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Abstract

In real world situations, decision makers prefer to have multiple optimal solutions before

making a final decision. Aiming to help the decision makers even if they are non-experts in

optimization algorithms, this study proposes a new and simple multimodal optimization

(MMO) algorithm called the gravitational particle swarm algorithm (GPSA). Our GPSA is

developed based on the concept of “particle clustering in the absence of clustering proce-

dures”. Specifically, it simply replaces the global feedback term in classical particle swarm

optimization (PSO) with an inverse-square gravitational force term between the particles.

The gravitational force mutually attracts and repels the particles, enabling them to autono-

mously and dynamically generate sub-swarms in the absence of algorithmic clustering pro-

cedures. Most of the sub-swarms gather at the nearby global optima, but a small number of

particles reach the distant optima. The niching behavior of our GPSA was tested first on sim-

ple MMO problems, and then on twenty MMO benchmark functions. The performance indi-

ces (peak ratio and success rate) of our GPSA were compared with those of existing niching

PSOs (ring-topology PSO and fitness Euclidean-distance ratio PSO). The basic perfor-

mance of our GPSA was comparable to that of the existing methods. Furthermore, an

improved GPSA with a dynamic parameter delivered significantly superior results to the

existing methods on at least 60% of the tested benchmark functions.

Introduction

Multimodal optimization (MMO) algorithms [1] (also known as niching methods or tech-

niques) can locate multiple global optima in a single run, which is essential for solving many

scientific and engineering optimization problems, e.g., Toyota paradox [2], motor design [3],

clustering validity functions [4], network modeling [5], truss-structure design [6], overlay net-

work [7], multi-robot cooperation [8], wireless sensor network [9], object detection [10], and

honeycomb core design [11]. Compared with unimodal optimization (UMO) algorithms that

can locate just a single global optimum, MMO algorithms have several benefits in some real-

world problems [1], where some factors can be difficult to model mathematically, e.g., degree

of difficulty in manufacturing. Specifically, having multiple solutions with a similar quality will

give a decision maker more options for consideration, with factors that are not captured in the

mathematical model. Finding multiple solutions may also help to reveal hidden properties or
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relations of the problem, e.g., the distribution of the solution set in the problem space. There-

fore, MMO algorithms provide richer information about the problem domain than the UMO

algorithms.

To achieve the MMO algorithms, several well-known niching techniques have been devel-

oped since the 1970s, namely, crowding [12], deterministic crowding [13], fitness sharing [14],

derating [15], restricted tournament selection [16], clustering [17], and speciation [18]. Ini-

tially, these niching techniques were developed for evolutionary algorithms (EAs) and genetic

algorithms (GAs).

Since the 2000s, some MMO algorithms based on particle swarm optimization (PSO) [19–

21] have been proposed [22–24]. These algorithms simply replace the global best of classic

PSO with neighborhood best; hence, they can be categorized into a one-stage method like the

classic PSO. Owing to their simplicity, they have been successfully applied to many real-world

problems [4–11]. However, these one-stage MMO algorithms are known to perform poorly

compared with state-of-the-art niching methods [24, 25].

Recently, two-stage MMO algorithms [26–29] won the multimodal optimization competi-

tions held by the Congress on Evolutionary Computation (CEC) and the Genetic and Evolu-

tionary Computation Conference (GECCO). The first stage of the two-stage niching separates

the candidate solutions into subpopulations by a clustering algorithm [28]. In the second

stage, each subpopulation seeks the optimum by a core algorithm, which utilizes a restart

scheme and taboo archive. However, non-experts in optimization algorithms hesitate to apply

such complicated algorithms to their real-world problems. Although the source codes of these

algorithms are available, they may not be directly implementable in the production items of a

firm. In such situations, engineers should understand and implement the algorithms by them-

selves [30]. Therefore, it seems that the existing MMO algorithms have a dilemma between

searching performance and algorithmic complexity.

The present study aims to develop a simple and powerful algorithm, which can be easily

understood and implemented even by non-experts in optimization algorithms and can outper-

form the existing one-stage methods. The present paper proposes a new, simple, and purely

dynamical one-stage method called the gravitational particle swarm algorithm (GPSA). This

method replaces the linear feedback term involving the global best in the classical PSO frame-

work with the inverse-square gravitational force between the particles. Under this mechanism,

sub-swarms will autonomously self-organize at the nearby optima, but a few particles will

intermittently escape, thereby maximizing the coverage of widely distributed multiple optima.

As our GPSA automatically and dynamically generates the above-mentioned swarm behav-

ior without any clustering algorithms, restart scheme, and taboo archive, it is tractable even for

non-experts. Furthermore, it requires fewer computational resources and fewer tuning param-

eters than existing MMO algorithms [22–24, 26, 31, 32]. On the CEC 2013 niching test prob-

lems [33], our GPSA performed comparably to the existing methods [22, 25], and can

significantly outperform them by assigning a dynamic parameter.

Our GPSA differs from the existing one-stage algorithms based on PSO [22–24]. In particu-

lar, our GPSA omits the algorithmic particle-selecting procedures—sorting and selecting per-

sonal-best or nearest best(s)—of these algorithms. It also differs from ring-topology PSO

(RPSO) [25] because it does not use ring-topology. Furthermore, our GPSA differs from meth-

ods based on gravity force [34–36] that cannot detect multiple global optima. Although a grav-

ity-force method that detects multiple global optima has been proposed [32], this method

requires algorithmic particle-selecting procedures, which are omitted in our GPSA. In addi-

tion, other well-known niching techniques utilized in EAs and GAs [12–18] are not required

in our GPSA.
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The remainder of this paper is organized as follows. Section 2 discusses the MMO problems

and the drawbacks of the existing methods [22–29, 31, 32]. Section 3 introduces our GPSA,

describes its search mechanism, and demonstrates its niching capability on one- and two-

dimensional functions. Section 4 evaluates the performance of our GPSA on the CEC 2013

niching test problems, and confirms the comparable performances of our GPSA and the exist-

ing one-stage methods. In Section 5, our GPSA is improved by assigning a dynamic parameter.

The superiority of the improved version over the existing methods is demonstrated in this sec-

tion. Section 6 concludes the paper.

Background and related work

MMO problems

Consider an optimization problem of the form

Maximize
x

f ðxÞ; x 2 Rd
; ð1Þ

where x is a d-dimensional vector and f : Rd
! R is a real-valued function. This study focuses

on the case where multiple global optima satisfy (1), i.e.,

x�k ¼ arg max f ðxÞ; k ¼ 1; 2; � � � ;Ngo; ð2Þ

where x�k is kth global optima and Ngo is the number of these global optima. Such problems are

said to be multimodal, namely, they are MMO problems [1]. Conversely, problems with a sin-

gle global optimum (Ngo = 1) are known as UMO problems.

Eq (1) can be solved by particle-swarm-based approaches by considering the motion of a

swarm of N candidate solutions:

XðtÞ≔ fx1ðtÞ; x2ðtÞ; . . . ; xNðtÞg; xiðtÞ 2 R
d; t ¼ 0; 1; � � � ; tmax; ð3Þ

where t is discrete time. The candidate solutions (called particles) explore the d-dimensional

domain Rd
, seeking either multiple global optima (in MMO problems) or a unique optimum

(in UMO problems). The performances of such approaches therefore depend on the swarm

movements.

