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Abstract

Cytoplasmic dynein is an important molecular motor involved in the transport of vesicular and 

macromolecular cargo along microtubules in cells, often in conjunction with kinesin motors. 

Dynein is larger and more complex than kinesin and the mechanism and regulation of its 

movement is currently the subject of intense research. While it was believed for a long time that 

dynein motors are relatively weak in terms of the force they can generate, recent studies have 

shown that interactions with regulatory proteins confer large stall forces comparable to those of 

kinesin. This paper reports on a theoretical study which suggests that these large stall forces may 

be the result of an emergent, ATP dependent, bistability resulting in a dynamic catch-bonding 

behavior that can cause the motor to switch between high and low load-force states.

Introduction

Cytoplasmic dynein is a motor protein that hauls cargoes of various kinds along microtubule 

tracks within cells (for recent reviews, see [1,2]). These cargoes, which are vital for cellular 

function, include membranous organelles, cytoskeletal polymers, and other macromolecular 

complexes. The force generated by the motor is coupled to ATP hydrolysis, rendering 

cytoplasmic dynein a mechano-chemical enzyme. In comparison to kinesin, cytoplasmic 

dynein is a much larger and more complex motor. The dynein motor domain is made up of 

six AAA+ domains (AAA1-6) arranged in a ring. Domains AAA1-4 bind ATP and domains 

AAA1, 3 and 4 can catalyze hydrolysis of their bound ATP [2,3]. There is general consensus 

that AAA1 is the primary site for ATP hydrolysis and that AAA2-4, the secondary binding 

sites, assume a more regulatory role [4].

Using optical trapping of polystyrene beads coated with purified cytoplasmic dynein, Mallik 

et al. [5] reported that this motor has a variable step size that can be 8, 16, 24, or 32 nm, 

which represent integral multiples of the 8 nm periodicity of the tubulin dimers in the 

microtubule polymer. At low loads, i.e. < 0.4 pN, dynein took mostly larger steps in the 
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range of 24 – 32 nm. At intermediate loads, i.e. 0.4 – 0.8 pN, this was reduced to 16nm 
steps. At high loads, i.e. > 0.8 pN, dynein took mostly 8 nm steps. At loads of about 1pN, 

the motor stalled. Thus, Mallik et al. concluded that dynein has the ability to change its 

stepping behavior in response to load, which implied that its mechano-chemical cycle 

possessed a molecular gear mechanism.

To gain conceptual and quantitative understanding of the observed stepping mechanism, 

Singh et al. [6] proposed a mathematical model that can mimic the stepping behavior 

reported by Mallik et al. [5]. Singh et al. hypothesized that hydrolysis occurs at the primary 

AAA binding site (AAA1) and that the number of ATPs bound to the secondary AAA 

binding sites (AAA2-AAA4) regulates the step size. ATP binding was assumed to be 

cooperative with a binding affinity that decreased as the occupancy of the secondary AAA 

binding sites increased. By further assuming that the binding affinities of the secondary sites 

were all load-dependent, the average step size of dynein varied under different loading 

constraints and was consistent with step size and stall force data available at the time in [5]. 

Specifically, the step size distribution reported in [5] for low ATP concentrations of 2μM 
was reproduced well by the model (compare Fig. 5a in [6] and Fig. 4 in [5]). Also, the 

transitions observed in [5] at saturating levels of ATP, from predominantly large step sizes at 

low load forces to predominantly 8nm step sizes at high load forces, was predicted 

qualitatively by the model in [6] for physiological ATP concentrations. Gao [7] also 

proposed a model that can explain the force dependence of dynein’s step size by decoupling 

the ATP hydrolysis cycle from the physical translocation of the motor.

In subsequent experimental studies, Toba et al. [8] measured the stall force of dynein to be 

much larger than that reported by Mallik et al. [5]. Specifically, Toba et al. reported that 

dynein took 8nm steps at load forces larger than 1pN and was able to generate forces up to 

7pN before stalling, similar to the step size and stall force of kinesin. The authors attributed 

this discrepancy to improvements in their bead-coating method and the temporal resolution 

of their optical trap. In addition, Walter et al. [9] used a three-bead “dumbbell” optical trap 

configuration to show that dynein exhibited 8 nm steps under saturating ATP levels and 

generated forces of up to ≈ 5pN, comparable to the findings of Toba et al. [8]. Walter et al. 
[9] also reported that the dynein stall force decreased to about 1pN at a lower ATP 

concentration of 50μM (comparable to findings in [5]), but still took only 8 nm steps. More 

recently, broad distributions of dynein load forces ranging from approximately 1 – 5pN have 

been reported by Belyy et al. [10,11].

Consistently high load forces of 4.5 – 7pN have also been reported for yeast dynein [12,13]. 

This appears to be due to a unique structural feature of the yeast motor as it lacks the C-

terminal “cap” domain that is present in mammalian dynein [14]. However, it remains 

unclear what accounts for the broad range of stall forces of mammalian dynein and how this 

is related to ATP concentration as observed in [8]. In this paper we address these questions 

through computational modeling. The manuscript is organized into four sections. First, in 

the “Model description” section we describe the model and define its kinetic parameters. 

Second, in the “Model calibration and testing” section we show that the predicted kinetic 

behavior of our dynein model is consistent with experimental data on the force-velocity 

relationship, run lengths, stall times, and the dependence of the step size on the load force 
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and ATP concentration. Third, in the “Results” section we show that, at forces below the 

stall force, the model exhibits an emergent behavior which we term dynamic catch-bonding, 

and we explore the effect of this behavior on motor stepping and load-sharing. Finally, in the 

“Discussion” section we summarize our findings and discuss the mechanism and 

implications of dynamic catch-bonding in the context of other models and studies of dynein 

function.

Model description

Motor stepping

To develop a model for cytoplasmic dynein kinetics that accounts for the frequent backward 

stepping of the motor (~20% of steps for high [ATP] [15], [16]), we use a phenomenological 

method analogous to the kinesin-1 motor model of Kolomeisky and Fisher [17] where the 

motor stepping is coupled to ATP hydrolysis with appropriate matched rate constants. The 

model considers that the dynein motor has four conformational states (j = 1,2,3,4) associated 

with step sizes of Δ1 = 32nm, Δ2 = 24nm, Δ3 = 16nm, and Δ4 = 8nm, respectively. In Fig. 1, 

we show the kinetics of ATP hydrolysis for these conformational states. Note that the 

scheme depicts reversible ATP hydrolysis, which is necessary in this model in order for the 

motor to stall at a certain force [18, 19].

Following Michaelis-Menten, ATP binds dynein with the rate [ATP]αj
+ where [ATP] 

denotes the ATP concentration (which we assume to be constant). Once ATP is bound, the 

dynein motor and ATP form a complex Dj ∷ ATP which can either dissociate with rates αj
−, 

or lead to catalysis and forward stepping with step size Δj. We model backward stepping of 

the motor with step size −Δj through a reverse catalysis rate βj
−. At steady-state, the forward 

and backward stepping rates (rj
+ and rj

−, respectively) in the four conformational states (j = 

1,2,3,4) are then given by

rj+ = βj
+ a

a + Kj
, rj− = βj

− Kj
a + Kj

, (1)

with Kj given by

Kj = αj− + βj
+

αj+ + βj
−/a

, (2)

where a is the ATP concentration. If we ignore the backward stepping rate βj
−, the quantity 

Kj is equivalent to the Michaelis constant in the standard Michaelis-Menten model. The 

maximum forward and backward stepping rates rj
+ and rj−, are given by the catalysis rates βj

+

and βj
−, respectively. If the ATP concentration a matches Kj, i.e. a = αj− + βj

+ − βj
− /αj

+, the 

forward and backward stepping rates are half their maximum stepping rates, respectively.

