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ABSTRACT
We present the Rate from Event Durations (RED) scheme, a new scheme that more efficiently calculates rate constants using the weighted
ensemble path sampling strategy. This scheme enables rate-constant estimation from shorter trajectories by incorporating the probability
distribution of event durations, or barrier-crossing times, from a simulation. We have applied the RED scheme to weighted ensemble simu-
lations of a variety of rare-event processes that range in complexity: residue-level simulations of protein conformational switching, atomistic
simulations of Na+/Cl− association in explicit solvent, and atomistic simulations of protein–protein association in explicit solvent. Rate con-
stants were estimated with up to 50% greater efficiency than the original weighted ensemble scheme. Importantly, our scheme accounts for
the systematic error that results from statistical bias toward the observation of events with short durations and reweights the event duration
distribution accordingly. The RED scheme is relevant to any simulation strategy that involves unbiased trajectories of similar length to the
most probable event duration, including weighted ensemble, milestoning, and standard simulations as well as the construction of Markov
state models.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0041278., s

I. INTRODUCTION

Of great interest to chemical physics and biophysics is the
estimation of rate constants for long-time scale processes. These
rate constants may be directly obtained from molecular simulations
with enhanced sampling approaches that maintain rigorous kinet-
ics. Among these approaches are path sampling strategies, which
focus the computing power on the functional transitions between
stable states rather than the stable states themselves,1 exploiting
the fact that for rare events, the event duration, tb, or barrier-
crossing time is much shorter than the associated waiting times
between events (tb ≪ k−1, where k is the corresponding rate con-
stant).2,3 Path sampling strategies fall broadly into two categories:
(i) methods that generate continuous transition paths [e.g., weighted
ensemble (WE)4,5 and other “splitting” strategies,6–8 transition inter-
face sampling,9 and forward flux sampling10,11] and (ii) methods

that generate discontinuous paths (e.g., milestoning12 and weighted
ensemble milestoning13). Alternatively, Markov State models14,15—
discrete state kinetic models—can be constructed at the post-
simulation stage to obtain long-time scale information from
either continuous trajectory (e.g., from weighted ensemble simula-
tions)16,17 or short, discontinuous trajectories (e.g., from adaptive
sampling7).

One challenge of the weighted ensemble (WE) strategy has been
the estimation of rate constants from trajectory ensembles that have
not yet reached a steady state. To tackle this challenge, history-
augmented Markov State models that employ “micro-bins” have
been applied to estimate rate constants from pre-steady state tra-
jectories.16,17 Alternatively, the non-Poisson kinetics of the transient
“ramp-up time”—or approach to steady state—of a WE simulation
can be incorporated into the rate-constant estimation, improving
on previous WE studies of complex biological processes such as
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large-scale protein conformational transitions18 and protein–ligand
binding19–21 that have focused on only the latter portions of the
simulations where the rate-constant estimate was no longer sensitive
to the earliest (and least probable) successful pathways.

Here, we present the Rate from Event Durations (RED) scheme,
a more efficient scheme for estimating rate constants that exploit the
ramp-up time from the early part of a WE simulation by incorpo-
rating the distribution of event durations (barrier-crossing times)
that have been sampled. To illustrate the rationale of the RED
scheme, we make an analogy of rare-event sampling to a cross-
country race in which officials wish to estimate the average rate
for runners to surmount the first hill, or barrier [Fig. 1(a)]. Rather
than waiting for all of the runners to complete the race, the offi-
cials can estimate the average rate more quickly by constructing
a probability distribution of event durations that is solely based
on the initial pack of runners that make it over the barrier. The
effectiveness of this scheme therefore depends on the extent to
which the initial distribution of event durations reflects the width
and steepness of the barrier after all runners have finished the
race.

The RED scheme is relevant to any simulation strategy that
relies on unbiased pathways of a similar length to the typical

event duration, including weighted ensemble,4,5 milestoning,12 and
standard simulations as well as the construction of Markov state
models.14,15 To demonstrate the power of the RED scheme for cal-
culating rate constants, we applied the strategy to a set of three
increasingly complex rare-event processes.

First, we applied the RED scheme to residue-level simula-
tions of a protein conformational switching process of an engi-
neered protein-based Ca2+ sensor. These simulations have enabled
the rational enhancement of the sensor’s response time by as much
as 32-fold.18 This sensor was engineered using the alternate frame
folding (AFF) scheme, fusing together the wild-type calbindin pro-
tein and a circular permutant of calbindin such that the two pro-
teins partially overlap in sequence in the resulting calbindin-AFF
construct and, therefore, fold in a mutually exclusive manner.22

Importantly, WE simulations of this switching process are an ideal
“proof-of-principle” application of the RED scheme as the simula-
tions each exhibit a large “ramp-up time” before steady-state conver-
gence of the rate constant, and each simulation captures the entire
distribution of event durations.18

Second, we applied the RED scheme to the molecular associa-
tion of Na+ and Cl− ions in explicit solvent. This association process
was one of four benchmark applications in a previous study that