Classical PSO

PSO was originally proposed in [19] and [20], and numerous variants for improvements have

been proposed. In a typical classical PSO [21], the motion of the ith particle xi(t) is recursively

described as [37]:

viðt þ 1Þ ¼ oviðtÞ þ c1r1iðtÞ � ðpbiðtÞ � xiðtÞÞ þ c2r2iðtÞ � aiðtÞ; ð4aÞ

xiðt þ 1Þ ¼ viðt þ 1Þ þ xiðtÞ; t ¼ 0; 1; . . . ; tmax; ð4bÞ

(

with

aiðtÞ ¼ gbðtÞ � xiðtÞ; ð5Þ

where� denotes component-wise multiplication, vi(t) is the velocity of the ith particle, and

r1i(t) and r2i(t) are independent white random-process vectors whose components are uni-

formly distributed over [0, 1]. The personal bests, denoted by pbiðtÞ 2 R
d, are the highest-cost

positions found by each particle thus far (up to time t) among xi(0), � � �, xi(t). The global best
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gbðtÞ 2 Rd
is the best solution found by any particle up to time t. ðo; c1; c2Þ 2 R

3
are tuning

parameters.

Eqs (4) and (5) imply that only single solutions are found, as the global feedback term (5)

obtains a unique limit. This problem has already been demonstrated by [25].

Two-stage MMO algorithms

To overcome the problem of classical PSO, researches have proposed two extended PSO

methods: niching migratory multi-swarm optimizer (NMMSO) [26] and multi-charged par-

ticle swarm optimization (mCPSO) [31]. These methods, called two-stage niching methods

[28], separate the particles into sub-swarms by a clustering algorithm in the first stage, and

perform sub-swarming searches of the optimum by the classical PSO in the second stage.

Alternative two-stage methods, which utilize an evolutionary strategy in the second stage,

include covariance matrix self-adaptation with repelling subpopulations (RS-CMSA) [27],

the Hill-Valley evolutionary algorithm (HillVallEA) [28], and its improved variant (HillVal-

lEA19) [29]. These two-stage methods also utilize additional sub-procedures, namely, a

restart scheme in NMMSO, mCPSO, RS-CMSA and HillVallEA and a taboo archive in

RS-CMSA.

Unfortunately, the complexity of these two-stage methods is daunting to engineers wishing

to implement search algorithms in their production items. Although the source codes of these

methods are available, they might not be directly implementable in the production items of a

firm. In such situations, engineers should understand and implement the algorithms by them-

selves, as reported in [30].

One-stage MMO algorithms

Simpler niching methods than the two-stage methods are also available. Some of these algo-

rithms are based on PSO; specifically, RPSO, fitness Euclidean-distance ratio PSO (FERPSO)

[22], locally informed particle swarm (LIPS) [24], and species-based PSO (SPSO) [23].

Another niching method, called the niching gravitational search algorithm (NGSA) [32] uses

gravitational forces. In the present study, these methods are called one-stage methods because

they include no clustering algorithms. Table 1 summarizes the characteristics (computational

complexity, number of tuning parameters, and algorithm type) of these one-stage methods.

Focusing on the computational complexity, these existing methods can be broadly classified

into two groups: RPSO with complexity O(N); and FERPSO, LIPS, SPSO and NGSA with

Table 1. Characteristics of the existing one-stage niching methods.

RPSO FERPSO LIPS SPSO NGSA

Complexity:

O(N) a ✔ n/a n/a n/a n/a

O(N2 + α) b n/a ✔ ✔ ✔ ✔
The number of Parameters:

3 3 4 4 5

Type:

Based on PSO ✔ ✔ ✔ ✔ n/a

Using gravitational force n/a n/a n/a n/a ✔

“✔” and “n/a” indicate applicable and not applicable, respectively.
athe same as classical PSO
bobtained by calculating the Euclidean norm between the particles and by selecting or sorting of particles, where α = N or N log N. N is the number of particles.

https://doi.org/10.1371/journal.pone.0248470.t001
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complexity O(N2 + α), where α = N, N log N. In the method of the former group (RPSO), the

complexity is equivalent to that of the classical PSO (4). In the methods of the latter group,

which calculate the Euclidean norm between particles, the complexity is required to be at least

O(N2). In addition, FERPSO adds a complexity O(N) for particle selection, whereas LIPS,

SPSO and NGSA add a complexity O(N log N) for particle sorting.

With the exception of RPSO and FERPSO, the number of tuning parameters is one or two

higher in these methods than in the classical PSO. The additional parameters are required for

sorting the particles.

The comparison confirms RPSO as the simplest niching method, but RPSO is known to

deliver poorer performance than the other methods [25].

The above discussion highlights the drawbacks of the existing high-performance niching

methods, namely, the difficulties in understanding and implementing two-stage methods, and

the high computational complexity and large number of tuning parameters in one-stage

methods.

GPSA

To resolve the above drawbacks, the present study proposes a new and simple niching method

called GPSA. The basic idea is that, if the particles in PSO attract each other, they can autono-

mously organize into sub-swarms and search the multiple global optimum without any addi-

tional procedures. Specifically, the classical global feedback term (5) is replaced with a term

that introduces inverse-square gravitational forces between the particles, i.e.,

aiðtÞ ¼
X

k6¼i

1

jjdkiðtÞjj
2
ukiðtÞ; ð6Þ

ukiðtÞ ¼
dkiðtÞ
jjdkiðtÞjj

; dkiðtÞ ¼ xkðtÞ � xiðtÞ; ð7Þ

where ||�|| denotes the Euclidean norm, dki(t) is a displacement vector between the positions of

the ith and kth particles, and uki(t) is the normalized vector of dki(t). Algorithm 1 shows the

pseudocode of our GPSA.

The novelty of our GPSA is summarized below.

• Our method is a purely dynamical one-stage method, i.e., the particles are updated only by a

dynamical system with no additional procedures. In contrast, the existing two-stage methods

require a clustering algorithm, a restart scheme, or a taboo archive [26–29, 31].

• Unlike the existing one-stage methods [22–24, 32], our method requires no algorithmic pro-

cedure for selecting the social or nearest best(s).

Algorithm 1 GPSA
Input f, d, N, tmax, ω, c1, c2
Output The set of final personal bests {pb1(tmax), pb2(tmax), . . .,

pbN(tmax)}
1: procedure GPSA
2: t = 0
3: Initialize particles’ position xiðtÞ 2 R

d
; i ¼ 1; 2; . . . ;N

4: Initialize particles’ velocity viðtÞ 2 R
d

5: Set personal bests via pbi(t) = xi(t)
6: while t < tmax do
7: for i = 1, . . ., N do
8: Update particles’ position and velocity via (4) with (6)
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9: if f(xi(t + 1)) > f(pbi(t)) then . Update personal best
10: pbi(t + 1) = xi(t + 1)
11: else
12: pbi(t + 1) = pbi(t)
13: t = t + 1

Therefore, our GPSA is advantaged by simplicity. Our GPSA can be easily understood and

implemented by non-experts in optimization algorithms.