The average velocity of the motor is obtained by summing over all step sizes, i.e.
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v = j 1
4 Δj rj

+ − rj− . (3)

Detachment kinetics

Just like kinesin motors, dynein motors can detach from their microtubule tracks resulting in 

finite average run lengths and run times. Dynein’s detachment kinetics were studied by 

Kunwar et al. [20] and Nicholas et al. [21]. Kunwar et al. [20] reported that the detachment 

rate increases exponentially with load force below a stall force that doesn’t exceed 1pN. For 

load forces above the stall force, the detachment rate decreases towards a limit value, 

exhibiting the characteristics of a catch-bond. We cannot adopt these experimentally 

determined detachment kinetics for our model, since our model predicts stall forces ranging 

from 1pN to several pN, as reported in the more recent literature [8,9,10,11]. Nicholas et al. 

[21] report anisotropic detachment forces with larger slip-bond type detachment forces of 

about 2pN in the direction opposing the motor movement We neglect the directionality of 

the detachment forces because in our study the load forces oppose the motor movement most 

of the time. We use a simple slip-bond type exponential detachment rate for all load forces 

and all four conformational states and tune this detachment rate to the experimental 

measurements. Detachment rates depend on the ATP concentration and the load force. The 

rates are dominated by the load force if ATP concentrations are in the millimolar range [22] 

because at these concentrations ATP is bound most of the time. During the time that ATP is 

attached, the rate of motor detachment is given by the Arrhenius equation, i.e.

rdet = r0 exp δdF
kBT , (4)

where F is the load force, kB is Boltzmann’s constant, and T is the temperature. The 

prefactor r0 is constrained by the average run length, measured in a cargo-motor assay as 

described below, and the force constant δd is constrained by the average stall time (for a 

single motor) in an optical trap experiment (data taken from [23]). This approach is different 

from the one used in [22], where a state-independent detachment rate was calculated using a 

phenomenological expression for the detachment probability in conjunction with the average 

dwell time in the ATP-bound states.

Step size

Next, we consider the step size distribution and average step size of the motor. The rate of 

steps of absolute size Δj (forward or backward) in conformational state j is given by 

rj = rj+ + rj−, resulting in the following expression for the normalized probability 

distribution of absolute step sizes

p Δj = rj

i 1
4 ri

, j = 1, 2, 3, 4 (5)

with step sizes of Δ1 = 32nm, Δ2 = 24nm, Δ3 = 16nm and Δ4 = 8nm, and an average step size 

of
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Δ = j 1
4 Δjp Δj . (6)

In [24], dynein step size was measured based on plateau values of the displacement, but only 

forward steps were counted. Thus, for the specific case of comparisons with that study we 

analyze only forward steps in our model, resulting in the following expression for the step 

size distribution p+(Δj)

p+ Δj = rj+

i 1
4 ri

, (7)

where the superscript + denotes the forward stepping direction, with an average forward step 

size as defined in Eq.6.

Load dependence of the kinetic rates

To account for the load dependence of the motility of the dynein motor, the kinetic rate 

constants of ATP binding and hydrolysis were considered to depend on the load F in 

accordance with

αj+ = αj+ 0 exp − δα, jF
kBT

βj
+ = βj

+ 0 exp − δβ, jF
kBT .

(8)

This approach utilizes an energy landscape model, where the energetic barriers of the 

processes depend on the load forces. For positive values of the constant δβ,j, the ATP 

hydrolysis rates decrease with increasing load force, resulting in smaller velocities, while for 

negative values the opposite occurs. Similarly, for positive values of δα,j, the ATP binding 

rates decrease with increasing load force, also leading to smaller velocities. These individual 

dependencies of the ATP hydrolysis and binding rates on the load force are necessary to 

accommodate both the measured force dependence of the step sizes of the dynein motor and 

the force-velocity relation. The parameter values that we identified to reproduce most 

experimental data on cytoplasmic dynein (see below) are listed in Table 1.

Motor-cargo assays

The interaction of dynein and kinesin motors with microtubules is often studied with assays 

consisting of beads attached to molecular motors, e.g. in an optical trap. We mimic such an 

arrangement with the following simple mechanical model (see Fig. 2). N dynein motors are 

attached to a rigid cargo (bead) through flexible elastic linkers with spring constant kl. The 

cargo is either free to move or is bound to the optical trap with spring constant kt, which 

pulls the cargo in the opposite direction to the dynein motors. Note that the motors on a 

given cargo are mechanically coupled to each other indirectly via these elastic motor-cargo 

linkages, and therefore can influence each other’s kinetics (e.g. [25,26]). The positive x-

direction corresponds in our model to the minus-end of the microtubule (i.e. the direction of 
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dynein movement). The movement of the cargo is assumed to be damped with a friction 

constant γ, which depends on the size of the cargo. Assuming that inertial forces can be 

neglected, the equation of motion for the cargo is given by

γẋc = i 1
N Fi ktxc , (9)

where Fi=1…N represent the forces of the dynein motors (i = 1,2, … , N) acting on the cargo, 

xc represents the location of the cargo along the microtubule, and ktxc represents the force of 

the trap on the cargo. The force Fi of each dynein motor on the cargo depends on whether 

that motor is leading or lagging with respect to the position of the cargo. If the motor at 

position xi is ahead of the cargo at position xc and if this distance exceeds the resting length l 
of the linker, then the linker is stretched and the corresponding force in the positive x-

direction is given by Fi = kl(xi − xc − l). If the motor at position xi is located less than a 

distance l from the cargo at position xc, it behaves more like a floppy spring with a weak 

entropic elasticity, e.g. Fi = 0.01 kl(xi − xc). If the motor at position xi is lagging behind the 

cargo at position xc and if this distance exceeds the resting length l of the linker, the 

corresponding force of that motor on the cargo is similarly given by Fi = kl(xi − xc + l) in the 

negative direction. In cases when the cargo is moving freely, i.e. without a trap, the term ktxc 

on the righthand side of Eq.9 vanishes. The above expressions refer to the forces Fi acting on 

the cargo; according to Newton’s third law, we consider the force acting on the motor to be 

equal in magnitude but opposite in direction.

To model dynein behavior in motor-cargo assays, we must also take account of the frictional 

drag experienced by the cargo. According to Stokes’ law, the friction coefficient γ for a 

spherical cargo with radius R is given by γ = 6πμR where μ is the dynamic viscosity. To 

simulate cytoplasm, we assign μ the value of 5 centipoise, i.e. 0.005kg/(m s), which is 5 

times the viscosity of water [27]. With a spherical cargo diameter of 1μm, this leads to a 

friction coefficient of γ = 0.5 · 10−7 kg/s. If we express the forces in units of pN, 

displacements in units of nm, time in units of s, and trap stiffness kt in units of pN/nm, we 

obtain a dimensionless equation of motion with a dimensionless friction coefficient of γ = 5 

· 10−5 which absorbs all conversion factors.

