [21]. The

fraction of the nodal population that becomes infected over the course of the outbreak, desig-

nated as α, is a function of R, which can be derived from [30] as

aðRÞ ¼
0 R < 1

1þ
Wð� Re� RÞ

R
R � 1

8
><

>:
ð2Þ

where W() is the product log function. Note that this function is equal to 0 when R = 1 and

asymptotically increases to 1 as R increases to infinity.

We use a traffic-dependent mobility model, which assigns a mobility rate dij ¼ p ðkikjÞ
y

TðkiÞ
,

where T kð Þ ¼ k1þyhk1þyi

hki , and nodal populations are assigned as N kð Þ ¼ k1þy

hk1þyi
�N , where p is the

diffusion rate, θ is the heterogeneity of movement (typically 0.5 or 1), and �N is the average

population among all nodes. This model assumes that a node’s population is proportional to

its connectivity, and the rate of mobility between two nodes is proportional to the product of

their degrees. The diffusion rate, a fixed value between 0 and 1, represents the average rate of

human movement and serves as the constant of proportionality.
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If we further assume that Rj’ 1, then the outbreak probability can be approximated to first

order [21].

1 � ðRjÞ
� l

Ri
ij ’ l

Ri
ij ðRj � 1Þ ð3Þ

Substituting the value for λij from Eq 1 and the value of dij from the traffic-dependent mobility

model, we derive the outbreak probability:

PðoutbreakÞ ¼ p
ðkikjÞ

y
hkii

k1þy
i hk1þy

i i

 !
k1þy
i

hk1þy
i i

�N
m
a Rið ÞðRj � 1Þ

¼ p
hkii

hk1þy
i i

2

�N
m
ðkikjÞ

y
a Rið ÞðRj � 1Þ

ð4Þ

The superspreader capacity (SSC) of a node is defined as the expected number of neighbors

it will infect in the first generation.

Superspreader capacity ðSSCÞ ¼ k � PðoutbreakÞ ð5Þ

Assuming the node’s neighbors can be divided into k1 nodes that will definitely be infected

(P(outbreak) = 1), k2 nodes that have the probability given in Eq (4), and k3 nodes that cannot

support an outbreak (P(outbreak) = 0), and assuming each outbreak event is independent, the

superspreader capacity as defined in Eq 5 can be decomposed as:

SSC1 ¼ k1 � 1þ k2

X

kj;Rj’1

p
hki
hk1þyi

2
ðkikjÞ

y
�N
m
aðRiÞðRj � 1Þ

* +

þ k3 � 0

SSC1 ¼ k1 þ k2

X

kj;Rj’1

p
hki
hk1þyi

2
ðkikjÞ

y
�N
m
aðRiÞðRj � 1Þ

* +

SSC1 ¼ k1 þ k2 p
�N
m

hki
hk1þyi

2

 !

kyi aðRiÞ
� � X

kj;Rj’1

ðkjÞ
y
ðRj � 1Þ

* +

SSC1 ¼ k1 þ k2 p
�N
m

hkihkyi
hk1þyi

2

 !

kyi aðRiÞ
� �

hRj � 1i

ð6Þ

where the term hRj − 1i is the mean only over nodes with Rj’ 1. A good practice is to consider

only nodes for which the quantity p �N
m

hkihkyi
hk1þyi2

� �
kyi aðRiÞ
� �

ðRj � 1Þ
h i

is less than 1. This threshold

can vary considerably depending on the values of p, μ, and �N .

Assuming that k2’ ki, this implies that the superspreader capacity of the node is propor-

tional to k1þy
i � aðRiÞ. A contour plot example of this is shown in Fig 2, with values

p ¼ 0:5; �N ¼ 1000;m ¼ 1; PðkÞ / k� 3, and hRj − 1i = 0.001. The isolines in Fig 2 show nodes

with varying values of k and R that should have the same superspreader capacity. For example,

a node with k = 14 and R = 1.2 has an equivalent superspreader capacity to a node with k = 6

and R = 2. The effects of R on superspreader capacity starts to diminish for R> 3, but super-

spreader capacity increases with k indefinitely.