Fig 1 compares the characteristics (computational complexity and number of tuning

parameters) of our GPSA with those of the existing one-stage methods. As evidenced in the

figure, our GPSA has the same number of tuning parameters ðo; c1; c2Þ 2 R
3

as RPSO and

FERPSO, and fewer parameters than other one-stage methods. In addition, the complexity of

our GPSA is O(N2), obtained by summing the complexities O(N(N − 1)) of (6) and O(N) of

(4). This complexity is higher than in the O(N) method, but lower than in the O(N2 + α) meth-

ods, where α = N or N log N. Therefore, in terms of the number of tuning parameters and

complexity, our GPSA is simpler than these existing one-stage methods except RPSO.

Although the nominal performance of our GPSA is apparently inferior to that of RPSO in

Fig 1, the actual performances of GPSA and RPSO are comparable. Furthermore, after minor

improvements, our GPSA significantly outperforms RPSO. This performance will be demon-

strated after the following examples.

One-dimensional examples

Our proposed GPSA dynamically organizes the niching behavior of the sub-swarms. This

mechanism is clarified through illustrative examples in the present and following sub-sections.

Fig 1. Comparison of the characteristics (computational complexity and number of tuning parameters,

#parameters) of our proposed GPSA and existing one-stage niching methods.

https://doi.org/10.1371/journal.pone.0248470.g001
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Fig 2 shows the motions produced by a two-particle GPSA solving a one-dimensional

UMO problem, f(x) = −x2 (an inverted sphere). Here the GPSA parameters were set to ω =

0.729 and c1 = 1.49445. These values are known to prevent particle divergence in the classical

PSO [38], and are used even in the existing niching PSOs [22, 25]. The newly introduced

parameter c2 was set to 0.05.

During the initial phase (0� t� 23), the particles were mutually attracted by gravity. At

some close enough distance (t = 23), they appeared to repel one another. Such particle repul-

sion behavior, called a repulsive flip here, is considered as a gravity-induced motion. Roughly

speaking, ignoring the randomness and setting ω = c1 = 0 in (4a), the one-dimensional gravita-

tional force (6) becomes

aðtÞ≔ a1ðtÞ ¼ � a2ðtÞ ¼
x2ðtÞ � x1ðtÞ

dðtÞ3
; dðtÞ ¼ jx2ðtÞ � x1ðtÞj; ð8Þ

so the positions of the two close particles are updated as

x1ðt þ 1Þ ¼ x1ðtÞ þ c2aðtÞ; x2ðt þ 1Þ ¼ x2ðtÞ � c2aðtÞ: ð9Þ

If dðtÞ ¼ ffiffiffiffic2
3
p

, the particles are swapped as

x1ðt þ 1Þ ¼ x1ðtÞ þ c2aðtÞ ¼ x1ðtÞ þ c2

x2ðtÞ � x1ðtÞ
c2

¼ x2ðtÞ: ð10Þ

Similarly, we obtain

x2ðt þ 1Þ ¼ x1ðtÞ; ð11Þ

as shown in Fig 3(A). In addition, when

dðtÞ ¼
ffiffiffiffi
c2

3
p
þ�þ; 0 < �þ �

ffiffiffiffi
c2

3
p

; ð12Þ

there is what we call an attractive flip (Fig 3(B)), because

dðt þ 1Þ ¼ jx2ðt þ 1Þ � x1ðt þ 1Þj ¼ jx2ðtÞ � x1ðtÞ � 2c2aðtÞj ¼
dðtÞ3 � 2c2

dðtÞ2

�
�
�
�
�

�
�
�
�
�
<

ffiffiffiffi
c2

3
p

: ð13Þ

In contrast,

dðtÞ ¼ ffiffiffiffic2
3
p
� �þ ð14Þ

generates a repulsive flip because dðt þ 1Þ >
ffiffiffiffic2

3
p

(Fig 3(C)). From (13), we established that

dðt þ 1Þ ¼ j
dðtÞ3 � 2c2

dðtÞ2
j ! 1 ðdðtÞ ! 0Þ. In other words, the repulsive flip strongthens as d(t)

approaches 0.

After the repulsive flip at t = 23 (Fig 2(A)), each particle underwent different damped oscil-

lations around pbi(t), because the second term in (4a) imposes a linear restoring force. After

the second repulsive flip at t = 40, repeated mutual repulsive flips of the particles were followed

by individual dumped oscillations (Fig 2(B)). During this time, the particle’s personal bests,

pb1(t) and pb2(t), rapidly converged to the problem optimum x = 0 (Fig 2(C)), confirming that

our GPSA can solve the UMO problem.

The search motions of our GPSA also effectively solve MMO problems. Fig 4 shows

the motions of six particles searching for the three global optima of the function

f(x) = max{−|x − 4|2, −|x|2, −|x + 4|2}. The particles successfully found all three solutions.
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Initially, our GPSA autonomously and dynamically generated multiple sub-swarms near

two of the optima (Fig 4(A)). A repulsive flip between x5(t) and x6(t) at t = 11 then repelled

x6(t), which underwent a large-amplitude damped oscillation. This repulsion and oscillation

process helped the personal best pb6(t) to find the distant optimum x = 0 (Fig 4(B)).

Fig 2. A two-particle GPSA solving a one-dimensional UMO function. (A) Particle positions (0� t� 45). (B)

Particle positions (35� t� 200). (C) Personal bests.

https://doi.org/10.1371/journal.pone.0248470.g002
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Two-dimensional example

Our proposed GPSA can also solve a two-dimensional MMO problem involving a two-dimen-

sional Himmelblau function [33]. Fig 5 shows snapshots of a GPSA simulation run, starting

from particles that were randomly placed in the right half-plane (Fig 5(A)). This initial spatial

bias was designed to challenge the search for global optima in the left half-plane.

As clarified in Fig 5, the particles again autonomously and dynamically formed multiple

sub-swarms. While most of the particles remained in the right half-plane, some escaped to the

Fig 3. Different gravity-induced behaviors of two nearby particles. (A) Swap. (B) Attractive flip. (C) Repulsive flip.

https://doi.org/10.1371/journal.pone.0248470.g003

Fig 4. A six-particle GPSA solving a one-dimensional MMO function with three global optima. (A) Particle positions. (B) Personal bests.

https://doi.org/10.1371/journal.pone.0248470.g004

Fig 5. Snapshots of a GPSA run that found all four global optima of the Himmelblau function. xj denotes the jth axis of position vector x, and the black

and red circles indicate the positions and personal bests of particles, respectively. (A) t = 0. (B) t = 10. (C) t = 30. (D) t = 60.

https://doi.org/10.1371/journal.pone.0248470.g005
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left half-plane through the repulsive flips. In this run, the first repulsive flip occurred immedi-

ately (at t = 1) between x10(t) and x14(t), causing pb14(t) to approach one of the distant global

optima by t = 10 (Fig 5(B)). The pb23(t) and pb11(t) then found the remaining distant global

optimum by t = 60 (Fig 5(C) and 5(D)).

Because our GPSA dynamics include random fluctuations, all global optima are not guaran-

teed to be found within a finite amount of time (see Fig 6). Nevertheless, as demonstrated in the

following sections, the performances of our GPSA and our GPSA with minor improvements

were comparable to and considerably superior to those of the existing methods, respectively.