The Langevin equation for the motion of the cargo driven by N dynein motors in the 

presence of thermal noise then reads

ẋc t = 1
γ ( i 1

N Fi x1, x2, …, xN, xc − ktxc) + ξ t , (10)

where xi denotes the position of the motor i, xc denotes the position of the cargo, and ξ(t) 
denotes zero-mean white Gaussian thermal noise acting on the cargo (see e.g. [28]), i.e.

< ξ t > = 0, < ξ t ξ t′ > = 2 ⋅ 10−3kBT
γ δ t − t′ . (11)
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Here, the dimensionless thermal energy kBT is measured in units of pN · nm and has the 

value of 4.14 at room temperature. This Langevin equation is solved numerically using a 

first order solver [28], i.e.

xc t + δt = xc t + δt
γ ( i 1

N Fi x1 x2 xN xc ktxc)

+ 2 ⋅ 10−3kBT
γ δtG 1 ,

(12)

where G(1) denotes a random number drawn from a Gaussian distribution with unit 

variance, and δt is the time interval during which we consider the change of cargo position. 

The prefactor of the Gaussian random variable must be small, which requires δt to be less 

than about 100μs at room temperature. The Langevin equation is solved in conjunction with 

Markov modeling of the motor kinetics, i.e. when a motor makes a step it assumes a new 

position independent of its previous movements. For cargo movement in vivo, the force 

exerted on the cargo by dynein can be opposed by motors such as kinesin. We can represent 

this opposing force as an additional load force Fc on the cargo, equivalent to an optical trap, 

and replace the force of the trap on the cargo, i.e. −ktxc, with the load force Fc.

Simulation of the Langevin equation above is cumbersome but can be simplified by tracking 

only the states where the cargo is in mechanical equilibrium. This is possible because the 

time that it takes for the cargo to relax to equilibrium after the stepping of the motor, i.e. τ ≈ 
kl/γ ≈ 1ms, is shorter than the average time between motor steps, determined approximately 

by the inverse of the maximum catalysis rates (see Table 1). When one or more motors step 

to a new position xi along the track, we subsequently determine the new cargo position xc at 

which the total force on the cargo vanishes, i.e.

i 1
N Fi x1 x2 xN xc Fl 0 , (13)

and then the calculation is repeated for each subsequent step.

Model testing and calibration

In this section we show that the predicted kinetic behavior of our dynein model is consistent 

with observations on the force-velocity relationship, run lengths, stall times, and the 

dependence of the step size on the load force and ATP concentration. All the comparisons of 

the model with experimental data shown below were obtained using the same set of kinetic 

rate constants, which were selected to yield the best fit overall.

Motor stepping

In Fig. 3a, we show the load dependence of the average step size for our dynein model 

compared to the experimental data reported in [24] at an ATP concentration of 1mM. 

Experimentally, the step sizes and the corresponding forces plotted here were obtained with 

an in vivo optical trap setup with latex bead phagosomes, analyzing forward steps of the 

cargo only and measuring the step size while increasing the force on the motors until they 

stalled and detached. Hence, we use Eq.7 to model step sizes. Consistent with the 
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experimental data, the model predicts that the average step size of the motor decreases with 

increasing applied load. In our model this reduction in average step size is determined by the 

differential load-dependence of the ATP binding and catalysis rates in the four 

conformational states associated with the four step sizes. At low load forces (0.1pN), the 

ATP catalysis occurs most frequently in conformational state j = 1 , resulting in 

predominantly 32nm step sizes, as seen in [24]. With increasing load, the larger value of the 

force constant δβ+ results in a rapid decrease in the catalytic rate in the conformational state 

j = 1 , which is associated with the largest step size (see Eq.8). ATP catalysis in the other 

conformational states associated with smaller step sizes then carry an increasing relative 

weight, resulting in a reduction in the average step size. At load forces of about 1pN the 

motor takes predominantly 8nm steps. Note that in order to model a transition from 

predominantly 32nm steps at low load to predominantly 8nm steps at high load, and still 

comply with the observed motor speeds shown in Fig. 4, we had to choose a negative force 

constant δβ
+ 4 = − 5.5nm for the force dependence of the catalysis rate in the conformational 

state associated with the 8nm step, which implies an increase in the catalysis rate with 

increasing load force.

In [5] a step size distribution was reported for dynein at the very low ATP concentration of 

2μM. It was obtained using optical trapping interferometry in conjunction with a bead 

motility assay, which is the method used in [29] to determine the step sizes of kinesin 

motors. This method is blind to the directionality of the steps and hence, we compare the 

resampled distribution of observed step sizes with the step size distribution predicted by 

Eq.5, which considers forward and backward steps (see Fig. 3b). Note that the step sizes 

predicted by our model agree well with reported data for very low ATP concentrations.

One caveat of using the force-dependent step sizes of [24] is that they were obtained in vivo 
using optical trapping of latex bead phagosomes and the precise number of attached motors 

was not known. Those authors normalized the measured force on the cargo to the stall force, 

which was found to scale linearly with the number of motors in experiments in vitro, to 

calculate the force on each motor. We used this normalized data to calibrate our single-motor 

model. Load force step size relations for single yeast dynein motors in vitro [12] 

(disregarding the non-advancing stepping mode described in that study) are consistent with 

the estimates for mammalian dynein in vivo in [24] in that the step size for load forces larger 

than 1pN is approximately constant at about 8nm. Gennerich et al. [12] did not report step 

sizes for forces less than 1pN.

The stepping frequency is characterized by the dwell time, i.e. the time interval between two 

subsequent steps. We determined the dwell time in our model by simulating the motion of 

cargo attached to a single dynein motor using the formalism in Eq.10. With no load acting 

on the cargo, we obtain an exponential distribution of dwell times for an ATP concentration 

of 1mM, with an average dwell time of 24ms (not shown). This compares favorably with the 

experimental data of Toba et al. [8], who reported an exponential distribution of dwell times 

with an average dwell time of 27ms.
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Force versus velocity

In Fig. 4a, we compare the force-velocity relationship predicted by the model with 

experimental data obtained from measurements in an optical trap [24] at an ATP 

concentration of 1mM and we find excellent agreement. As discussed in [24], the curve 

starts with a large negative slope associated with a rapid decline of the velocity for small 

changes in applied load, unlike the force-velocity relationship of kinesin which starts with a 

small negative slope. In our model, the cause of this rapid decline is two-fold: first, the 

decrease in the ATP binding rate and the hydrolysis rate with increasing load in the 

conformational state j = 1 associated with a step size of 32nm; and second, the increasing 

relative weight of ATP hydrolysis and stepping in the other conformational states, associated 

with smaller step sizes. In Fig. 4b, we compare the predicted dependence of the average 

velocity on ATP concentrations at small load forces of 0pN, 0.05pN, 0.1pN, and 0.15pN in 

our model with experimental data obtained for purified dynein-dynactin complexes at 

“minimal” load [31]. In agreement with the experimental data, the velocity of the motor 

increases with increasing ATP concentration in a biphasic manner and displays good overall 

agreement, with no saturation in velocity up to an ATP concentration of about 10mM 
(104μM) (see [31]). This suggests, as in [10], that catalysis occurs at different rates 

depending on the ATP concentration, consistent with our model.