FIG. 1. Illustration of the RED Scheme for rate-constant estimation. (a) Estimating the rate constant from the ramp-up time is analogous to estimating the average rate at
which all runners in a race reach the finish line from the first few finish times. (b) In the context of a WE simulation, the RED scheme enhances the efficiency of rate-constant
estimation by using the “ramp-up time” for the rate constant, i.e., an initial portion of the distribution of event durations. To compare the RED scheme against previous
calculation methods, we ask “for a given time t, what is the best estimate that our scheme could have produced if we stopped the simulations at time t?”
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demonstrated the efficiency of WE relative to standard simulations
in generating rate constants and pathways.23

Finally, we applied the RED scheme to atomistic simula-
tions of a complex biological process in explicit solvent: protein–
protein binding. In particular, we re-analyzed a previously com-
pleted protein–protein binding simulation that has yielded rate con-
stants and pathways for the barnase and barstar proteins20 using
<1% of the total simulation time used for a Markov state model study
of the same binding process.24

II. THEORY
For a rare-event process, the majority of event durations

(barrier-crossing times) will be short compared to the waiting times
between events. As the system evolves in time and begins to gener-
ate event duration times that are substantially longer than the most
probable event duration, the distribution of waiting times becomes
near-exponential, which is consistent with a Poisson point pro-
cess in which the events are stochastic and independent.25 How-
ever, when the simulations of a rare-event process are only as long
as the most probable event duration—as is often the case for WE
and other rare-event sampling strategies—the number of events
per unit time displays transient, pre-steady state behavior, and the
initial edge of the distribution of waiting times deviates from an
exponential distribution. Our Rates from Event Durations (RED)
scheme leverages this transient behavior to estimate rate constants
from pre-steady state trajectories. Below, we briefly summarize the
weighted ensemble (WE) strategy and then present details of the
original WE scheme for rate-constant estimation and the RED
scheme.

A. The weighted ensemble (WE) strategy
The WE strategy enhances the sampling of rare events by

orchestrating the periodic resampling of parallel, weighted trajec-
tories.4 The goal of the strategy is to provide reasonably even cov-
erage of configurational space—typically divided into bins along
a progress coordinate toward the target state—to yield an ensem-
ble of continuous, successful pathways with rigorous kinetics. The
resampling step is performed at a fixed time interval τ and involves
evaluating trajectories in the same bin for either replication or com-
bination to maintain the same number of target trajectories/bin.
Rigorous management of trajectory weights ensures that no bias is
introduced into the dynamics. To maintain non-equilibrium steady-
state conditions, trajectories that reach the target state are “recycled,”
i.e., terminated followed by initiation of a new trajectory with the
same weight.

B. Original WE scheme for rate-constant estimation
In the original WE scheme, the macroscopic rate constant kAB

for a rare-event process involving an initial state A and target state B
is computed as follows:26

kAB =
⟨ f SSAB⟩
⟨pA⟩

= ⟨ f SSAB⟩, (1)

where ⟨ f SSAB⟩ is the running average of the conditional flux of prob-
ability carried by trajectories originating in state A and arriving

in state B and ⟨pA⟩ is the running average of the fraction of
trajectories more recently in A than in B, which is equal to one
in non-equilibrium steady-state WE simulations. In practice, if a
steady state has not been reached, then ⟨ f ssAB⟩ is approximated by
the running average ⟨f AB⟩ of the conditional flux (not necessar-
ily steady state) from state A to state B. For bimolecular pro-
cesses, we divide Eq. (1) by the effective molar concentration C0
of the associating molecules to estimate a rate constant in units
of M−1 s−1.

C. Rate from event durations (RED) scheme
The Rate from Event Durations (RED) scheme reduces the

impact of transient effects from a WE simulation on rate-constant
estimation by incorporating the distribution of sampled event dura-
tions (barrier-crossing times tb, which exclude the dwell time in state
A). The motivation behind this scheme is that short WE simulations
may not capture pathways with relatively long barrier-crossing times
that have yet to enter state B; therefore, the original WE scheme
tends to underestimate the true rate constant by a predictable quan-
tity that depends on the probability of observing pathways with
longer event durations. The RED scheme incorporates this quantity
as a correction factor to the rate-constant estimate of the original
scheme at a given time of the simulation.

We consider a rare-event process with the following
properties:

1. The system is in an initial state A at time t = 0 such that an
event of duration tb is less than or equal to the longest possible
trajectory length tmax of the WE simulation.

2. While in the initial state A, the system has a constant probabil-
ity per unit time of initiating a successful transition path to the
target state B, denoted kAB.

3. The event durations are assumed to be randomly dis-
tributed according to a probability density function hAB, where
∫

∞
0 hAB(t)dt = 1.