Performance evaluation

Experimental setup

This section evaluates our GPSA on the twenty benchmark functions of the CEC 2013 nich-

ing-method competition [33]. These benchmark functions were proposed in 2013. However,

they are still the latest ones because they have been utilized by the CEC and GECCO niching

competitions held between 2013 and 2020. The benchmark functions are listed in Table 2. The

terms d and Ngo were introduced in (1) and (2), respectively, and D is the domain of the func-

tion. These benchmark functions are derived from twelve base-test functions, which are

broadly classified into two types: functions with local optima and functions with no local

optima. The former functions are the Five-Uneven-Peak Trap (f1), the Uneven Decreasing

Maxima (f3), the Six-Hump Camel Back (f5), Shubert (f6, f8), and the Composite Functions 1

(f11), 2 (f12), 3 (f13, f14, f16, f18), and 4 (f15, f17, f19, f20). The latter functions include the Equal

Maxima (f2), Himmelblau (f4), Vincent (f7, f9) and the Modified Rastrigin (f10). These func-

tions over domain D are formally defined in [33]. For the external domain of D, the value of

these functions was set to −1010� fi(x), 8x | x 2 D, i = 1, � � �, 20 as the penalty value because

our GPSA’s particle can exceed the domain D due to the repulsive flip.

Following [33], the number of function evaluations in a single run was set to Nfes as listed in

Table 2. The total number of particles was set to N = 500 for f8 and f9, which have many global

optima, and to N = 50 for the remaining functions, as adopted in the existing one-stage meth-

ods, RPSO [25] and FERPSO [22]. Each of these particles was updated until tmax = Nfes/N. The

number of runs was set to Nrun = 100, at least double the number of runs in previous studies

[22, 24, 25, 33].

Fig 6. Snapshots of a GPSA run that found only three global optima of the Himmelblau function. (A) t = 0. (B) t = 10. (C)t = 60.

https://doi.org/10.1371/journal.pone.0248470.g006
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Performance metrics

The performance was evaluated by two metrics used in [33]. The first was the peak ratio (PR),

which measures the average fraction of the global optima found per run and is given by

PR ¼
1

Nrun

XNrun

k¼1

ngo
k

Ngo
; ð15Þ

where ngo
k is the number of global optima found during the kth run. The ngo

k was determined by

a standard method provided in [33], which considers that a new global optimum is detected

when pbi(t) in (4) satisfies the following two conditions. First, the pbi(t) should be further than

any of the already discovered global optima in terms of the distance specified in [33]. Second,

the difference between the fitness values of the pbi(t) and the global optima provided in [33]

should be less than the accuracy level �. Following [33], the accuracy levels in this study were

varied as � 2 {10−1, 10−2, 10−3, 10−4, 10−5}.

The second metric was the success rate (SR), which measures the probability of finding all

global optima during the same run. The measure is given by

SR ¼
Nsucc

Nrun
; ð16Þ

where Nsucc is the number of runs in which all the global optima are found.

The benchmark functions and performance evaluation were implemented in the code pro-

vided by the CEC 2013 competition organizers. Obtainable from https://github.com/mikeagn/

CEC2013.

Table 2. Benchmark functions.

f Base-test function d Ngo D Nfes

f1 Five-Uneven-Peak Trap 1 2 [0, 30] 5 × 104

f2 Equal Maxima 1 5 [0, 1] 5 × 104

f3 Uneven Decreasing Maxima 1 1 [0, 1] 5 × 104

f4 Himmelblau 2 4 [−6, 6]2 5 × 104

f5 Six-Hump Camel Back 2 2 [−1.9, 1.9] × [−1.1, 1.1] 5 × 104

f6 Shubert 2 18 [−10, 10]2 2 × 105

f7 Vincent 2 36 [0.25, 10]2 2 × 105

f8 Shubert 3 81 [−10, 10]3 4 × 105

f9 Vincent 3 216 [0.25, 10]3 4 × 105

f10 Modified Rastrigin 2 12 [0, 1]2 2 × 105

f11 Composite Function 1 2 6 [−5, 5]2 2 × 105

f12 Composite Function 2 2 8 [−5, 5]2 2 × 105

f13 Composite Function 3 2 6 [−5, 5]2 2 × 105

f14 Composite Function 3 3 6 [−5, 5]3 4 × 105

f15 Composite Function 4 3 8 [−5, 5]3 4 × 105

f16 Composite Function 3 5 6 [−5, 5]5 4 × 105

f17 Composite Function 4 5 8 [−5, 5]5 4 × 105

f18 Composite Function 3 10 6 [−5, 5]10 4 × 105

f19 Composite Function 4 10 8 [−5, 5]10 4 × 105

f20 Composite Function 4 20 8 [−5, 5]20 4 × 105

d is the number of dimensions, Ngo is the number of global optima, D is the domain of the function, and Nfes is the

number of allowed function evaluations.

https://doi.org/10.1371/journal.pone.0248470.t002

PLOS ONE Simple gravitational particle swarm algorithm for multimodal optimization problems

PLOS ONE | https://doi.org/10.1371/journal.pone.0248470 March 18, 2021 11 / 23

https://github.com/mikeagn/CEC2013
https://github.com/mikeagn/CEC2013
https://doi.org/10.1371/journal.pone.0248470.t002
https://doi.org/10.1371/journal.pone.0248470


Effects of the parameter c2

The performance sensitivity of our GPSA to the parameter c2 was investigated while the other

parameters were fixed at ω = 0.729 and c1 = 1.49445.

Table 3 lists the PR-values obtained across all benchmark functions and the accuracy levels

for c2 = 10−2, 10−4, and 10−6, where D is the function domain as listed in Table 2. The best val-

ues for each function and accuracy-level are highlighted in bold. The bottom section of the

table summarizes the averaged PR obtained by summing the PR-values of all functions and

accuracy levels and dividing by the total number of values.

At the accuracy level � = 10−5, the PR of the functions with small domains (f1, f2, f3, f5, and

f10) increased with decreasing c2, indicating that the exploitation performance of our GPSA

Table 3. PR results of our GPSA with different parameters (c2 = 10−2, 10−4, and 10−6).

f1, D = [0, 30] f2, D = [0, 1] f3, D = [0, 1] f4, D = [−6, 6]2

� c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6

10−1 0.895 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.975 0.008

10−2 0.210 0.610 0.970 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.948 0.005

10−3 0.020 0.055 0.615 0.996 1.000 1.000 0.980 1.000 1.000 0.640 0.833 0.003

10−4 0.005 0.010 0.335 0.812 0.998 1.000 0.770 0.990 1.000 0.100 0.583 0.003

10−5 0.000 0.000 0.190 0.422 0.894 0.996 0.320 0.750 1.000 0.018 0.158 0.000

f5, D = [−1.9, 1.9] × [−1.1, 1.1] f6, D = [−10, 10]2 f7, D = [0.25, 10]2 f8, D = [−10, 10]2