Detachment kinetics and stall forces

To determine the two parameters r0 and δd in the expression Eq.4 for the detachment rate 

when ATP is bound, we simulated two different experiments. First, to determine r0 = rdet(F = 

0), which is the detachment rate at zero force, we simulated a cargo attached to a motor 

moving along a track with no force except viscous drag (i.e. Eq.12 with kt = 0). The constant 

r0 was chosen such that the average run length, i.e. the distance moved before detachment 

averaged over thousands of runs at an ATP concentration of 1mM, matched the 1.8μm run 

length for dynein-coated beads moved by one, two and three dynein motors as reported in 

the supplement to [23]. This resulted in the value of r0 = 0.2/s. Second, to determine the 

force constant δd we simulated an optical trap experiment with a trap stiffness of kt = 

0.05pN/nm (see Fig. 5) using this value of r0. For each stall event, we defined the stall time 

as the time interval between the time t1, when the force on the motor prior to detachment 

exceeded half the stall force of fs, and the time t2, when the motor detached at the stall force 

fs, consistent with the definition used in [24]. We sampled thousands of stall times to obtain 

an average stall time τ and then used Eq.12 to match the 0.2s average motor stall time 

reported in the supplement to [23]. This resulted in the value of δd = 4.5nm. We ignored 

premature detachments at forces less than 1pN.

To test the assumption of exponential detachment kinetics governed by Eq.4 in our model, 

we simulated the run length and the stall times of a cargo with two or three dynein motors 

attached. We used the constants r0 and δd calibrated to run length and stall time 

measurements for a single motor (see previous paragraph) and compared the results with the 

corresponding experimental data in [23], without any further adjustment of the model 

parameters. For zero load force on the cargo, our prediction for the average run length with 

two dynein motors was 8.3μm at an ATP concentration of 1mM, which agrees well with the 

experimental measurement of 8μm. For three dynein motors we obtained an average run 
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length of about 30μm, which is consistent with the experimental measurement of > 15μm. 

This agreement confirms again the prefactor r0 of the expression for the detachment rate 

because the exponential factor in the detachment rates vanishes in the absence of a load. In 

simulations of an optical trap experiment with multiple dynein motors attached, we obtained 

an average stall time of 0.4s for two motors, and 0.6s for three motors. This compares with 

experimental measurements of 0.4 ± 0.2s for two motors and 0.6 ± 0.4s for three motors, as 

reported in [23]. The reattachment rates of motors (on-track rates) have not been measured 

experimentally, so we used the value of 5/s reported in [20].

Results

Dynein exhibits dynamic catch-bonding

As described above, in order to mimic the transition from large motor steps of 16, 24, or 

32nm at small load forces to small motor steps of mostly 8nm at large forces, we had to 

choose a negative force constant for the force dependence of the ATP catalysis rate when the 

motor is in the conformation associated with 8nm steps. This resulted in an increase in the 

catalysis rate with increasing force. We show here that this also resulted in an increase in the 

run length of the motor at sufficiently high ATP concentrations and larger load forces, 

thereby mimicking a catch-bond between the dynein motor and the microtubule track. A 

catch-bond is a bond that gets tighter with increasing force (for a recent review see [32]). 

Such bonds are normally characterized by an increase in the lifetime of the bond with 

increasing force. Catch-bonds were initially reported for cell adhesion molecules [33] but 

have also been demonstrated in the binding of dynein motors to microtubules at load forces 

beyond the stall force (“super-stall” forces). They have also been proposed to explain the 

relationship between stall force and stall time for cargoes driven by a team of dynein motors 

[20,24]. However, in contrast to those studies, the catch-bond behavior described here occurs 

at forces below the stall force and is ATP-dependent. To distinguish the catch-bond behavior 

described here from those studies, we refer to it as “dynamic catch-bonding”.

With our calibrated dynein motor model, we simulated the average run length of a single 

dynein motor (without cargo) as a function of a fixed load force. The results are shown in 

Fig. 6. At low ATP concentrations, i.e. below about 1mM, the run length decreased rapidly 

with increasing load force until a force was reached at which the run length vanished (circles 

in Fig. 6), i.e. the motor stalled. The dependence of the run length on the load force was not 

very sensitive to ATP concentration at low load forces, but this changed radically for larger 

load forces at ATP concentrations of 1mM or more. At these higher ATP concentrations, the 

force at which the motor stalled, i.e. the stall force, was 4pN or more. This can be 

interpreted as an increased affinity of the dynein motor for the microtubule track, i.e. a 

tightening of the bond to the microtubule, allowing it to withstand much larger forces before 

detaching. The origin of this behavior within our model is the increased ATP catalysis rate in 

the conformational state j = 4 associated with a step size of 8nm, which reduces the time 

during which detachment can occur, and thus results in a lower detachment probability.

This catch-bonding behavior was also evident in the force-velocity relationship (see Fig. 

7a,b). This relationship was obtained in two different ways, either by utilizing the explicit 

formula in Eq.3, which did not consider detachment, or by stochastic simulations of a single 
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motor, where we recorded the duration and distance of each run (run time and run length, 

respectively) and then calculated the ratio of these two quantities. In both cases, the load 

force was held constant. The results using both approaches were identical. At ATP 

concentrations of about 1mM or higher, the velocity first decreased with increasing load 

force until it reached a minimum, and then it increased again between load forces of 

between about 1.5pN and 3pN to exhibit another peak before it vanished at a much larger 

force. As observed above for the average run length (see Fig. 6), the force at which the 

velocity vanished, i.e. the stall force, was dependent on the ATP concentration. Analysis of 

this relationship revealed an abrupt and discontinuous transition from a stall force of 

approximately 1pN to one of more than 4pN at an ATP concentration of about 1mM (see 

Fig. 7c)

Note that the velocity increase of the motor with increasing load force in Fig. 7a,b is due to 

the increased ATP catalysis rate in the conformational state of the motor associated with a 

step size of 8nm, and the fact that this step size is dominant at load forces of 1pN and above. 

In the next section, we show that in general, i.e. not specific to this model, such a positive 

slope in the force-velocity relationship has a profound consequence for the dynamics of the 

motor as it generates a dynamic instability.

Dynamic catch-bonding can result in mechanical instabilities

In experimental studies, the force-velocity relationship of a cargo attached to a motor is 

determined by optically trapping the cargo and measuring the velocity at what is effectively 

a fixed force (calibrated as displacement in the trap). Because of force balance the sum of 

the forces acting on the cargo (motors pulling forward and trap pulling back) vanishes most 

of the time, and thus the fixed force applied to the cargo constrains the force on the motor, 

i.e. the force on the motor is equal in magnitude to the force on the cargo.

We suggest here an alternate experimental paradigm in which one measures the forces that 

motors exert on the cargo when the cargo is moved with a fixed velocity. In this 

experimental regime, the force on the motor is unconstrained and adjusts itself dynamically 

to the controlled velocity of the cargo. Using a generic motor model (not specific for dynein) 

with a force-velocity relationship v(F) where the velocity increases with load in a certain 

force domain (indicated in gray in Fig. 7b), we show below that such an experimental 

paradigm can directly reveal a dynamic instability.