Superspreader capacity in classic network models. The formula given in Eq 4 can be

applied directly to a particular metapopulation network to estimate the superspreader risk of

each node. To that end, a more precise but less elegant equation for first generation super-

spreader capacity is found by discarding the assumption that R’ 1. We substitute Eq 1 and
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the traffic-dependent mobility model into this definition:

SSC1 ¼
X

PðoutbreakÞ

SSC1 ¼
X

kj;Rj>1

½1 � ðRjÞ
� l

Ri
kikj �

SSC1 ¼
X

kj;Rj>1

1 � ðRjÞ
� p hki
hk1þyi2

�N
m ðkikjÞ

ya Rið Þ
� �

ð7Þ

where the summation is computed over all neighboring nodes with Rj� 1. This equation can

be used to directly compute the superspreader capacity for each node in a given network.

For example, Fig 3A shows a plot of superspreader capacity for a 10,000 node Erdős–Rényi

(random) network, where β is randomly, independently assigned as a Weibull distribution

with shape factor 1.2 and scale factor 2, and μ is equal to 1. Other parameters are

�N ¼ 1000; y ¼ 0:5; p ¼ 0:1, and μ = 1. These data closely resemble the analytical prediction

in Fig 2. A high degree of connectivity or a high R is sufficient for a superspreader node,

although this correlation is diminished with high R. As expected, superspreader capacity is

highly correlated with the quantity k1+θ � α(R), with a linear model fit of R2 = 0.72.

In a Barabási–Albert (scale-free) model, on the other hand, only the hub nodes near the

center of the network have the potential to be superspreaders. For individual nodes, a high

degree of connectivity and any value of R greater than 1 are necessary conditions for being a

superspreader. The correlation between superspreader capacity and the quantity k1+θ � α(R) is

R2 = 0.88, but this is mostly because nodes with high degree also tend to have a high super-

spreader capacity. Among high degree nodes, there is a strong positive correlation between R
and superspreader capacity, but this correlation is not apparent among lower degree nodes.

Fig 2. Estimation of probability-dependent superspreader capacity for a node in an uncorrelated network graph, assuming all its

neighbors have R’ 1. In this figure Superspreader capacity is defined as the expected number of neighbors to which the node will

spread the outbreak within one generation.

https://doi.org/10.1371/journal.pcbi.1008674.g002
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Fig 3. Estimated probability-dependent superspreader capacity in a human population network with 10,000

nodes, with (a) random uncorrelated network, (b) scale free network, and (c) small world network.

https://doi.org/10.1371/journal.pcbi.1008674.g003
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In the Watts-Strogatz (small-world) model, every node with R> 1 is equally likely to be a

superspreader, regardless of its degree of connectivity. This network has the opposite proper-

ties of the scale-free network, in that there is a strong positive correlation between R and super-

spreader capacity, in terms of α(R) (R2 = 0.84), but a weak correlation between degree of

connectivity and superspreader capacity (R2 = 0.11). This is due to a small-world model having

about four times as many edges as a scale-free model, so it is much more likely that any given

node is connected to other nodes with high R.

Time-dependent superspreader capacity

To determine a formula for time-dependent superspreader capacity, we focus on a single node

and its neighbors, rather than the network as a whole. Consider a city that is connected to k
other cities by road. At time t = 0, a number of people I0 in the hub city have been infected

with a contagious illness. Assume the infection spreads exponentially, a valid assumption in

the early stages of the outbreak when nearly the entire population is susceptible. The number

of infected people over time is therefore given by

IðtÞ ¼ I0eðb� mÞt ð8Þ

where β and μ are the infection and recovery rates, respectively [31].