� c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6

10−1 1.000 1.000 0.945 0.173 0.039 0.003 0.480 0.345 0.100 0.005 0.000 0.000

10−2 1.000 1.000 0.895 0.162 0.036 0.003 0.480 0.310 0.049 0.000 0.000 0.000

10−3 0.990 1.000 0.880 0.141 0.027 0.003 0.480 0.302 0.036 0.000 0.000 0.000

10−4 0.455 1.000 0.860 0.101 0.018 0.002 0.467 0.295 0.032 0.000 0.000 0.000

10−5 0.065 0.775 0.830 0.039 0.016 0.001 0.309 0.289 0.031 0.000 0.000 0.000

f9, D = [0.25, 10]3 f10, D = [0, 1]2 f11, D = [−5, 5]2 f12, D = [−5, 5]2

� c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6

10−1 0.360 0.212 0.024 0.981 0.997 0.975 0.667 0.425 0.017 0.570 0.200 0.013

10−2 0.344 0.139 0.001 0.422 0.996 0.975 0.547 0.422 0.015 0.289 0.195 0.013

10−3 0.219 0.127 0.000 0.066 0.647 0.975 0.128 0.383 0.015 0.091 0.141 0.009

10−4 0.034 0.114 0.000 0.008 0.083 0.933 0.013 0.153 0.012 0.016 0.071 0.005

10−5 0.001 0.047 0.000 0.001 0.006 0.388 0.002 0.028 0.005 0.000 0.056 0.000

f13, D = [−5, 5]2 f14, D = [−5, 5]3 f15, D = [−5, 5]3 f16, D = [−5, 5]5

� c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6

10−1 0.657 0.057 0.003 0.113 0.002 0.000 0.101 0.000 0.000 0.003 0.000 0.000

10−2 0.383 0.055 0.003 0.070 0.002 0.000 0.059 0.000 0.000 0.002 0.000 0.000

10−3 0.083 0.050 0.003 0.052 0.002 0.000 0.031 0.000 0.000 0.002 0.000 0.000

10−4 0.013 0.037 0.003 0.013 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000

10−5 0.000 0.022 0.003 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

f17, f18, f19, f20, D = [−5, 5]d

� c2 = 10−2, 10−4, 10−6

10−1 0.000 0.000 0.000 Average

10−2 0.000 0.000 0.000

10−3 0.000 0.000 0.000 c2 = 10−2, 10−4, 10−6

10−4 0.000 0.000 0.000 0.249 0.269 0.222

10−5 0.000 0.000 0.000

D is the function domain as listed in Table 2. The best values for each function and accuracy-level among the c2 values are indicated in bold.

https://doi.org/10.1371/journal.pone.0248470.t003
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improved as c2 decreased. Note that as the accuracy level � decreases, a stricter requirement is

imposed on the exploitation performance [39].

In contrast, at the accuracy level � = 10−1, the PR-values of the large-domain functions (f4,

f6, f7, f8, f9, and f11, � � �, f16) increased with c2, indicating that the exploration performance

improved as c2 increased.

The mechanism of these improvements can be explained by the effect of the gravitational

force described in the one-dimensional example. Increasing the c2 increases the distance

between the particles generating the repulsive flip (dðtÞ ¼ ffiffiffiffic2
3
p
� �þ in (14)), elevating the fre-

quency of repulsive flips and reducing that of the attractive motions.

These results clearly demonstrate that the balance between the exploitation and exploration

performance of our GPSA can be controlled by c2; specifically, a large c2 is suitable for a global

searching over a large domain, whereas a small c2 favors local searching over a small domain.

Performance comparison with the existing one-stage methods

Next, the performance of our GPSA was compared with those of the existing methods, namely

RPSO and FERPSO. These methods were selected for the following reasons. First, they are

one-stage methods like our GPSA. Second, they replace the global feedback term (5) of the

classical PSO with another term, similarly to our GPSA. Finally, they have the same number of

tuning parameters as our GPSA (see Fig 1).

In RPSO, (5) is replaced by

aiðtÞ ¼ lbiðtÞ � xiðtÞ; ð17Þ

where lbiðtÞ 2 R
d is the local best of the ith particle at iteration t. The local best is the highest-

cost position found by the particle or one of its neighbors, i.e., the best among the personal

bests pbi−1(t), pbi(t), and pbi+1(t).
In FERPSO, (5) is replaced with:

aiðtÞ ¼ nbiðtÞ � xiðtÞ; ð18Þ

where nbiðtÞ 2 R
d

again represents a neighborhood personal best, but selected by maximizing

the Euclidean-distance ratio (FER):

FERji ¼ a �
f ðpbjðtÞÞ � f ðpbiðtÞÞ
jjpbjðtÞ � pbiðtÞjj

; ð19Þ

where α = ||s||/(f(gb(t)) − f(xw(t))) is a scaling factor, ||s|| is the size of the search space [22],

xw(t) is the least-fitted particle in the current population, and pbi(t) and pbj(t) are the personal

bests of the ith and jth particles, respectively.

In this study, the tuning parameters of RPSO and FERPSO were set to ω = 0.729 and

c1 = c2 = 1.49445 consistent with [22, 25]. The other parameters and experimental conditions

were consistent with those in the previous section.

Table 4 lists the SR-values in (16) obtained by our GPSA and the compared methods. The

best and averaged values are indicated and summarized, as described in Table 3.

On the small-domain function f10, our GPSA obtained remarkably higher SR-values than

the compared methods. In particular, for � = 10−1, 10−2, 10−3 and 10−4 and c2 = 10−6, the SR-

value of our GPSA exceeded 0.4, versus SR = 0 in the compared methods. On the other small-

domain functions f2 and f3, the SR-values of our GPSA with c2 = 10−6 either outperformed or

equaled those of the compared methods. These results showed that when c2 is relatively small,

the exploitation performance of our GPSA is comparable to those of other methods.
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On the large-domain functions, f4 and f5 with � = 10−1 and 10−2 and c2 = 10−2, our GPSA

performed at least as well as the compared methods. These results indicate that when c2 is a rel-

atively large, the exploration performance of our GPSA is comparable to those of other

methods.

However, in terms of the averaged SR values, the other methods outperformed our GPSA.

This degradation was primarily attributed to the dilemma of choosing between the exploita-

tion and exploration performance in our GPSA.

Improvement of GPSA with a dynamic c2

To resolve the exploration—exploitation dilemma of our GPSA, this section introduces a

dynamic c2 that further improves its performance.

Dynamic c2 for our GPSA

Given our observations in the previous section, it is inferred that our GPSA’s iteration should

initially start with a large c2 to enhance the exploration performance, and that c2 should

decrease as the iteration increments to improve the exploitation performance. Therefore, the

present study proposes a method with a dynamic c2, in which c2 is provided as a nonlinear

function of the iteration t based on the dynamic ω as used successfully in the classical PSOs

Table 4. SR results of our GPSA with c2 = 10−2, 10−4, and 10−6, RPSO, and FERPSO.

f1, D = [0, 30] f2, D = [0, 1] f3, D = [0, 1]

GPSA RPSO FERPSO GPSA RPSO FERPSO GPSA RPSO FERPSO

� c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6

10−1 0.80 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.84 0.90 1.00 1.00 1.00 1.00 1.00