The motor is considered to be attached to a cargo by a linker with a resting length l and a 

stiffness kl = 0.07pN/nm (adapted from [34]), and the cargo is moved by the motor towards 

the minus-end of the microtubule. By an external feedback mechanism, the velocity of the 

cargo vc is kept constant at a value less than the velocity of the motor at zero load. Denoting 

load forces in the plus-end direction (i.e. opposite to the direction of motion) with a positive 

sign, the load force on the motor is given by Fm = kl(xm − xc − l), where xm is the position of 

the motor and xc the position of the cargo. Starting the cargo at xc(0) = 0 and the motor at 

xm(0) = l , and making a change of variables, ym(t) ≡ xm(t) − l, the force exerted on the 

motor is given by Fm = kl(ym(t) − vct). Denoting the force-velocity relationship of the motor 

by v(Fm) = v0g(Fm), where v0 is the velocity of the motor at zero load and the function g(0) 

= 1, the equation of motion for the position of the motor ym , is then given by
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vm = ẏm t = v0g kl ym t − vct , (14)

where the dot denotes a derivative with respect to time. At steady state, the motor runs at the 

same velocity as the cargo, i.e. vm = vc, but the position is shifted by a distance δ, which 

corresponds to the length of the stretched linker under load, i.e. 

ymss t = vct + δ or xmss t = vct + l + δ. This gives rise to the equation for the shift δ and the 

force Fm on the motor, i.e.

vc = v0g klδ , Fm = klδ . (15)

For ATP concentrations lower than about 1mM, the force-velocity relationship is single-

valued, i.e. for one given cargo velocity vc, there is one value of the force Fm and hence one 

value for δ (see Fig. 7a). For ATP concentrations greater than about 1mM, however, the 

force-velocity relationship is S-shaped, i.e. for cargo velocities in the range vmin < vc < vmax, 

there are three possible values of the force, i.e. F1, F2 and F3 (see Fig. 7b) and 

correspondingly three values of the shifts, δ1, δ2 and δ3. The largest value of δ, i.e. δ2, 

indicates the largest force Fm = klδ2 on the motor (when the linker is stretched the most) and 

the smallest value of δ, i.e. δ = δ1, indicates the smallest force Fm = klδ1 on the motor (when 

the linker is stretched the least).

We show below that in an experimental setup, only the smallest and the largest forces, F1 

and F3, will be measured because the steady-state with the intermediate force F2 is 

dynamically unstable. The stability of the three states is tested by first rewriting the equation 

of motion for ym(t) (Eq.14) in terms of the force Fm(t) on the motor, i.e.

Ḟm t = kl v0g Fm − vc , (16)

where the dot indicates a derivative with respect to time. The steady-state values of the force 

are then determined by the relation g Fm
ss = vc/v0, consistent with Eq.15. Subjecting the 

force to a small perturbation δF, i.e. Fm = Fm
ss + δF , the linearized equation of motion for the 

small perturbation reads

δ̇F = v0klg′ Fm
ss δF . (17)

In the gray shaded domain in Fig. 7b, the slope v′ Fm
ss  of the force-velocity relationship 

v Fm
ss , and therefore the slope g′ Fm

ss  of g Fm
ss , is positive, resulting in an increase in the 

small perturbation δF, which renders that domain unstable. Everywhere else along the force-

velocity relation, the slope g′ Fm
ss  is negative-valued and the perturbations decline with time, 

rendering the system stable against perturbations.

At a cargo velocity of v0, i.e. the speed of the motor at zero load, the resulting force on the 

motor vanishes in the average. Based on the force-velocity relationship in Fig. 7b, it can be 

seen that decreasing the cargo velocity is predicted to result in an increase of the load force 
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(along the T − F1 − P branch) until the cargo velocity reaches vmin (point P in Fig. 7b). A 

further decrease in the cargo velocity below vmin is then predicted to result in a 

discontinuous jump from point P to point Q, i.e. in a large increase of the force on the motor 

caused by a small change in the velocity. For further decreases in cargo velocity beyond 

point Q, the force on the motor is expected to increase further until the motor stalls. 

Assuming the motor is not detached, a subsequent increase in the cargo velocity is predicted 

to result in a decrease in the force on the motor, this time following the Q − F2 − R branch of 

the force-velocity curve shown in Fig. 7b. A further increase in the cargo velocity beyond 

vmax, will result in a discontinuous transition from R to T associated with a switch back to a 

significantly smaller force on the motor. The difference between the cargo velocities (control 

parameter) at the switching points Q and R indicates dynamic hysteresis, stabilizing the low 

and high-load states of the motor.

Effect of dynamic catch-bonding on motor stepping

The discussion above was based on a generic force-velocity relation. We now return to our 

specific dynein model to explore how dynamic catch-bonding manifests itself in the stepping 

of the dynein motor, while still exploring the proposed experimental paradigm in which the 

cargo is moved at constant velocity vc. Since stochastic stepping results in fluctuations of 

motor velocity and load force, the motor forces are distributed statistically. For cargo 

velocities in the domain vmin < vc < vmax (see Fig. 7b), we expect to find a wider distribution 

of forces due to stochastic switching between the two stable forces F1 and F2. Where there is 

one force associated with one velocity, for example for vc < vmin , we expect a narrower 

distribution of the load forces.

Starting with a cargo at position xc = 0, its position at later times will be xc(t) = vct . The 

motor steps stochastically, and the position of the motor xm(t) and the cargo xc(t) results in a 

force on the motor Fm as described above in Eq.9. In Fig. 8 we show the predicted force 

distributions and sample traces of the force on the motor versus time at an ATP 

concentration of 2mM when the cargo is moving at a fixed and controlled velocity vc (see 

triangle symbols in Fig. 7a). For a larger linker stiffness, the distribution of forces in the high 

and low-load states was so broad as to merge together at all cargo velocities examined, 

hiding the instability (not shown). To demonstrate switching between the high and low-load 

states, we used a reduced linker stiffness of kl = 0.02pN/nm and suppressed detachment. For 

a cargo velocity of vc = 500nm/s (about half the velocity of the motor at zero load), the 

forces acting on the motor were distributed unimodally, ranging from 0pN to 1.5pN with an 

average of about 0.5pN (see Fig. 8a). This is consistent with a single-valued force-velocity 

relation, i.e. one in which there was only one force (approximately 0.5pN) associated with 

that cargo velocity. The corresponding sample force trace in Fig. 8d shows the force 

fluctuating around 0.5pN. For a cargo velocity of vc = 200nm/s, which is in the domain vmin 

< vc < vmax where the force-velocity relationship is multi-valued (see Fig. 7b), the force 

distribution exhibited two maxima at approximately 1pN and 4pN (see Fig. 8b), 

corresponding to the forces Fm1 and Fm2 in Fig. 7b, and a minimum between them at 

approximately 2.5pN, corresponding to the force F3 where the motor is in the dynamically 

unstable domain shown in gray in Fig. 7b. This dynamic instability is evident in the sample 

force trace in Fig. 8e, in which the motor is seen to switch stochastically between a high-
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load state, where it maintains a force of about 4pN, and a low-load state where it maintains a 

force of only about 1pN. The two states are sustained by the hysteretic nature of the 

dynamics described above. The transitions between the two states are triggered by a large 

force fluctuation caused by the stochasticity of the motor stepping. For the cargo velocity of 

vc = 50nm/s, which is in the domain vc < vmin, the forces were distributed around about 5pN 
(see Fig. 8c) and the force traces showed a sustained large force (see Fig. 8f).