4. Upon arriving in a target state B, the system is immediately
“recycled” to the initial state A.

To derive an expression for estimating the rate constant, we begin
by defining the flux f AB from an initial state A into a target state B
as a convolution of the rate constant kAB for completing the A → B
transition in a time tb distributed according to hAB (see the Appendix
for additional details),

fAB(t) = ∫
t

0
kABhAB(tb)dtb. (2)

We then integrate and rearrange Eq. (2) to obtain an expression
for kAB that depends only on the true cumulative number of events
FAB(tmax) and cumulative distribution of event durations HAB(t),

kAB = FAB(tmax)/∫
tmax

0
HAB(t)dt, (3)

where the numerator FAB(tmax) = ∫
tmax

0 fAB(t)dt, the denominator
is the integral of HAB(t) over all values of t ranging from 0 to tmax,
the cumulative distribution HAB(t) = ∫

t
0 hAB(tb)dtb is the integral

of hAB(tb), and hAB(tb) is the true distribution of event durations.
Compared with the original WE scheme, where the denominator
would be the time tmax, the denominator in Eq. (3) represents a
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“corrected time,” which accounts for the time during which it was
possible to see events. Equivalently, the denominator in Eq. (1) of
the original WE scheme could be written as ∫

tmax
0 1dt, which indi-

cates that an estimate derived from Eq. (3) would be greater than
that of the original WE scheme, since HAB(t) is a cumulative density
function that is less than one.

Next, we use Eq. (3) to derive an estimate for the rate constant
based on the “observed” distribution of event durations that are sam-
pled by the WE simulation. While we may naively estimate hAB(tb)
as the observed histogram ĥAB(tb) of event durations, the observed
histogram ĥAB(tb) is likely skewed toward shorter event durations
due to the transient phase for the time evolution of the rate constant
( ˆ indicates the observed quantity). To obtain a corrected estimate
h̃AB(tb) of the histogram, we divide the observed histogram ĥAB(tb)
by the interval of time (tmax − tb) in which it is possible to observe an
event of duration tb from a simulation with a maximum trajectory
length tmax,

h̃AB(tb)∝ ĥAB(tb)/(tmax − tb), (4)

where the constant of proportionality is chosen such that the cor-
rected h̃AB is normalized [∫

∞
0 h̃AB(tb)dtb = 1]. In essence, this mod-

ified histogram estimate h̃AB(tb) corrects for statistical bias in the
observed histogram ĥAB(tb). This bias results from the inability to
observe successful pathways that have an exited state A, but not
yet entered state B, which occurs more often for pathways with
longer event durations. Our corrected histogram h̃AB(tb) provides
an asymptotically unbiased estimate of the true event duration dis-
tribution hAB(tb), assuming that hAB(tb) is continuous. For a full
derivation of Eq. (4), see Subsection 2 of the Appendix.

Finally, we define the RED scheme estimate kREDAB of the true rate
constant kAB as follows:

kREDAB =
F̂AB(tmax)

C
, (5)

where F̂AB(tmax) is the observed cumulative probability of A → B
transitions up to the maximum trajectory length tmax; and the
denominator is a correction factor C equal to ∫

tmax
0 ∫

t
0 h̃AB(tb)dtbdt

in units of time, yielding a rate-constant estimate kREDAB in units of
inverse time. For bimolecular processes, we divide Eq. (5) by the
effective molar concentration C0 of the associating molecules to esti-
mate a rate constant in units of M−1 s−1 (as is also the case for the
original WE scheme).

D. Error estimation for rate constants
In cases where it is not possible to sample the entire distribu-

tion of event durations, the RED scheme provides a framework for
understanding the systematic error that results from not observing
trajectories with longer event durations. Given a maximum trajec-
tory length tmax, the corrected estimate h̃AB(tb) of the event dura-
tion distribution hAB(tb) will be zero for tb > tmax, and since h̃AB is
normalized such that ∫

∞
0 h̃AB(tb)dtb = 1, h̃AB(tb) will be artificially

inflated for tb < tmax,

h̃AB(tb) ≈ hAB(tb)/∫
tmax

0
hAB(t)dt for tb ∈ [0, tmax]. (6)

In other words, since we cannot observe event durations of tb > tmax,
the normalization factor for the corrected histogram h̃AB(tb) implic-
itly assumes that such events do not occur; since h̃AB(tb) approxi-
mates the true event duration distribution hAB(t) up to a constant
of proportionality (see Subsection 2 of the Appendix), we can then
deduce that our lack of knowledge of events with durations tb > tmax
tends to inflate our estimate of the distribution for tb < tmax.

If we plug the right-hand side (RHS) of Eq. (6) back into
Eq. (5)—that is, by replacing h̃AB(tb) in the correction factor C
with the equivalent value from Eq. (6)—we find that kREDAB under-
estimates kAB by a factor of ∫

tmax
0 hAB(tb)dtb, the observed fraction of

the distribution of event durations,

kREDAB ≈ (∫

tmax

0
hAB(tb)dtb)FAB(tmax)/∫

tmax

0
∫

t

0
hAB(tb)dtbdt. (7)

For example, if 20% of pathways reaching the target state have longer
event durations tb than the maximum trajectory length tmax and
are, therefore, not captured during the simulation, then we tend to
underestimate the true rate constant kAB by 20%. Despite this under-
estimation, the RED scheme estimate is still an improvement over
the original scheme for estimating rate constants [Eq. (1)].