10−2 0.03 0.32 0.94 1.00 1.00 1.00 1.00 1.00 0.84 0.90 1.00 1.00 1.00 1.00 1.00

10−3 0.00 0.01 0.39 1.00 1.00 0.98 1.00 1.00 0.84 0.90 0.98 1.00 1.00 1.00 1.00

10−4 0.00 0.00 0.13 1.00 1.00 0.29 0.99 1.00 0.84 0.90 0.77 0.99 1.00 1.00 1.00

10−5 0.00 0.00 0.03 1.00 1.00 0.01 0.52 0.98 0.79 0.89 0.32 0.75 1.00 1.00 1.00

f4, D = [−6, 6]2 f5, D = [−1.9, 1.9] × [−1.1, 1.1] f10, D = [0, 1]2

GPSA RPSO FERPSO GPSA RPSO FERPSO GPSA RPSO FERPSO

� c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6 c2 = 10−2, 10−4, 10−6

10−1 1.00 0.92 0.00 0.94 0.87 1.00 1.00 0.89 1.00 1.00 0.79 0.96 0.71 0.00 0.00

10−2 1.00 0.84 0.00 0.77 0.87 1.00 1.00 0.79 1.00 1.00 0.00 0.95 0.71 0.00 0.00

10−3 0.18 0.46 0.00 0.63 0.87 0.98 1.00 0.77 1.00 1.00 0.00 0.00 0.71 0.00 0.00

10−4 0.00 0.09 0.00 0.61 0.87 0.21 1.00 0.74 1.00 1.00 0.00 0.00 0.42 0.00 0.00

10−5 0.00 0.00 0.00 0.58 0.87 0.00 0.58 0.69 1.00 1.00 0.00 0.00 0.00 0.00 0.00

f6, f7, f8, f9, f11, � � �, f20

GPSA RPSO FERPSO

� c2 = 10−2, 10−4, 10−6

10−1 0.00 0.00 0.00 0.00 0.00 Average

10−2 0.00 0.00 0.00 0.00 0.00 GPSA RPSO FERPSO

10−3 0.00 0.00 0.00 0.00 0.00 c2 = 10−2, 10−4, 10−6

10−4 0.00 0.00 0.00 0.00 0.00 0.14 0.19 0.19 0.23 0.24

10−5 0.00 0.00 0.00 0.00 0.00

D is the function domain, as listed in Table 2. The best values for each function and accuracy-level among RPSO, FERPSO and our GPSA with c2 = 10−2, 10−4, and 10−6

are highlighted in bold.

https://doi.org/10.1371/journal.pone.0248470.t004
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[21, 40, 41], as follows:

c2ðtÞ ¼ cini
2

ðtmax � tÞn

ðtmaxÞ
n

� �

; ð20Þ

where cini
2

is the initial c2 at the beginning of a run and n is the nonlinear modulation index. In

this study, these parameters were set to cini
2
¼ 102 and n = 20 to cover the c2 range analyzed in

the previous section. Fig 7 shows the dynamic c2 as a function of t for tmax = 1000, where the

left graph is a linear plot and the right a semi-log plot. It is shown that the c2 gradually

decreased to zero as t increased, and c2 used in Table 3 was covered. In this study, this modified

GPSA is called a dynamic GPSA (DGPSA).

Our DGPSA proposed above is more complicated than our GPSA, however, it is still sim-

pler than the existing one-stage methods in Fig 1, except for RPSO (FERPSO, LIPS, SPSO and

NGSA), the reason being that the computational complexity of our DGPSA is O(N2 + 1)

obtained by summing the complexities O(N2) of original GPSA and O(1) of (20), and is even

lower than FERPSO, LIPS, SPSO, and NGSA. In addition, the number of tuning parameters of

our DGPSA, ðo; c1; cini2
; nÞ 2 R4

, is fewer than or equivalent to that of LIPS, SPSO and NGSA.

Performance of our DGPSA

Table 5 shows the PR-values obtained by our DGPSA and the compared methods.

First, these values of our DGPSA were compared with our GPSA results in Table 3. On f6,

f8, and f12, � � �, f20, our DGPSA obtained higher PR-values at all accuracy levels than our GPSA

results. Even on f1, f2, f4, f5, f7, f9, f10, and f11, our DGPSA also had higher PR-values at the strict-

est accuracy level � = 10−5. Furthermore, the averaged PR-value increased by more than 2.3

times. These results clearly demonstrate that our DGPSA successfully solves the dilemma

found in our GPSA.

Furthermore, our DGPSA obtained higher PR-values than the compared methods on f2, f4,

f6, f7, f9, � � �, f16, and f19. In particular, on f6 and f7, the PR-values of our DGPSA were at least

1.9 times higher than those of the compared methods. The averaged PR-values also indicated

the superiority of our DGPSA.

Table 6 shows the SR-values obtained by our DGPSA, all of which were superior or equal to

those of the compared methods shown in Table 4.

Fig 7. Dynamic c2 as a function of iteration t, for cini
2
¼ 102, n = 20, and tmax = 1000.

https://doi.org/10.1371/journal.pone.0248470.g007
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The results above show that our DGPSA outperformed the compared methods in terms of

PR and SR.

Statistical tests

The statistically significant tests were not yet conducted in the results shown above. Here, the

number of functions is counted for which our DGPSA significantly outperformed the others,

as was done in [39].

Table 5. PR results of our DGPSA, RPSO, and FERPSO.