Effect of dynamic catch-bonding on motor stepping and load-sharing by teams of dynein 
motors

Since cargoes often bind multiple dynein and kinesin motors, we now explore the 

consequences of dynamic catch-bonding and the resulting dynamic instabilities for cargo 

transported by two dynein motors pulling against a load force Fl, which could, for example, 

represent the force generated by opposing kinesin motors. This is a common situation in 

vesicular cargo transport, and the experimental paradigm developed above can probe the 

effectiveness with which dynein motors can overcome such opposing forces. We focus first 

on the motor-motor coordination in a team of two catch-bonding dynein motors while 

inhibiting motor detachment from the microtubule track. This initial treatment therefore 

applies only to the duration of time when both motors are attached to the track. We 

subsequently consider the case in which microtubule detachment kinetics are incorporated.

After a motor executes a step, the cargo will rapidly approach a new position at which it is in 

force balance, i.e. Fm1 + Fm2 = Fl, where Fm1 and Fm2 are the equilibrium forces of the two 

dynein motors on the cargo. Thus, most of the time the forces on these motors are 

constrained by this force balance. Since the two motors are identical, all combinations of 

forces Fm1 and Fm2 where Fm1 + Fm2 = Fl have the same probability, resulting in load forces 

distributed symmetrically about the average, which is half of the load force, i.e. Fl/2. In our 

simulations, we tracked the position xc of the cargo and the corresponding forces Fm1 and 

Fm2 with time. Unlike in the case of only one motor, where the force on the motor matches 

the load force at equilibrium, here only the sum of the forces on the two motors must match 

the load force Fl, and the individual forces may not. The computed force-velocity curves of 

the cargo are shown in Fig. 9a for ATP concentrations of 1mM and 2mM as well as for the 

case of an alternate motor that doesn’t exhibit dynamic catch-bonding (implemented by 

using an ATP hydrolysis rate that decreases with increasing load in the conformational state 

associated with the step size of 8nm). We normalized the velocities (v) to the velocity under 

zero load (v0) so that all force-velocity curves started at unity. In the absence of dynamic 

catch-bonding (slip-bond, 1mM ATP), the simulations predicted a rapid decline in the 

velocity with increasing force and a collective stall force for the dynein team of just above 

2pN, approximately twice the stall force of a single dynein motor in our model (see Fig. 7a). 

In the presence of dynamic catch-bonding, we observed a biphasic decrease in the cargo 

velocity with substantially greater stall forces of about 8pN for the team of two motors at 

1mM ATP, and of about 10pN at 2mM ATP (see Fig. 9a), again approximately twice the stall 

force of a single dynein motor. Remarkably, along the plateaus of the force-velocity curves 

for two catch-bonding dynein motors at 2mM ATP, the velocity of the cargo was not reduced 

as the load force increased, reflecting an increased capability of the two motors to withstand 

opposing forces.
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The coordination of the motors and their load-sharing capability in our model depends on 

the load force. For example, at a load force of 5pN, perfect load-sharing would result in a 

force of 2.5pN on each motor. However, from Fig. 7 we can see that a single motor in our 

model is unstable at a force between about 1.5pN and 3pN at 2mM ATP, and as a 

consequence for a team of two dynein motors, one switches into the high-load state and the 

other switches into the low-load state but the sum of the two forces still equals 5pN. The 

frequency distribution of forces on a single motor is therefore bimodal with peaks at about 

0.75pN and 4.25pN (see Fig. 9c). This means that if one of the motors holds a force of 

0.75pN, the other force will be held at 4.25pN due to the force balancing. For load forces 

below 3pN or above 6pN, the motors with half-load forces of less than 1.5pN or more than 

3pN are stable, and the force distributions peak at about the half of the load force Fl (see Fig. 

9b for Fl = 2pN, and Fig. 9d for Fl = 8pN). Thus, when the average load per motor is in the 

range where the motors are unstable, the motors are frequently in an all-or-nothing state in 

which one of the motors essentially carries all the load, as long as the total load force 

remains below the single-motor stall force (i.e. about 5pN for an ATP concentration of 

2mM). In contrast, at high load (i.e. about 8pN;see Fig. 9d), the motors share load much 

better, and the force distribution becomes unimodal.

Since the sum of the forces of the two motors on the cargo is balanced by the constant cargo 

force, perfect load-sharing occurs if both motors carry half of the load force acting on the 

cargo, i.e. κ1 ≡ Fm1/(Fm1 + Fm2) = Fm2/(Fm1 + Fm2)) ≡ κ2 = 0.5, where κ1 and κ2 are the 

fraction of the force carried by motors 1 and 2, respectively. Consequently, we characterized 

load-sharing as the fraction of time where 0.45 < κ < 0.55. In the above simulations, load-

sharing was about 10% at small load forces (0.5pN) and then increased slowly to 16% at a 

load force of 2pN. For load forces between 2.5pN and 7pN, where the motors are unstable 

under equal load, load-sharing declined to below 10%. For high load forces (between 7pN 
and 10pN ) load-sharing increased substantially to up to about 40%. From this we conclude 

that the high load forces generated through dynamic catch-bonding appear to be crucial in 

overcoming opposing forces that are near the stall force.

The force-velocity relationship in Fig. 9a exhibits two plateaus, the first one starting at a 

force of about 2.5pN the second one starting at a force of about 6.5pN. For load forces on 

the cargo below 2.5pN, the load is shared relatively well between the two motors. This can 

be seen in the distribution of forces acting on a single motor at a 2pN total load force on the 

cargo in Fig. 9b, where there is a peak at 1pN, i.e. half the total load on the cargo. Starting at 

a total load force of 2 – 2.5pN, load-sharing declines, and most of the time a significant 

fraction of the total load is carried by a single motor (see Fig. 9c). Thus, when the total load 

just exceeds about 2.5pN, a single motor will carry a significant fraction of that force most 

of the time. However, the velocity of a single motor at loads between 2.5pN and 3.2pN 
increases (see Fig. 7b), resulting in a slight increase of the cargo velocity, i.e. the first 

plateau in Fig. 9a. Increasing the total load force on the cargo further, the velocity of a single 

motor decreases (see Fig. 7a), resulting in a decline of the cargo velocity beyond 4pN (see 

Fig. 9a). At 6 – 7pN, load-sharing between the two motors has improved so that each motor 

carries (on average) only about half the load, i.e. 3 - 3.5pN, which is near the peak of the 

force-velocity relationship for a single motor. Hence, further increases in the force result in 

only a small change in the velocity, giving rise to the second plateau.
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The simulations above neglected detachment of motors in order to focus on motor-motor 

coordination. To explore how motor detachment and re-attachment affected our predictions 

of dynamic catch-bonding for a team of two dynein motors, we simulated a cargo attached to 

two motors that was subjected to an opposing load force Fl while also allowing each motor 

to detach and reattach with the kinetics described above (see Fig. 10). The velocity of the 

cargo was defined as the ratio of the average run length (distance traveled before both 

motors detached) and the average run time (time elapsed before both motors detached) and 

is shown in Fig. 10 as a function of the load force for ATP concentrations of 1mM (circles) 

and 2mM (squares). The plateau in the force-velocity curve, characteristic of the dynamic 

catch-bond behavior, was also present when motor detachments were allowed. However, the 

force distribution onto the two motors was different. If one motor detached, the entire load 

force Fl on the cargo was borne by a single motor. Therefore, the all-or-nothing states 

observed in the absence of detachment were more frequent, and we saw dominant peaks of 

the force distribution at zero force and full load force (not shown). Significantly, but as 

predicted, the stall forces were smaller in the case of detachment (for example, compare the 

stall force of about 8pN at 1mM ATP in Fig. 9 with about 4.5pN in Fig. 10).