The probability that a given individual leaves the hub city for one of the neighboring cities

between times t and t + dt is given by p � dt, where p is the diffusion rate. The probability

that individual moves to a particular neighboring city is given by κ1, κ2, etc. Note that κ1 +

κ2 + � � � + κk = 1, and that they are constant among all individuals and over time. In a homoge-

neous system, κi = 1/k for all i, and in a traffic-dependent system, ki ¼
kyiP

kyi
. Assume each indi-

vidual’s movement is independent from each other.

Therefore, the probability that an individual moves from the hub city to neighboring city i
between times t and t + dt is given by

pkidt ð9Þ

and the probability that at least one infected individual moves from the hub city to city i is

given by

1 � ½1 � pkidt�
IðtÞ
’ IðtÞpkidt ð10Þ

Therefore, fi(t) = I(t)pκi is the probability density function for the event that at least one

infected individual moves from the hub city to city i at time t.
The probability that at least one infected individual travels between the hub city and city i

between time 0 and time T is given by

FiðTÞ ¼
Z T

0

IðtÞpki dt ¼
Z T

0

I0e
ðb� mÞtpki dt ¼ pki

I0

b � m
eðb� mÞT � 1
� �

ð11Þ

This probability is equal to 0 at time 0 and increases to 1 at time T1 ¼
1

b� m
log 1þ b� m

pI0ki

h i
.
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The expected value of the time until the first infected individual travels from the hub city to

city i is given by

Ei ¼
R1

0
½1 � FiðTÞ� dT

¼
R T1

0
1 � pki

I0

b � m
eðb� mÞT � 1
� �

� �

dT

¼ �
1

b � m
þ

pkiI0 þ b � m

ðb � mÞ
2

" #

log 1þ
b � m

pI0ki

� �

ð12Þ

The probability that at least one infected individual moves from the hub city to at least one

neighboring city between time 0 and time T is given by

FanyðTÞ ¼ 1 �
Yk

i¼1

½1 � FiðTÞ�

¼ 1 �
Yk

i¼1

1 � pki
I0

b � m
eðb� mÞT � 1
� �

� �
ð13Þ

We evaluate this product with a binomial expansion and ignore higher order terms:

FanyðTÞ ’ 1 � 1 �
Xk

i¼1

ki

 !

p
I0

b � m
eðb� mÞT � 1
� �

" #

¼ p
I0

b � m
eðb� mÞT � 1
� �

ð14Þ

This probability approaches 1 at time T2 ¼
1

b� m
log 1þ b� m

pI0

h i
.

Then the expected value of the time until the first infected individual leaves the hub city to

any neighboring city is given by

Eany ¼
R1

0
½1 � FanyðTÞ� dT

¼
R T2

0
1 � p

I0

b � m
eðb� mÞT � 1
� �

� �

dT

¼ �
1

b � m
þ

pI0 þ b � m

ðb � mÞ
2

" #

log 1þ
b � m

pI0

� �

ð15Þ

which is incidentally the same value as Ei but with κi replaced with 1.
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The probability that at least one infected individual leaves the hub city to each of the neigh-

boring cities is given by

FallðTÞ ¼
Yk

i¼1

FiðTÞ

¼
Yk

i¼1

pki
I0

b � m
eðb� mÞT � 1
� �

¼ p
I0

b � m
eðb� mÞT � 1
� �

� �k

�
Yk

i¼1

ki

ð16Þ

Unfortunately, we cannot assume that T is sufficiently small to approximate the exponential

term as a polynomial. This probability approaches 1 at T3 ¼
1

b� m
log 1þ b� m

pI0

Qk

i¼1

ki

� �� 1=k
" #

.

