Table 5. The coefficients of the LMER+C model using training data (2015–2017) for Bangkok province.
Predictor | βj | βj * γk | SE | 95% CI | p-value |
---|---|---|---|---|---|
Fixed effects | |||||
(Intercept) | 1.08 | 1.01 | (-0.91, 3.06) | 0.297 | |
Population | 2.2 | 0.2 | (1.81, 2.59) | < 0.001 | |
MAX_LST | -0.1 | 0.06 | (-0.22, 0.03) | 0.126 | |
AVG_RF | 0.97 | 0.23 | (0.52, 1.41) | < 0.001 | |
Jar | 0.73 | 0.27 | (0.20, 1.26) | 0.008 | |
Misc_Tall | -0.21 | 0.1 | (-0.40, -0.01) | 0.04 | |
Jar * Population | -1.28 | 1.01 | (-1.93, -0.63) | < 0.001 | |
Population * Misc_Tall | 0.79 | 0.27 | (0.32, 1.26) | 0.001 | |
Random effects | Std of b0,j | ||||
Subdistrict (intercept) | 0.36 | ||||
Year_Season (intercept) | 1.45 |
Note: Std stands for standard deviation.