f1 f2 f3 f4
� DGPSA RPSO FERPSO DGPSA RPSO FERPSO DGPSA RPSO FERPSO DGPSA RPSO FERPSO

10−1 1.000 1.000 1.000 1.000 0.968 0.980 1.000 1.000 1.000 1.000 0.985 0.968

10−2 1.000 1.000 1.000 1.000 0.968 0.980 1.000 1.000 1.000 1.000 0.940 0.968

10−3 1.000 1.000 1.000 1.000 0.968 0.980 1.000 1.000 1.000 1.000 0.903 0.968

10−4 1.000 1.000 1.000 1.000 0.968 0.980 1.000 1.000 1.000 1.000 0.895 0.968

10−5 1.000 1.000 1.000 1.000 0.958 0.978 1.000 1.000 1.000 1.000 0.885 0.968

f5 f6 f7 f8
� DGPSA RPSO FERPSO DGPSA RPSO FERPSO DGPSA RPSO FERPSO DGPSA RPSO FERPSO

10−1 1.000 1.000 1.000 0.948 0.486 0.409 0.430 0.194 0.195 0.594 0.607 0.374

10−2 1.000 1.000 1.000 0.948 0.468 0.402 0.430 0.194 0.195 0.586 0.591 0.360

10−3 1.000 1.000 1.000 0.948 0.449 0.398 0.430 0.191 0.195 0.575 0.580 0.345

10−4 1.000 1.000 1.000 0.948 0.436 0.394 0.427 0.182 0.194 0.561 0.571 0.331

10−5 1.000 1.000 1.000 0.948 0.426 0.394 0.415 0.175 0.194 0.531 0.565 0.317

f9 f10 f11 f12

� DGPSA RPSO FERPSO DGPSA RPSO FERPSO DGPSA RPSO FERPSO DGPSA RPSO FERPSO

10−1 0.313 0.213 0.179 0.990 0.677 0.569 0.667 0.598 0.633 0.728 0.360 0.500

10−2 0.257 0.191 0.179 0.990 0.666 0.569 0.667 0.588 0.633 0.718 0.353 0.499

10−3 0.212 0.168 0.177 0.990 0.648 0.568 0.667 0.580 0.633 0.708 0.341 0.496

10−4 0.193 0.153 0.174 0.990 0.636 0.568 0.667 0.578 0.633 0.699 0.334 0.496

10−5 0.186 0.140 0.164 0.990 0.618 0.564 0.667 0.575 0.633 0.694 0.333 0.496

f13 f14 f15 f16

� DGPSA RPSO FERPSO DGPSA RPSO FERPSO DGPSA RPSO FERPSO DGPSA RPSO FERPSO

10−1 0.660 0.533 0.548 0.658 0.553 0.528 0.343 0.288 0.289 0.577 0.537 0.322

10−2 0.660 0.522 0.548 0.658 0.547 0.528 0.341 0.284 0.289 0.570 0.530 0.322

10−3 0.660 0.510 0.548 0.658 0.543 0.528 0.329 0.281 0.288 0.570 0.527 0.322

10−4 0.660 0.505 0.548 0.657 0.540 0.528 0.321 0.280 0.288 0.570 0.520 0.322

10−5 0.660 0.505 0.548 0.645 0.538 0.528 0.316 0.279 0.288 0.570 0.517 0.322

f17 f18 f19 f20

� DGPSA RPSO FERPSO DGPSA RPSO FERPSO DGPSA RPSO FERPSO DGPSA RPSO FERPSO

10−1 0.219 0.244 0.125 0.167 0.250 0.177 0.125 0.114 0.036 0.125 0.134 0.090

10−2 0.211 0.241 0.125 0.167 0.247 0.177 0.125 0.114 0.036 0.125 0.134 0.090

10−3 0.206 0.240 0.125 0.167 0.247 0.175 0.125 0.114 0.036 0.125 0.134 0.090

10−4 0.206 0.240 0.125 0.167 0.247 0.175 0.125 0.114 0.036 0.125 0.134 0.090

10−5 0.206 0.239 0.124 0.167 0.247 0.175 0.125 0.114 0.036 0.125 0.134 0.090

Average

DGPSA RPSO FERPSO

0.619 0.523 0.494

The best values for each function and accuracy level among the algorithms are indicated in bold.

https://doi.org/10.1371/journal.pone.0248470.t005
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Consider the following sets:

N ið�Þ≔ fn
go
k ðfi; �Þ j 1 � k � 100g; ð21Þ

N ið�Þ≔ fn
go
k ðfi; �Þ j 1 � k � 100g; ð22Þ

where ngo
k ðfi; �Þ is ngo

k in (15) obtained by our DGPSA on the function fi (i = 1, � � �, 20) and the

accuracy level �, N ið�Þ is a set of the ngo
k ðfi; �Þ for all k, and ngo

k ðfi; �Þ and N ið�Þ are those of the

compared method. Then, to classify the fi, the following sets were introduced:

Fþð�Þ≔ ffi j mi > mi; and Ti ¼ 1g; ð23Þ

F � ð�Þ≔ ffi j mi < mi; and Ti ¼ 1g; ð24Þ

F 0
ð�Þ≔ ffi j Ti ¼ 0g: ð25Þ

Here, mi and mi indicate the median of N ið�Þ and N ið�Þ, respectively.Ti becomes unity when

there is a significant difference between mi and mi, and otherwise zero. This significant differ-

ence was determined by the Wilcoxon rank-sum test [42] with a significance level of 0.05, as

used in [39]. Fþð�Þ and F � ð�Þ are the sets of fi on which our DGPSA was significantly superior

and inferior to the compared method, respectively. Also, F 0
ð�Þ is the set of fi where there was

no significant difference between our DGPSA and the compared method.

Table 7 shows the resulting numbers of functions #Fþð�Þ, #F � ð�Þ, and #F 0ð�Þ, where A
denotes the number of elements of a set A. Here, Sum(�) indicates the sum of #Fþð�Þ, #F � ð�Þ,

Table 6. SR results of our DGPSA for all benchmark functions and all accuracy levels.

� f1 f2 f3 f4 f5 f6 f10 f12 f7, f8, f9, f11, f13, � � �, f20

10−1 1.000 1.000 1.000 1.000 1.000 0.320 0.880 0.030 0.000 Average

10−2 1.000 1.000 1.000 1.000 1.000 0.320 0.880 0.030 0.000

10−3 1.000 1.000 1.000 1.000 1.000 0.320 0.880 0.020 0.000 0.311

10−4 1.000 1.000 1.000 1.000 1.000 0.320 0.880 0.020 0.000

10−5 1.000 1.000 1.000 1.000 1.000 0.320 0.880 0.020 0.000

https://doi.org/10.1371/journal.pone.0248470.t006

Table 7. Resulting numbers of functions in FþðϵÞ, F � ðϵÞ, and F 0ðϵÞ.

RPSO versus DGPSA

� = 10−1 � = 10−2 � = 10−3 � = 10−4 � = 10−5

#Fþð�Þ 12 (60%) 12 (60%) 12 (60%) 12 (60%) 12 (60%)

#F � ð�Þ 4 (20%) 3 (15%) 3 (15%) 4 (20%) 4 (20%)

#F 0
ð�Þ 4 (20%) 5 (25%) 5 (25%) 4 (20%) 4 (20%)

Sum(�) 20 (100%) 20 (100%) 20 (100%) 20 (100%) 20 (100%)

FERPSO versus DGPSA

� = 10−1 � = 10−2 � = 10−3 � = 10−4 � = 10−5

#Fþð�Þ 16 (80%) 16 (80%) 16 (80%) 16 (80%) 16 (80%)

#F � ð�Þ 1 (5%) 1 (5%) 1 (5%) 1 (5%) 1 (5%)

#F 0
ð�Þ 3 (15%) 3 (15%) 3 (15%) 3 (15%) 3 (15%)

Sum(�) 20 (100%) 20 (100%) 20 (100%) 20 (100%) 20 (100%)

#A denotes the number of elements of a set A, Sum(�) indicates the sum of #Fþð�Þ, #F � ð�Þ, and #F 0ð�Þ, and the values in the parentheses indicate the composition

ratios of the resulting number to the Sum(�).

https://doi.org/10.1371/journal.pone.0248470.t007

PLOS ONE Simple gravitational particle swarm algorithm for multimodal optimization problems

PLOS ONE | https://doi.org/10.1371/journal.pone.0248470 March 18, 2021 17 / 23

https://doi.org/10.1371/journal.pone.0248470.t006
https://doi.org/10.1371/journal.pone.0248470.t007
https://doi.org/10.1371/journal.pone.0248470


and #F 0
ð�Þ. The values in parentheses are the composition ratios of the resulting number to

the Sum(�).

Focusing on the comparison between RPSO and our DGPSA shown in the top of Table 7, it

is understood that #Fþð�Þ were equal to 12 for all �, and that their composition ratios were

60% ð¼ #Fþð�Þ=Sumð�Þ � 100 %Þ. From the definition of (23), these results show that our

DGPSA was significantly superior to RPSO for 60% of the benchmark functions. On the other

hand, #F � ð�Þ were equal to or less than 4, and their composition ratios were 20% or less.

From the definition of (24), these results show that our DGPSA was significantly inferior to

RPSO in at most 20% of the benchmark functions.

Next, focusing on the comparison between FERPSO and our DGPSA shown in the bottom

of the table, it is shown that #Fþð�Þ were equal to 16 and that their composition ratios were

80%, as well as that #F � ð�Þ were equal to 1 and their composition ratios were 5%. This indi-

cates that our DGPSA was significantly superior and inferior to FERPSO for 80% and 5% of

the benchmark functions, respectively.

Therefore, these results clearly demonstrate that our DGPSA was significantly superior to

the compared one-stage methods in at least 60% of the benchmark functions.