Finally, the expected value of the time it takes for an infected individual to travel from the

hub city to all neighboring cities is given by

Eall ¼
R1

0
½1 � FallðTÞ� dT

¼
R T3

0
1 � p

I0

b � m
eðb� mÞT � 1
� �

� �k

�
Yk

i¼1

ki

" #

dT
ð17Þ

This function is not analytically solvable, but it can be computed numerically for given val-

ues of p, I0, β, μ, k, and κi. The value of β will always be greater than μ, as a requirement for an

outbreak scenario to occur, and we can consider the two extreme cases for β. In the case that

β’ μ, Eall can be approximated as:

Eall ’
R T3

0
1 � ðpI0TÞ

k
�
Yk

i¼1

ki

" #

dT

¼
1

pI0

k
kþ 1

Yk

i¼1

ki

 !� 1=k
ð18Þ

In the case that β� μ, Eall can be approximated as:

Eall ’
R T3

0
1 � p

I0

b � m
eðb� mÞT

� �k

�
Yk

i¼1

ki

" #

dT

¼
R T3

0
1 � p

I0

b � m

� �k

ekðb� mÞT �
Yk

i¼1

ki

" #

dT

’
1

kðb � mÞ
k log

b � m

pI0

Yk

i¼1

ki

 !� 1=k
2

4

3

5 � 1

2

4

3

5

ð19Þ

As another note, if human movement is homogeneous and κ1 = κ2 = � � � = κk, then κi = 1/k for

all i and ð
Qk

i¼1
kiÞ
� 1=k

is equal to k.
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We can therefore define a time-dependent superspreader capacity as the velocity at which a

node spreads the disease to at least one neighboring node:

Vany ¼
1

Eany
¼ �

1

b � m
þ

pI0 þ b � m

ðb � mÞ
2

" #

log 1þ
b � m

pI0

� �( )� 1

ð20Þ

or the velocity at which the node spreads the disease to each of its neighbors:

Vall ¼
k
Eall
’

k2ðb � mÞ

k log
b � m

pI0

Yk

i¼1

ki

 !� 1=k
2

4

3

5 � 1
ð21Þ

A contour plot of Vall is shown in Fig 4, with μ = 1, R = β/μ = β, p = 0.5, I0 = 1, and assuming

homogenous movement. Similar to the computed results of probability-dependent supersprea-

der capacity, time-dependent superspreader capacity increases both with R and k. However,

time-dependent superspreader capacity increases indefinitely with R, without diminishing

returns, and its value is not dependent on the R value of the node’s neighbors. Because of the

ð
Qk

i¼1
kiÞ
� 1=k

term in the denominator of Vall, we expect the superspreader capacity of net-

works with more equitable distributions of nodal degree, such as small-world networks, to be

higher than in networks characterized by hub nodes such as scale-free networks. Unlike proba-

bility-dependent superspreader capacity, we do not expect time-dependent superspreader

capacity to vary significantly across generations.

Fig 4. Estimation of time-dependent superspreader capacity for a node in an uncorrelated network graph. Superspreader capacity is

defined as the expected velocity at which a node will spread the outbreak to all its neighbors with R� 1. We do not expect the structure of

the network to affect this relationship significantly.

https://doi.org/10.1371/journal.pcbi.1008674.g004
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Numerical simulations of superspreader capacity

An analytical model is insufficient to describe the relationship between more abstract network

properties, such as centrality and clustering, to superspreader capacity. Therefore, we supple-

ment our model with a Monte Carlo numerical simulation. As described previously, to test the

hypothesis that degree of connectivity and R each increase superspreader risk, we randomly

generated 500 metapopulation networks, each with about 500 nodes, and each network was

simulated 20 times with the initial disease cases occurring in a different node. For each net-

work, the mean values of probability-dependent and time-dependent superspreader capacity

were linearly correlated with a correlation coefficient of 97.8%. Therefore, the two metrics of

superspreader capacity have very similar means, but different variances. Depending on the

point of origin, probability-dependent superspreader capacity varied by about 28%, and time-

dependent superspreader capacity varied by about 16%. Running more than 20 simulations

did not significantly reduce these variances. When modeling risk indices for future epidemics,

time-dependent superspreader capacity may be a more reliable metric if the origin point of the

epidemic is unknown.