For multiple, independent WE simulations 1, 2, . . ., N, we esti-
mated uncertainties in the rate constants by first applying the RED
scheme individually to map each simulation i to a corresponding
rate constant estimate kRED ,i and then applying Bayesian bootstrap-
ping27 to estimate 95% credibility regions (CRs). To prevent under-
estimating the uncertainty, the distributions of event durations h̃iAB
were calculated independently for each simulation, as pooling data
to make a smoother estimate of hAB would introduce correlations
and, therefore, break the independence between the kRED ,i. For
cases where only a single WE simulation was run (i.e., for barnase–
barstar association), the uncertainty in the rate constant calculated
by the RED scheme is not reported as the error estimation is not
straightforward in these cases see Sec. 1 of the Appendix.

III. METHODS
A. WE simulations

All WE simulations were run using the open-source, highly
scalable WESTPA software package (https://westpa.github.io/
westpa).28 WE parameters and details of dynamics propagation are
provided below for each rare-event process.

1. Protein conformational switching
As described in DeGrave et al.,18 ten independent WE sim-

ulations were previously run to generate N′ → N switching path-
ways of the wild-type E65′Q calbindin-AFF construct under non-
equilibrium steady-state conditions. Each WE simulation was run
for 2000 WE iterations with a fixed time interval τ of 100 ps and
a target number of 5 trajectories/bin, yielding an aggregate simula-
tion time of 65 μs for each simulation. A two-dimensional progress
coordinate was defined as (i) the pseudo-atom root-mean-square
deviation (RMSD) of the N frame after aligning on the folded N
frame structure and (ii) the pseudo-atom RMSD of the N′ frame
after aligning on the folded N′ frame. Dynamics were propagated
using a Brownian dynamics algorithm with hydrodynamic interac-
tions, as implemented in the UIOWA-BD software.29,30 All analyses
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were performed with conformations sampled every 50 ps. A minimal
residue-level protein model was employed in which each residue is
represented by a single pseudo-atom at the position of its Cα atom.
The conformational dynamics of the protein were governed by a
Gō-type potential energy function31,32 that was parameterized to
reproduce the experimental folding free energies of the isolated
wild-type protein and the circular permutant of the protein.18

2. Na+/Cl− association
Five independent WE simulations were run to generate path-

ways of the Na+/Cl− association process under non-equilibrium
steady-state conditions. Each WE simulation was run for 1000 WE
iterations with a fixed time interval τ of 2 ps for each iteration and
a target number of 4 trajectories/bin, yielding an aggregate simula-
tion time of 0.2 μs for each simulation. A one-dimensional progress
coordinate was defined as the distance between the Na+ and Cl−

ions; bins were placed every 1 Å from a separation distance of 12
(unassociated state) to 2.6 Å (associated state). Dynamics were prop-
agated using the AMBER18 software package33 with the TIP3P water
model34 and corresponding Joung and Cheatham parameters for the
Na+ and Cl− ions.35 Simulations were started from an unassociated
state with a 12-Å separation between the Na+ and Cl− ions and a suf-
ficiently large truncated octahedral box of explicit water molecules
to provide a minimum 12 Å clearance between the ions and box
walls, yielding an effective ion concentration C0 of 2.8 mM. Tem-
perature and pressure were maintained at 298 K and 1 atm using the
Langevin thermostat (collision frequency of 1 ps−1) and the Monte
Carlo barostat (with 100 fs between attempts to adjust the system
volume), respectively. Non-bonded interactions were truncated at
10 Å, and long-range electrostatics were treated using the particle
mesh Ewald method.36

3. Protein–protein association
As described in Saglam and Chong,20 a single WE simulation

was previously run to generate pathways of the association process
of the barnase and barstar proteins under equilibrium conditions.20

The WE simulation was run for 650 WE iterations with a fixed
time interval τ of 20 ps for each iteration and a fixed total num-
ber of 1600 trajectories at all times during the simulation, yielding
an aggregate simulation time of 18 μs. A two-dimensional progress
coordinate was defined as (i) the minimum separation distance
between barnase and barstar, and (ii) a “binding” RMSD, which was
determined by first aligning on barnase in the crystal structure of
the barnase–barstar complex37 and then calculating the heavy-atom
RMSD of barstar residues D35 and D39. Dynamics were propagated
using the Gromacs 4.6.7 software package38 with the Amber ff03∗

force field,39 TIP3P water model,34 and corresponding Joung and
Cheatham ion parameters.35 The system was immersed in a suffi-
ciently large dodecahedron box of explicit water molecules to pro-
vide a minimum of 12 Å clearance between the solutes and box walls
for the unbound states in which the binding partners were separated
by 20 Å. A total of 31 Na+ and 29 Cl− ions were included to neutral-
ize the net charge of the protein system and to yield the experimental
ionic strength (50 mM).40 The entire simulation system consisted
of ∼100 000 atoms with an effective protein concentration C0 of 1.7
mM. Heavy-atom coordinates for initial models of the unbound pro-
teins were extracted from the crystal structure of the barnase–barstar
complex (PDB code: 1BRS).37

B. Standard simulations
To validate the rate constants computed from the WE simula-

tions for the protein conformational switching process and Na+/Cl−

association process, an extensive set of standard simulations was
run to provide “gold standard” rate constants for comparison.
Given the computationally prohibitive time scales for the barnase–
barstar association process, no standard simulations were run for
this process; instead, the experimental association rate constant is
used to validate the computed association rate constant from the
WE simulation. For the protein conformational switching process,
50 2-μs standard simulations were run. For the Na+/Cl− associ-
ation process, 10 1-μs standard simulations were run. Dynamics
were propagated as described above for the corresponding WE
simulations.