Discussion

We have proposed a mathematical model which accounts for the large range of observed 

stall forces of cytoplasmic dynein [10,11]. The model was constrained to published 

experimental data on the stepping behavior [5], the force-velocity relationship [24], and the 

ATP dependence of the velocity [31]. The model was scrutinized successfully by comparing 

predicted run lengths and stall times for cargo driven by multiple motors with published 

experimental data obtained using an optical trap [23]. A key assumption of the model is that 

differential ATP hydrolysis rates in 4 different conformational states of the motor account 

for the frequency and load-dependence of the observed step sizes of 32nm, 24nm, 16nm, and 

8nm. In order to reproduce the transition from predominantly large step sizes of 24nm and 

32nm to predominantly small step sizes of 8nm, as well as the force-velocity relationship, 

we proposed that the ATP hydrolysis rate in the conformational state corresponding to 8nm 
steps increases with increasing load force. While this is contrary to the conventional 

assumption that ATP hydrolysis rates decrease with increasing load force, there is no reason 

a priori why this could not be the case. Mechanistically, it could arise if a structural change 

in the motor domain induced by load were to change the conformation of the ATP binding 

site in such a way as to favor ATP hydrolysis.

The proposed force-dependence of the catalysis rate in our model has important 

consequences for dynein’s behavior. Specifically, in a simulated optical trap experiment with 

a cargo attached to a single dynein motor, our model predicts stall forces broadly distributed 

between less than 1pN and about 4pN for 1mM ATP (see Fig. 5) and larger stall forces for 

higher ATP concentrations, consistent with findings reported in earlier experimental studies 

[10,11]. In our model, these large stall forces are associated with small step sizes of 

predominantly 8nm, consistent with the observations in [8] (see Fig. 5c therein). This is a 

direct consequence of the ATP-dependent dynamic instability of the motor, which results in 

stochastic switching of the motor between alternating and persistent high-load and low-load 

states (e.g. Figs. 6c and 7).
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To test directly for the predicted dynamic instability and the existence of sustained low-load 

and high-load states, we proposed a novel experimental paradigm in which the motor is 

attached to a cargo and the cargo is moved with a constant velocity along the microtubule 

track. In this way, the forces on the motor are not constrained through force balance and can 

vary widely. If the motor switches between high and low force states, this would result in a 

broad statistical distribution of forces on the motor, or equivalently, the forces of the motor 

exerted on the cargo. In contrast, if the cargo is driven by a constant load force, the force on 

the motor would be constrained by force balance and switching between high and low force 

states would not be observed, resulting in a narrow statistical distribution of forces. We 

propose that such an experimental paradigm would reveal features of these motors that 

otherwise could not be observed.

Another prediction of our model is that beyond a critical ATP concentration the run lengths 

of dynein motors will increase for larger load forces, although detachment rates do not, 

mimicking a greater affinity to the microtubule tracks (see Fig. 6). This predicted behavior is 

a consequence of the ATP-dependent increase of the velocity of the motor with increasing 

load described above (see Fig. 7), since the increased velocity results in a greater 

displacement and hence a greater run length. We have coined this phenomenon dynamic 
catch-bonding in order to contrast it with the catch-bond mechanisms in [24,35] and [20], 

which we shall refer to as static catch-bonding. These static catch-bonds differ from 

dynamic catch-bonds in that the detachment rate of the motor to the microtubule at super-

stall forces decreases with increasing load force.

The effects of static dynein catch-bonds on cargo transport by teams of dynein motors has 

been modeled by Nair et al. [36], but the scope and focus of that work was quite different 

from our effort reported here. Those authors modeled the transport of cargo by teams of 

dynein motors governed by a phenomenological equation, in which the instantaneous 

velocity of the cargo declined linearly with the load force. The load force was considered to 

be inversely proportional to the number of engaged motors, which, in turn, depended on the 

rates of motor detachment and re-attachment to the microtubule tracks. The detachment rate 

of the motors increased with load below the stall force, which was assumed to be 

approximately 1pN, but then decreased with load for super-stall forces between 1pN and 

10pN, describing the static catch-bond behavior observed in [24]. At load forces above 

10pN, the detachment rate again decreased with increasing load. The focus of that study was 

how the detachment and re-attachment rates of multiple motors regulated the cargo velocity 

as a function of the load. While both the static and dynamic catch-bonding models generate 

force-velocity relations that include intervals where the cargo velocity increases with 

increasing load force, in the dynamic catch-bonding model this is an emergent phenomenon 

that results from the increase in the catalysis rate with load force at 8nm steps. Importantly, 

the force-dependent increase in the ATP catalysis rate in the model was chosen specifically 

to reproduce the correct force-dependent stepping behavior and we found that the catch-

bonding mechanism arose as a consequence of that assumption.

Another modeling study, Takshak et al. [37], expanded on the model of Singh et al. [6] by 

incorporating the same static catch-bond detachment kinetics, mostly focused on velocity, 

run length, and run time of a cargo driven by multiple dynein motors. The predicted average 
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run length decreased with increasing load at high ATP concentrations, which is different 

from our predictions where the run length can increase with increasing load force at high 

ATP concentrations. Run times, defined as the time before the cargo detached from its track, 

were almost constant for large load forces due to the static catch-bond of the dynein motors, 

which is consistent with our model. Most importantly, as in [36] the model of Takshak et al. 
[37] was tuned to stall forces of about 1pN for a single motor and did not address the 

observation of larger single-motor stall forces.

In summary, we have proposed a new model for the kinetics of dynein motors that is 

constrained by experimentally determined step sizes, force-velocity relations, and 

detachment kinetics. The dynamic catch-bond behavior of this model is emergent and ATP-

dependent, and increases the stall force of a single motor significantly through a dynamic 

instability, explaining the broad range of stall forces reported in [10, 11]. The model 

generates three new testable predictions: 1) stochastic switching between high and low load-

carrying states within a certain velocity domain, 2) plateaus in the force-velocity relationship 

of a cargo driven by more than one motor at high ATP concentrations, and 3) increases in the 

run-lengths of single motors with increasing force at high ATP concentrations. We have also 

proposed an experimental protocol that could test the predicted instability.
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Fig. 1. Kinetic scheme for the dynein motor model.
The dynein motor is considered to exist in four conformational states j = 1,2,3,4, associated 

with step sizes of 32nm, 24nm, 16nm, and 8nm, respectively. Stepping of the motor in each 

state is coupled tightly to ATP hydrolysis. ATP binds to the dynein motor Dj with rate aj
+. In 

the ATP-bound state (Dj ∷ ATP), the ATP can either be hydrolyzed with rate βj
+ or it can 

dissociate with rate aj−. Backward stepping is modeled as reverse catalysis with the rate 

constant βj
−. Note that βj

+ technically includes both hydrolysis and release of the hydrolysis 

products, but for simplicity we refer to it as the hydrolysis rate constant in the present study.
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Fig. 2. Model of multiple motors engaged with a cargo.
The figure shows three dynein motors at positions x1, x2 and x3 attached to an optically 

trapped bead (cargo) at position xc. The springs connecting the cargo with the dynein motors 

indicate elastic linkers that are either stretched (x1 and x3) or relaxed (x2) and the arrows 

along the linkers indicate the direction of the force exerted by the respective motor on the 

cargo. The linkers are elastic (spring constant kl) and the cargo experiences a viscous drag 