Runtime comparison

Fig 8 shows the boxplot of runtime performed by our DGPSA, RPSO and FERPSO for one-,

five-, ten-, and twenty-dimensional functions: f1, f16, f18, f20. The simulation conditions were

consistent with those of the performance comparisons in the previous sub section. In Fig 8,
���� indicates the statistically significant difference with p-value <10−4 between our DGPSA

and the compered method, which were tested by Wilcoxon rank-sum test [42]. All algorithms

were implemented by Python and executed by the same physical computer (Lenovo ThinkPad

T480s, Intel Core i5 processor with 24GB Memory).

Focusing on the runtime comparison between our DGPSA and FERPSO, the runtime of

our DGPSA was statistically significantly shorter than that of FERPSO. The mechanism of

these results can be explained by the computational complexity described in Fig 1. Focusing

on the comparison between our DGPSA and RPSO, our DGPSA was considerably inferior to

RPSO for the one-dimensional function f1. On the other hand, for the high-dimensional func-

tions f16, f18, and f20, our DGPSA showed a statistically significantly shorter runtime than those

of RPSO.

These results demonstrated that although our DGPSA has higher computational complex-

ity than RPSO (see Fig 1), its execution time was significantly shorter than RPSO for the high-

dimensional functions.

Performance comparison with the existing two-stage methods

The performance of our DGPSA was also compared with those of the existing two-stage meth-

ods, namely, RS-CMSA and HillVallEA19, that are the winner of the competition on niching

methods held in GECCO 2017 and 2019. Table 8 compares the PR-values of our DGPSA for

� = 10−5 (reproduction from Table 5) with those of the two-stage methods in [29, 43], where

the benchmark problems and simulation conditions were consistent with those of this study.

Table 8 also shows the statistical test results between our DGPSA and the existing two-stage

methods, which was conducted similar to the previous section (Statistical test). The original

results of RS-CMSA and HillVallEA19 were obtained from the repository provided by the

competition organizers https://github.com/mikeagn/CEC2013. The symbol (0) indicates that

there was no statistically significant difference between our DGPSA and the compared
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method. The symbol (−) indicates that our DGPSA was significantly inferior to the compared

method with a significance level of 0.05.

Our DGPSA performed comparably to the existing two-stage methods on functions f1, f2,

f3, f4, and f5 with no statistical difference. Although the PR-values for the other functions were

significantly inferior in our DGPSA than in the two-stage methods, our one-stage DGPSA is

suitable for non-experts in optimization algorithms who wish to implement an MMO algo-

rithm into the production items (as described in GPSA’s section).

Fig 8. Comparison of runtime of our DGPSA and existing one-stage methods, where ���� indicates significantly difference between the runtime of

our DGPSA and that of the compered method with p-value<10−4.

https://doi.org/10.1371/journal.pone.0248470.g008
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Conclusions

This study proposed a new MMO algorithm called GPSA, which replaces the global feedback

term in the classical PSO by an inverse-square gravitational force term between the particles,

in order to resolve the drawbacks of existing MMO algorithms, namely, the difficulties in

understanding and implementing two-stage methods, and the high computational complexity,

large number of tuning parameters and the limited performance in one-stage methods. The

proposed GPSA is a simple and purely dynamical algorithm, which is distinct from the existing

two- and one-stage MMO methods because of absence of clustering algorithms, restart

schemes, taboo archives, and algorithmic procedures for selecting the social and nearest

best(s).

First, the types of niching behavior generated by our GPSA were investigated on simple

one- and two-dimensional MMO problems. The findings are summarized below:

• Through mutual attraction via the inverse-square gravitational force, the particles dynami-

cally formed into sub-swarms dynamically without algorithmic rules.

• The sub-swarms autonomously gathered near the multiple global optima, with individual

particles performing damped oscillations about their respective personal bests.

• A few of the particles in the sub-swarms intermittently escaped, via the repulsive flip, and

found distant global optima.

Next, our GPSA was compared with the existing MMO algorithms. The observations are

summarized below:

• In the nominal performance comparison, our GPSA was confirmed as a simpler method

than the existing methods, because it is less computationally complex and requires fewer

tuning parameters than the existing high-performance methods.

• In the actual performance comparison, PR and SR were measured on the twenty CEC bench-

mark functions. The exploitation and exploration performances of our GPSA were compara-

ble to those of the existing one-stage methods (RPSO and FERPSO).

Finally, an improved GPSA called DGPSA, which gradually decreases the parameter c2 as

the iterations proceed, was evaluated and the results are summarized below:

Table 8. PR results of our DGPSA and the existing two-stage methods with � = 10−5.

f DGPSA RS-CMSA HillVallEA19 f DGPSA RS-CMSA HillVallEA19

f1 1.000 1.000 (0) 1.000 (0) f11 0.667 0.997 (-) 1.000 (-)

f2 1.000 1.000 (0) 1.000 (0) f12 0.694 0.948 (-) 1.000 (-)

f3 1.000 1.000 (0) 1.000 (0) f13 0.660 0.997 (-) 1.000 (-)

f4 1.000 1.000 (0) 1.000 (0) f14 0.645 0.810 (-) 0.917 (-)

f5 1.000 1.000 (0) 1.000 (0) f15 0.316 0.748 (-) 0.750 (-)

f6 0.948 0.999 (-) 1.000 (-) f16 0.570 0.667 (-) 0.687 (-)

f7 0.415 0.997 (-) 1.000 (-) f17 0.206 0.703 (-) 0.750 (-)

f8 0.531 0.871 (-) 0.975 (-) f18 0.167 0.667 (-) 0.667 (-)

f9 0.186 0.730 (-) 0.972 (-) f19 0.125 0.503 (-) 0.585 (-)

f10 0.990 1.000 (-) 1.000 (-) f20 0.125 0.483 (-) 0.482 (-)

average 0.612 0.856 0.892

The symbol (0) indicates that there was no statistically significant difference between our DGPSA and the compared method and (−) indicates that our DGPSA was

significantly inferior to the compared method, with a significance level of 0.05.

https://doi.org/10.1371/journal.pone.0248470.t008
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• Although our DGPSA is simpler than the existing one-stage methods, it outperformed the

compared one-stage methods in both PR and SR.

• The well-known statistical test method, namely, the Wilcoxon rank-sum test, confirmed the

superiority of our DGPSA over the compared one-stage methods on at least 60% of the

benchmark functions.

• In comparison of runtime for high-dimensional functions, our DGPSA was significantly

superior to the compared one-stage methods.

• Although our DGPSA was statistically inferior to the existing two-stage methods for high-

dimensional functions, its simplicity enables its implementation as an MMO algorithm by

non-experts.

Clearly, our proposed DGPSA resolves the shortcomings of the existing methods by virtue

of its simple and purely dynamical algorithm that outperforms the existing one-stage methods

(FERPSO and RPSO). Therefore, we believe that the proposed DGPSA is a more appropriate

algorithm than the existing methods for the situation where non-experts in optimization algo-

rithms understand and implement a MMO algorithm to solve the real world problems.

In the future, we plan to investigate the applicability of our GPSA to real-world optimiza-

tion problems, including optimal structure design [6, 11] and the training of neural networks.

We will also consider ways of optimizing the model parameters and applying dynamic inertia

weight.
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