IV. RESULTS AND DISCUSSION
We have developed the Rate from Event Durations (RED)

scheme, a new scheme for rate-constant estimation that reduces the
impact of transient effects by using the distribution of event dura-
tions that correspond to simulated pathways of the rare event. To
demonstrate the effectiveness of the RED scheme, we have applied
the scheme to simulations of three rare-event processes: (i) residue-
level simulations of protein conformational switching by an engi-
neered protein-based calcium sensor, (ii) atomistic simulations of
Na+/Cl− association in explicit solvent, and (iii) atomistic simula-
tions of protein–protein association in explicit solvent. The effective-
ness of the RED scheme was evaluated by monitoring the time evo-
lution of the rate constant, incorporating the distribution of event
durations up to each time point [Fig. 1(b)].

A. Application to residue-level simulations
of protein switching

The switching process of the engineered calbindin-AFF system
[Fig. 2(a)], as simulated using a residue-level model, is an example
of a case where the RED scheme would be expected to be partic-
ularly effective in enabling the calculation of rate constants from
shorter trajectories. This expectation is based on the relatively long
“ramp-up time” of the flux in the steady state from a given WE
simulation.

To determine the effectiveness of the RED scheme, we exam-
ined the evolution of the rate constant kREDAB as a function of molecu-
lar time, where at any given time, the estimate h̃AB is based only on
data from all ten independent WE simulations that were generated
up to and including that time. The RED scheme yields faster conver-
gence of the rate constant kREDN′→N for the N′ → N switching process
[Fig. 2(b)], requiring only the first 25% of the WE simulation data to
reproduce the rate constant from standard simulations (50 2-μs sim-
ulations). This is almost 50% more efficient than the original scheme,
which only began to converge after 75% of the simulation data had
been collected and underestimated the rate constant by a factor of
two (compared with that from standard simulations) due to the slow
transient phase.

We determined the extent of simulation required for esti-
mating rate constants by monitoring the position of the maxi-
mum in the distribution of event durations. If the position did not
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FIG. 2. Residue-level simulations of protein conformational switching. (a) Schematic of the calbindin-AFF switch, showing the initial N′ state and target N state of the simulated
switching process. (b) Comparison of the N′ → N switching rate constant (average of 10 WE simulations) using the original WE scheme (kN′→N ) and RED scheme (kREDN′→N ),
as a function of molecular time, or Nτ, where N is the number of WE iterations and τ is the fixed time interval (100 ps in this case) of each WE iteration. See also Table
S1. Ten WE simulations were run for each scheme. The RED scheme was applied using the first 25%, 50%, and 75% from each WE simulation. Also shown is the rate
constant calculated from 50 2-μs standard simulations (horizontal dashed line). The shaded regions show the nominal 95% credibility regions (CRs) as a function of molecular
time from Bayesian bootstrapping;27 the CR from standard simulations is displayed, but too small to be visible. (c) Estimates of the probability density function hAB of event
durations for the switching process, as sampled by the first 25%, 50%, and 75% of a representative WE simulation. The vertical gray line indicates the most probable event
duration based on the distribution from 100% of the simulation (delineated in black).

shift substantially—meaning that the most probable event dura-
tion reached a consistent value—we considered the simulation as
being converged for the purpose of estimating rate constants using
the RED scheme. Figures 2(b) and 2(c) show that the most proba-
ble event duration (as defined from 100% of the data collected) is
captured within the initial 25% of a given WE simulation; further-
more, the cumulative probability distribution of event durations is
well-resolved and not skewed toward short values, with low prob-
ability events occurring consistently throughout the course of the
simulation.

We also determined the effectiveness of the RED scheme when
applied to standard simulations, i.e., the first 0.5 μs of the 50 2-μs
simulations of the calbindin-AFF system switching process. In this
case, the RED scheme yielded the expected rate constant, but was
no more efficient than the original WE scheme in doing so (Fig. S1,
supplementary material). This result is not surprising since the goal
of the RED scheme is to correct for rate-constant estimates that are
greatly impacted by the initial transient phase, whereas the length of
each standard simulation was much longer (by ∼20-fold) than the
majority of the event durations and, therefore, not in the transient
phase.

B. Application to atomic-level simulations
of Na+/Cl− association

Na+/Cl− association in explicit solvent [Fig. 3(a)] occurs on the
ns time scale, which is orders of magnitude faster than the calbindin-
AFF switching process and the complex processes that follow. Given
the fast event durations of the ion–pair association, it is not expected
that the RED scheme would provide much benefit over standard WE
rate constant estimation. We found that this was, indeed, the case, as
the system does not exhibit a “ramp-up time” [Fig. 3(b)], and the
most probable event duration is sufficiently sampled with less than
25% of the data collected [Fig. 3(c)].