The output of the Monte Carlo simulation was a list of about 250,000 nodes, about 36% of

which had a non-zero time-dependent superspreader capacity, meaning they spread the epi-

demic to at least one neighboring node. Each node was assigned a risk index, ranging from 0

to 1, based on its superspreader capacity relative to the other nodes within the same network.

We ran a random forest model on 2000 randomly selected training nodes with degrees of

connectivity equal to five or greater. After five hundred iterations, the mean square residual

error among training nodes was 6.1%. The model revealed that the most important network

and epidemic properties for determining the risk index of an individual node, in descending

level of importance, are degree of connectivity, R, clustering, centrality, and diffusion. Cluster-

ing coefficient is negatively correlated with risk index, the other parameters are all positively

correlated. Fig 5 shows the normalized response curve of superspreader risk in terms of each

of these factors. Note that for the sake of clarity, each curve has been rescaled to range from

“Lowest risk” to “Highest risk.” Fig 5 also shows a scatter plot of observed versus predicted risk

factor for a randomly selected set of 2000 testing nodes. The root mean squared error in pre-

diction accuracy was 16.5%. This statistical model can predict the presence of nodes in the

90% percentile of risk index with about a 75% success rate, with a Type I error rate of 23% and

a Type II error rate of about 25%. In contrast, a model that considers only degree of connectiv-

ity or only R has about a 45% success rate (not shown).

Fig 6 shows the two-dimensional response curves of superspreader risk in terms of R and

degree of connectivity on the left, and clustering and centrality on the right. Note that the con-

tours are colored by decile, that is, each shaded region represents 10% of tested nodes. For

example, the highest risk region on the R-degree of connectivity chart takes up the largest area

on the chart, but because degree of connectivity is power-law distributed and R is exponen-

tially distributed, a node only has a 10% chance of lying within that area. These graphs show

that a high degree of connectivity is a sufficient condition to be a moderate-risk node, but both

high connectivity and high R are necessary for a high-risk node, although connectivity plays a

greater role. Similarly, low clustering is a sufficient condition to be a moderate-risk node, but

low clustering and high centrality are necessary for a high-risk node.

Discussion

A critical task in epidemic preparedness is to conduct place-based health interventions for

population centers that face the highest risk of becoming superspreaders. While previous

research has considered the structure of the metapopulation network or spatial heterogeneity
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Fig 5. One-variable response curves of superspreader risk in terms of degree, R, diffusion, centrality, and clustering. Note that these

curves have been rescaled for clarity. A scatter plot showing observed versus predicted risk indices for individual nodes is also shown,

with a line indicating a 1:1 relationship.

https://doi.org/10.1371/journal.pcbi.1008674.g005

Fig 6. Two-dimensional response curves of superspreader risk index. Each contour line represents one decile of risk, and each shaded

area contains roughly 10% of all tested nodes.

https://doi.org/10.1371/journal.pcbi.1008674.g006
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in infection rates as predictors of superspreader potential, limited research has considered

both factors simultaneously. This manuscript improves on previous knowledge by considering

analytically and numerically how both of these factors contribute to nodal risk of supersprea-

der events. Our analyses show that nodal degree of connectivity is indeed the most important

factor in determining superspreader capacity, consistent with the mechanistic results demon-

strated in [31]. However, the value of R, which may be spatially heterogeneous, is the second

most important, followed by other network characteristics such as clustering, centrality, and

diffusion. This research extends previous research that demonstrated the superspreader capac-

ity of nodes with high connectivity and centrality [9, 12, 32] and the importance of infection

hot-spots to the spread of disease outbreaks [33–35]. This article also complements research

that discuss heterogeneous infection rates among subpopulations within a group [36].