(friction coefficient γ). The solid bar represents a microtubule with its minus end (towards 

which dynein moves) to the right.
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Fig. 3. Dynein stepping behavior under various applied loads.
In panel (a), we compare the experimentally obtained step sizes versus load force [24] 

(circles) with the average step sizes obtained with our model at an ATP concentration of 

1mM (solid grey line). The normalized load force in [24] is renormalized here to a stall force 

of 1.2pN, which is the stall force of our model at this ATP concentration. As only steps in 

the minus direction (the preferred direction of the dynein motor) were analyzed in the 

experiments, we used Eq.7 for these simulations. Data points were extracted from the 

published paper using the GraphClick software package [30]. As in the experimental data, 

the motor in the model takes predominantly large steps of 32nm and 24nm at low load and 

predominantly small steps of 8nm at high load, though the quantitative agreement for larger 

forces is not as good as for small forces. In panel (b), we compare the predicted distribution 

(grey bars) of the absolute step sizes (positive and negative) at a low ATP concentration 

(2μM) with published data for this ATP concentration [5] (black bars).
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Fig. 4. Dynein velocity under various applied loads and [ATP].
In panel (a), we compare the predicted dynein force-velocity relationship (solid grey line) 

with the experimental data of [24] (circles) at a 1mM ATP concentration. The force-velocity 

curve was scaled according to the values in table S1 in the supplementary data of [23] for a 

single dynein motor moving a bead along a microtubule in vitro. In panel (b), we compare 

the predicted average velocity of the motor as a function of the ATP concentration for load 

forces of 0pN, 0.05pN, 0.1pN, and 0.15pN (solid and dashed grey lines), with experimental 

data for minus-end directed motion from Fig. 4c in [31] (squares), reflecting retrograde 

movement of the dynein obtained using TIRF assays under “minimal load”. The 

experimental data points were extracted using the GraphClick software package [30].
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Fig. 5. Measurement of dynein stall times.
(a) We show a simulated time course of the force exerted by an optical trap on a cargo driven 

by a single dynein motor at 1mM ATP. Three stalling events are shown (indicated by the 

vertical arrows). The horizontal double-sided arrows mark the stall times for two of these 

events (τ1 and τ2). The precipitous drop in force after each stall reflects the detachment of 

the motor. In our simulations, the motor instantaneously re-attached to the track after 

detachment. (b) We show the distribution of stall forces obtained from 1000 detachment 

events as characterized in (a).
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Fig. 6. Run length of a single dynein motor driven by a constant force.
The average run length is plotted against the load force on the motor, with each data point 

representing a measurement of average run length at a fixed force. For an ATP concentration 

of 500μM (circles), the average run length dropped rapidly to zero at a load force of about 

1pN. For ATP concentrations of 1mM (squares), 2mM (diamonds), and 5mM (triangles), 

when the dynamic catch-bond was activated, the average run length decreased initially, but 

then reached a minimum at a force of about 1pN before rising again to exhibit another peak 

and then stalling at a much larger force.
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Fig. 7. Force-velocity curves for dynein with a dynamic catch-bond.
(a) The average velocity is shown as a function of a constant load force (x axis) on the motor 

for three different ATP concentrations, i.e. 0.5mM (circles), 1mM (diamonds), and 2mM 
(triangles). Dynamic catch-bonding behavior was observed at or above 1mM ATP. (b) 

Schematic of the force-velocity curve for 2mM ATP in (a) showing the velocity domain (see 

dashed lines), i.e. vmin < vc < vmax, where three motor forces coexist for one velocity, i.e. F1, 

F2 and F3. The grey band represents the force domain in which the motor is unstable. Points 

P and Q are referred to in the text. (c) The predicted dependence of the stall force on the 

ATP concentration in the presence (upper curve) and absence (lower curve) of dynamic 

catch-bonding.
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Fig. 8. Force distribution on single dynein motors constrained to move at a fixed velocity.
We show the frequency distributions of forces acting on a single motor in an assay where a 

cargo with one dynein motor attached is moved towards the minus end of the microtubule at 

fixed velocities of 500nm/s (a), 200nm/s (b) and 50nm/s (c), all at an ATP concentration of 

2mM. Panels (d), (e) and (f) show the corresponding traces of the forces plotted versus time 

to show the predicted force fluctuations. To demonstrate the switching between the high and 

low-load states as shown in Fig. 8, we used a reduced linker stiffness of kl = 0.02pN/nm and 

suppressed detachment. For higher linker stiffness kl, the force exhibits larger and more 

frequent fluctuations since a single step of the motor adds a load of klΔx, broadening the two 

peaks of the bimodal force distribution in (b) such that they cannot be resolved, and 

eliminating the sustained intervals of high and low forces in the force traces (not shown).
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Fig. 9. Cargo velocity and load-sharing for a team of two dynein motors permanently attached to 
their microtubule track.
In panel (a), the average velocity of a cargo driven by a team of two catch-bonding dynein 

motors is shown as a function of the load force at ATP concentrations of 1mM (circles) and 

2mM (squares), and in the absence of catch-bonding (“slip-bond”), i.e. for a positive value 

of δβ
+ in step 4 (8nm steps) (see Table 1), at 1mM ATP (triangles). To prevent motor 

detachment in these simulations, we set the detachment rate rdet = 0 (Eq.4). Panels (b-d) 

show the frequency distributions of the forces acting on the two individual catch-bonding 

motors for cargo forces of 2pN(b), 5pN(c), and 8pN(d) at 2mM ATP. The distributions are 

truncated at the load force Fl because the force on an individual motor cannot exceed the 

load force on the cargo.
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Fig. 10. Force-velocity relationship for a team of two dynein motors with microtubule 
detachment.
The average velocity of a cargo driven by a team of two catch-bonding dynein motors is 

shown as a function of the load force at ATP concentrations of 1mM (circles) and 2mM 
(squares) under conditions where the motors are allowed to detach and reattach to the 

microtubule track.
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Table 1:

Rate constants chosen for the dynein model

Parameter Description State 1 State 2 State 3 State 4

α+ (M−1sec−1) ATP binding rate 8.00 · 106 1.33 · 105 2.00 · 105 4.00 · 105

δα (nm) ATP binding force constant 2.0 6.0 4.0 2.5

α− (sec−1) ATP dissociation rate 50 200 175 150

β+ (sec−1) Catalysis rate 32 20 8 5

δβ
+ (nm) ATP hydrolysis force constant 12 5 1.0 −5.5

β− (sec−1) Inverse catalysis rate 0.0 5.8 2.3 0.4

δβ
− (nm) Inverse ATP hydrolysis force constant 0.0 0 −1 −1

Δ (nm) Step size 32 24 16 8
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