C. Application to atomistic simulations of long-time
scale processes in explicit solvent

To test the effectiveness of the RED scheme in estimating rate
constants from more detailed simulations of complex biological pro-
cesses, we applied the scheme to a single WE simulation of a protein–
protein binding process. This simulation involved the diffusion-
controlled association of the barnase and barstar proteins using
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FIG. 3. Atomistic simulations of Na+/Cl− association in explicit solvent. (a) The Na+/Cl− system in explicit solvent. (b) Comparison of the Na+/Cl− association rate constant
kREDon (average of five WE simulations) using the original WE and RED schemes, plotted as a function of molecular time, or Nτ, where N is the number of WE iterations and
τ is the fixed time interval (2 ps) of each iteration. See also Table S1. Five WE simulations were analyzed with each scheme. The RED scheme was applied using the first
25%, 50%, and 75% from each WE simulation. Also shown is the rate constant calculated from 10 1-μs standard simulations (horizontal dashed line). The shaded regions
show the nominal 95% credibility regions (CRs) as a function of molecular time from Bayesian bootstrapping.27 The y-axis shown is only a portion of the full set of values
in order to more clearly show the comparison between the two schemes; see Fig. S2 for a plot using the full range of data. (c) Estimates of the probability density function
hAB of event durations for the molecular association process, as sampled by the first 25%, 50%, and 75% of the 5 WE simulations. The vertical gray line indicates the most
probable event duration based on the distribution from 100% of the simulation (delineated in black).

atomistic protein models with explicit solvent [Fig. 4(a)]. While this
simulation was not performed with recycling enabled and, there-
fore, violates one of the RED scheme’s assumptions, based on the
extremely short length of the simulation compared to the mean first
passage time, the weight of the trajectories that would have been
recycled is extremely low such that negligible inaccuracy is intro-
duced. When applied to this simulation, the RED scheme is at least
25% more effective than the original scheme in estimating rate con-
stants given that the WE simulation has just finished ramping up
to a steady state. Similar to the simulation of protein conformational
switching, this simulation exhibits a long “ramp-up time” [Fig. 4(b)].
In contrast, the most probable event duration is relatively long (6 ns)
and just shy of being captured within the first 50% of the simulation,
underestimating the rate constant compared to the eventual con-
verged value [Fig. 4(c)]. Based on the first 75% of the simulation, the
rate constant is still underestimated, but due to another reason, the
most probable event duration is actually longer than that based on
the entire simulation. Due to the large size of the simulation system
(∼100 000 atoms) and the relatively long time scales of the protein–
protein binding process, only one WE simulation was carried out;

therefore, no error analysis was performed was performed for rate
constants estimated by the RED scheme.

D. When is the RED scheme effective and how
do we monitor convergence?

Regardless of the simulation model resolution, the RED scheme
is particularly efficient in rate-constant estimation for rare events
that involve long “ramp ups” in the time evolution of the estimated
rate constant. For atomically detailed simulations, the RED scheme
works well for long-time scale processes on the μs time scale or
beyond. In this study, the RED scheme is of great benefit to residue-
level simulations of the protein conformational switching process
involving the calbindin-AFF switch due to the large ramp-up time in
the flux into the target state and to atomistic simulations of protein–
protein binding on the μs time scale. On the other hand, the RED
scheme has little impact on the efficiency of rate-constant estima-
tion for the simulations of Na+/Cl− association since this process is
relatively rapid and does not exhibit a large ramp-up time in the flux
into the target, associated state. As recommended for the original
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FIG. 4. Atomistic simulations of protein–protein association in explicit solvent. (a) A representative unbound state of the barnase and barstar proteins in explicit solvent. (b)
Comparison of the barnase–barstar association rate constant kREDon using the original WE and RED schemes, plotted as a function of molecular time or Nτ, where N is the
number of WE iterations and τ is the fixed time interval (20 ps) of each WE iteration. See also Table S1. A single WE simulation was analyzed with each scheme. To test the
length of the simulation required for a converged rate-constant estimation, the RED scheme was applied using the first 25%, 50%, and 75% from each WE simulation. Also
shown is the rate constant from experiment (horizontal dashed line); the uncertainty (shaded gray) is the 95% confidence interval determined from standard errors of the mean
reported for the experimental results;40 the uncertainty of the rate constant from the original WE scheme is the 95% confidence interval by Monte Carlo bootstrapping.41 (c)
Estimates of the probability density function hAB of event durations for the protein–protein association process, as sampled by the first 25%, 50%, and 75% of one of the 10
WE simulations depicted in (a). The vertical gray line indicates the most probable event duration based on the distribution from 100% of the simulation (delineated in black).

WE scheme,23 the RED scheme is more likely to yield converged
rate constants for a process if the most probable event duration
has been sampled. Provided that this is the case, the RED scheme
estimates rate constants more efficiently than the original WE
scheme.