The numerical model of risk conforms well with the analytical models presented in the

Results section. Degree of connectivity is strongly correlated with superspreader risk only up

to about k = 15, after which the risk index increases only slightly with degree. However, note

the difference between the likelihood and severity of a superspreader event. The probability of

a particular node becoming a superspreader does not increase indefinitely with degree of con-

nectivity, but the velocity at which that node could potentially spread the disease does increase

indefinitely. This implies that a different calculus must be made for identifying superspreader

nodes and estimating the potential harm caused by those nodes. For a scale-free network in

particular, the node at the center of the network is almost always the highest risk supersprea-

der, unless its R value is less than 1. This analysis also implies that any mitigation strategy that

reduces a node’s degree of connectivity, such as travel restrictions, is almost always worthwhile

to reduce the rate at which individuals become infected, but extreme mitigation might be nec-

essary to reduce the total number of individuals that become infected over the course of the

epidemic.

Although less important than connectivity, the relationship between node centrality and

superspreader risk also is positively correlated. Most of the increase in risk occurs when cen-

trality is greater than 0.25, which encompasses about 10% of all nodes in our simulations. In

other words, a given node is likely to have a low risk index if within the bottom 90% of nodes,

in terms of centrality, but a moderate to high-risk index if within the top 10% of nodes. As a

point of comparison, there are 3,143 incorporated counties in the United States, and based on

highway and air routes, approximately 300 counties would be high-risk superspreaders based

on this metric [37, 38]. The inverse relationship between clustering and superspreader risk is

less intuitive. Essentially, nodes with high clustering coefficients have several neighboring

nodes that are also adjacent to each other, so the spreading disease is not forced to spread

through the node under consideration. Although networks with high rates of diffusion are

more prone to spreading the epidemic over shorter time scales [39], diffusion does not signifi-

cantly affect the prevalence of individual superspreader nodes. This analysis does not consider

the presence of community structures, such as a group of nodes that are densely clustered with

each other but are loosely connected to neighboring nodes [40, 41]. The effect of nodal com-

munities on superspreader risk merits further research. In addition, future analysis should

consider the case in which movement between adjacent nodes is not symmetric, which would

require a directed network graph structure for the metapopulation network, as well as net-

works with multiple layers of mobility [42].

The relationship between R and risk strongly resembles the α(R) function in Eq (2), in that

risk increases with R but converges at about R = 3. For the small number of nodes with R
much greater than 3, there was no correlation between their R values and the area or velocity

of the epidemic spread originating from those nodes. This is consistent with case studies in

vector-borne and directly transmitted diseases, as an R value of 3 is typically considered the
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threshold for a superspreader event [43–45]. Spatial heterogeneity in R can take several forms,

each of which has different implications for evaluating superspreader risk. The most common

form is continuously varying R, which typically applies when infection risk is correlated with

climate or environmental factors [46–48]. In these cases, R does not tend to differ significantly

between adjacent nodes, and superspreader nodes are likely to be concentrated in one section

of the network. The second form consists of a few hotspot nodes of high R, surrounded by a

network with low to moderate R. This is relevant to diseases that are prevalent in high-popula-

tion centers [49], and these locales tend to be particularly effective superspreaders relative to

their neighbors. The third and fourth forms, which are not addressed in this paper, are cases in

which R can vary over time, usually as a response to changes in policy during an ongoing epi-

demic [50, 51], and cases in which R can vary within a node, such as diseases that have varying

R values among different species [52]. Both these cases require alternative methods of measur-

ing superspreader capacity than what is considered in this article.

An unanticipated result of the random forest model for superspreader risk is that there is

some small degree of risk in nodes with high connectivity and R< 1, whereas the analytical

models assume that these nodes have no superspreader risk at all. A moderately high value of

R or degree of connectivity is a sufficient condition for a node to pose a superspreader risk,

and if the node has a degree higher than 10, it is not necessary for R to be greater than 1 for the

node to be a superspreader by this method of measurement. The literature does not typically

consider such nodes to be outbreak sites, let alone candidates to become superspreaders, and

what is likely occurring is that a high number of infected individuals are passing through the

node in question, rather than originating from that node. A city that contains a highly traf-

ficked airport but is itself a poor environment for reproduction of the pathogen might be mis-

taken for a superspreader if the true origins of infected individuals expanding from that node

are not considered [5]. This does imply that in a city with high degree of connectivity but low

R, restricting travel only from other high risk locations may be sufficient mitigation to reduce

spreading.

