Skip to main content
. 2021 Mar 5;11:621088. doi: 10.3389/fonc.2021.621088

Table 2.

Performance metrics for the top three machine learning algorithms for predicting whether patients survive longer than the group median in the EGFR, ALK, and KRAS mutation-positive groups using radiomic features only.

Mutation Classifier Accuracy AUC* Sensitivity Specificity
EGFR Ada Boost Classifier 84.30% 0.905 86.00% 82.00%
Bagging Classifier 84.00% 0.915 90.00% 79.00%
Gradient Boosting Classifier 88.10% 0.95 90.00% 87.00%
ALK Gradient Boosting Classifier 85.70% 0.92 88.00% 83.00%
Random Forest Classifier 77.80% 0.93 95.00% 68.00%
Extra Trees Classifier 85.70% 0.936 90.00% 81.00%
KRAS Extra Trees Classifier 78.70% 0.913 84.00% 75.00%
Gradient Boosting Classifier 85.10% 0.955 83.00% 87.00%
Ada Boost Classifier 95.70% 0.957 100.00% 92.00%
*

AUC, area under the receiver operating characteristic curve. EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; KRAS, Kirsten rat sarcoma viral oncogene homolog.