An effective convergence criterion for determining the amount
of simulation data necessary for the RED scheme is to generate a
sufficient number of successful events such that the position of the
maximum in the distribution of event durations (i.e., the most prob-
able value) does not change substantially. For both the calbindin-
AFF switching process and Na+/Cl− association process, trajectories
with the most probable event duration are already sampled within
the first 25% of the WE simulation. On the other hand, for the
barnase–barstar association process, the most probable event dura-
tion begins to stabilize only after 75% of the simulation is completed.
If the most probable event duration continues to evolve after com-
pleting the simulation, the system is likely far from a steady state
and will require generating a much larger number of successful
pathways to yield a converged rate-constant estimate. Alternatively,

if the event duration distribution involves a long tail, it may be
necessary to sample more of the distribution than just the most
probable value.

For challenging cases in which a large amount of computing
has already been invested, we recommend applying the RED scheme
to quickly gauge the extent to which the simulation has reached
steady state. If the estimated rate constant is orders of magnitude
from that of the expected time scales, then we recommend con-
structing a history-augmented Markov state model42 to adjust tra-
jectory weights to values more representative of steady-state condi-
tions and carrying out a separate WE simulation with the adjusted
weights.

Finally, the RED scheme is general and can be applied with any
simulation strategy that yields unbiased dynamics, including stan-
dard simulations. Based on our results from standard simulations
of the calbindin-AFF switching process, the RED scheme yields the
correct rate-constant estimate, but is no more efficient than the orig-
inal WE scheme in doing so when the simulations are substantially
longer than the majority of event durations. Thus, the RED scheme
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may be better suited to sets of short simulations (i.e., in terms of
the length of each individual simulation rather than aggregate time)
rather than longer simulations that are not greatly impacted by the
ramp-up time associated with the rate-constant estimation.

V. CONCLUSIONS
We have developed the Rate from Event Durations (RED)

scheme, a new scheme for calculating rate constants within the
framework of the weighted ensemble (WE) strategy that reduces the
impact of transient effects on rate-constant estimation. While the
RED scheme does not eliminate the need to observe the substantial
portion of the distribution of barrier-crossing times, we anticipate
that this scheme—by correctly incorporating the transient phase
into the rate-constant estimation rather than “throwing it away”—
will enable more accurate estimation of rate constants earlier on in
a simulation, using a fraction of the total simulation time required
by the original WE scheme. Furthermore, as demonstrated by our
results for protein–protein association, the RED scheme could be
especially important for estimating the rate constants of challenging
biological processes that feature long transient phases. Importantly,
the scheme accounts for a systematic error that results from an arti-
ficially deflated likelihood of observing events with longer durations
and reweights the distribution accordingly.

SUPPLEMENTARY MATERIAL

See the supplementary material for results from applying the
RED scheme to standard simulations of the calbindin-AFF switch-
ing process, a zoomed out view of Fig. 3(b) that shows the full range
of the y-axis for the time evolution of the rate-constant estimate from
WE simulations of Na+/Cl− association, and a table of the com-
puted rate constants for all processes simulated in this study using
the original WE and RED schemes.
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APPENDIX: DERIVATIONS OF EQS. 3 AND 4
1. Derivation of Eq. (3)

To begin, we consider the relationship between the instanta-
neous flux f AB(t) at time t, the rate constant kAB, and the true proba-
bility distribution hAB of event durations. To be precise, f AB(t) is the
time derivative of a cumulative flux function FAB, where FAB(t) is the
total number of A→ B events observed by time t.

For an A → B transition observed at time t with an event
duration of tb, the event must have been initiated at time t − tb.
Thus, the instantaneous flux depends on (i) the probability hAB(tb)
that barrier-crossing takes time tb and (ii) the frequency at which
A → B events are initiated at time t − tb, which is kAB when
t − tb > 0 and zero otherwise, since the process does not start until
time 0.

To derive an expression for f AB(t), we integrate over all possi-
ble event durations tb. Formally, this is a convolution of hAB with
the function that is kAB for parameters greater than zero and zero
otherwise,

k(t) :=
⎧
⎪⎪
⎨
⎪⎪
⎩

kAB, t ≥ 0,

0, t < 0,
(A1)

fAB(t) = k(t) ∗ h(t) = ∫
∞

−∞
k(t − tb)hAB(tb)dtb. (A2)

Since both functions in the convolution in Eq. (S2) are non-zero only
for positive values of t,

fAB(t) = ∫
t

0
kABhAB(tb)dtb. (A3)

Next, we integrate both sides of Eq. (S3) with respect to t,

∫

tmax

0
fAB(t)dt = ∫

tmax

0
∫

t

0
kABhAB(tb)dtbdt, (A4)

FAB(tmax) − FAB(0) = kAB ∫
tmax

0
∫

t

0
hAB(tb)dtbdt, (A5)

FAB(tmax) = kAB ∫
tmax

0
HAB(t)dt. (A6)

We define the cumulative distribution function HAB as the inte-
gral of the probability density function hAB, that is, HAB(t)
= ∫

t
0 hAB(tb)dtb. The left-hand side (LHS) of Eq. (A5) is given by the

definition of FAB and the fundamental theorem of calculus, while
the right-hand side (RHS) is given by the fact that kAB does not
depend on the parameters t and tb that are being integrated. The LHS
of Eq. (A6) results because the number of events FAB(0) observed
by t = 0 is necessarily zero, while the RHS is given by the definition
of HAB.
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Finally, to obtain Eq. (3) for kAB, we divide both sides by
∫

tmax
0 HAB(t)dt,

kAB =
FAB(tmax)

∫

tmax
0 HAB(t)dt

, (A7)

where FAB(tmax) is the cumulative number of events and the integral
∫

tmax
0 HAB(t)dt is in units of time, yielding a rate constant kAB that

has units of inverse time.