Previous research has extensively examined either network factors or R0 heterogeneity as a

mechanistic pathway to superspreading events, while very few efforts have attempted to com-

bine them. Our study combines both with a particular focus on the network and habitat suit-

ability properties of individual nodes, as opposed to more complex models that holistically

consider the local and global network structure surrounding each node [10–13]. The random

forest model tends to overestimate the risk index of low-risk nodes, and underestimate the risk

index of high-risk nodes, by an average of 10%. The precision of the model could likely be

improved by considering properties such as meta-centrality in conjunction with R and would

be relatively straightforward to implement, at the potential cost of narrowing the applicability

of the model. The advantage of the model developed in this paper is that the mechanisms that

drive superspreader capacity are easily interpreted, and therefore can be applied to a wide vari-

ety of epidemic case studies. For example, the relevant balance of superspreader risk factors

depends on the nature of the infectious disease in question. Malaria, tends to be more preva-

lent in rural environments [53], so population centers may have an inverse correlation

between degree of connectivity and R, and there may be fewer nodes in the high-risk thresh-

old. Directly transmitted diseases such as influenza and COVID-19, on the other hand, tend to

demonstrate a positive correlation between R and population density [54]. In this case, the dis-

tribution of superspreader capacity among nodes may be more bimodal, as the highly con-

nected nodes will have extremely high superspreader capacity, and vice versa. For severely

contagious diseases with R0 > 2 throughout the entire network, small differences in R may

have no bearing on risk when compared to network connectivity. This method of predicting
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superspreaders works equally well with other epidemic models, such as Susceptible-Infected-

Susceptible (SIS), because the superspreader event typically occurs on a faster time scale than

recovery or reinfection.

In addition to predicting superspreader risks within a metapopulation network, the model

discussed in this paper may help predict the relative effectiveness of various epidemic mitiga-

tion strategies [51, 55]. For example, closing airports or blocking highways has the effect of

reducing a node’s degree of connectivity and centrality, although the effectiveness of these

methods is under question [56], and they require substantial social data to develop an accurate

mobility model [57]. Improved hygienic practices and medical resources may reduce the effec-

tive R value in regions that follow these practices, which may reduce superspreader risk if R
can be reduced to less than 3 [58, 59]. This model can also be used to predict the effectiveness

of mitigation strategies if they are not applied uniformly across the network; for example, if

only a subset of counties enforce social distancing guidelines to reduce the spread of a directly

transmitted pathogen [60]. Future research should also take into consideration nonhomoge-

neous distributions of population density. Within a given population center, it must be taken

into consideration that only a certain fraction of its population will engage in proper mitiga-

tion strategies to prevent an epidemic outbreak, which would contribute to a variable R within

a node. It is also necessary to test how the shut-down of certain community hubs, such as a

school or a shopping center, affects the superspreader risk of the entire network. This analysis

may require a more advanced algorithm to generate random metapopulation networks based

on multiple spatial scales [25].

Conclusion

This study demonstrates how spatially heterogeneous disease reproduction rates can affect the

superspreader potential of nodes across a human metapopulation network. The statistical

model, based on a random forest algorithm, could be deployed to predict the risk indices of

epidemics and analyze the relative effectiveness of containment and mitigation strategies. The

model could be improved by considering other network properties of the network, or the

superspreader capacity of neighboring nodes evaluated recursively, but this model strikes a

balance between effectiveness and simplicity. A key finding of this study is that the risk of a

certain population node becoming a superspreader increases convergently with R and with

degree of connectivity. A value of R or degree of connectivity individually above a certain

threshold are sufficient for a node to be a moderate-risk superspreader, but both are necessary

to be a high-risk superspreader. This finding suggests a balanced approach to addressing both

R0 and network connectivity to achieve optimal epidemic management scenarios.
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