2. Derivation of Eq. (4)
As in Sec. II C, we consider a system in state A at time t = 0,

which enters onto successful transition pathways into state B with a
rate constant kAB and event durations tb according to the true distri-
bution hAB. After entering the target state B, the system is reinitiated
from state A. The simulation ends at time tmax.

We wish to show that a corrected estimate h̃AB of event dura-
tions [Eq. (4)] is asymptotically statistically unbiased up to a con-
stant of proportionality: as the histogram bin width approaches zero,
the expected value E[h̃AB(tb)] of the corrected estimate converges
to a value proportional to the true distribution hAB, i.e., E[h̃AB(tb)]
→ Q ⋅ hAB(tb), where Q is an unknown proportionality constant that
does not depend on tb.

Let N i be the number of observed events into B that occur with
duration tb ∈ [ti, ti+1], where ti and ti+1 are the bounds of the ith
bin of the histogram. By definition, our corrected histogram estimate
h̃AB evaluated at this particular t is given by

h̃AB(t)∝
Ni

(tmax − tb)(ti+1 − ti)
. (A8)

To consider whether this estimate, indeed, approximates the true
distribution hAB of event durations, we take the expected value of
the corrected estimate as follows:

E[h̃AB(tb)]∝ E[ Ni

(tmax − tb)(ti+1 − ti)
]. (A9)

Next, our derivation requires an expression for E[Ni], which
depends on (i) the probability of initiating a successful transition
pathway, (ii) the probability that the transition path is of duration
t, and (iii) the probability that the transition pathway enters state
B before time tmax. For example, the system may initiate a success-
ful transition pathway at time t ∈ [0, tmax] with rate constant kAB,
then “choose” a transition pathway with an event duration tb with a
probability hAB(tb), and be observed entering state B with probability
obs(t) = {1 if t < tmax − tb; else 0}, since an event of duration tb that
initiates after tmax − tb would not enter state B until after the end
of the simulation at time tmax. Therefore, the expected number of
events we will observe with duration tb ∈ [ti, ti+1] within a simulation
of length tmax is

E[Ni],= ∫
ti+1

ti
∫

tmax

0
kABhAB(tb)obs(t)dtdtb, (A10)

E[Ni],= ∫
ti+1

ti
∫

tmax−tb
0

kABhAB(tb)dtdtb, (A11)

E[Ni],= ∫
ti+1

ti
(tmax − tb)kABhAB(tb)dtb. (A12)

Given this expression, the expected value from Eq. (A9) can be
rewritten as follows:

E[ Ni

(tmax − tb)(ti+1 − ti)
] =

1
(tmax − tb)

E[Ni]

(ti+1 − ti)
, (A13)

E[ Ni

(tmax − tb)(ti+1 − ti)
] =

1
tmax − tb

∫

ti+1
ti
(tmax − tb′)kABhAB(tb′)dtb′

(ti+1 − ti)
.

(A14)
Assuming that the true distribution hAB is continuous, the mean
value theorem indicates that there exists a point ξ in the histogram
bin [ti, ti+1] such that the function (tmax − ξ)kABhAB(ξ) evaluated at
that point is the average value of this function over that histogram
bin,

(tmax − ξ)kABhAB(ξ) =
∫

ti+1
ti
(tmax − tb′)kABhAB(tb′)dtb′

(ti+1 − ti)
. (A15)

For such ξ,

E[ Ni

(tmax − tb)(ti+1 − ti)
] = (tmax − ξ)kABhAB(ξ)

1
tmax − tb

. (A16)

Finally, we take the limit as ti+1 → ti. Since both tb and ξ are in the
histogram bin [ti, ti+1], by the squeeze theorem, we know that if the
histogram bin width approaches zero, i.e., ti+1 → ti, then tb → ti and
ξ → ti. Plugging these values into Eq. (A16) gives

lim
ti+1→ti

E[ Ni
(tmax−tb)(ti+1−ti) ] = (tmax − ti)kABhAB(ti) 1

tmax−ti ,

lim
ti+1→ti

E[h̃AB(tb)]∝ hAB(ti).
(A17)

Thus, we have the desired result that E[h̃AB(tb)] ∝ hAB(tb) as the
histogram bin width approaches zero; the constant Q depends on
both kAB and the constant of proportionality in Eq. (A8). Thus, we
have shown that h̃AB(tb) is asymptotically unbiased up to a constant
of proportionality.

DATA AVAILABILITY

The data that support the findings of this study are avail-
able within this article and its supplementary material. A Python
implementation of the RED scheme for use with the WESTPA soft-
ware package8 is available on GitHub (https://github.com/westpa/
user_submitted_scripts/tree/main/RED_scheme).
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