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A B S T R A C T   

The point-by-point scanning mechanism of photoacoustic microscopy (PAM) results in low-speed imaging, 
limiting the application of PAM. In this work, we propose a method to improve the quality of sparse PAM images 
using convolutional neural networks (CNNs), thereby speeding up image acquisition while maintaining good 
image quality. The CNN model utilizes attention modules, residual blocks, and perceptual losses to reconstruct 
the sparse PAM image, which is a mapping from a 1/4 or 1/16 low-sampling sparse PAM image to a latent fully- 
sampled one. The model is trained and validated mainly on PAM images of leaf veins, showing effective im
provements quantitatively and qualitatively. Our model is also tested using in vivo PAM images of blood vessels 
of mouse ears and eyes. The results suggest that the model can enhance the quality of the sparse PAM image of 
blood vessels in several aspects, which facilitates fast PAM and its clinical applications.   

1. Introduction 

Photoacoustic (PA) microscopy (PAM), as a hybrid imaging tech
nique based on the PA effect, has been widely used in the field of 
biomedical imaging [1–6]. Optical-resolution PAM (OR-PAM), as one 
implementation of PAM, offers high spatial resolution at the expense of 
penetration depth and has demonstrated many potential applications 
[6–8]. For image acquisition in OR-PAM, since a sample typically has 
spatially distinct optical absorption, the sample’s optical absorption 
map is obtained by performing point-by-point scanning over the sample. 
As a result, the imaging speed of OR-PAM is highly restricted due to the 
point-by-point scanning mechanism, especially for high-resolution 
OR-PAM that performs scanning in smaller steps and thus has more 
scanning points (i.e., more scanning pixels) in a given region of interest 
(ROI). A low imaging speed may hamper selected applications such as 
monitoring dynamic biological systems. 

In recent years, efforts have been made to speed up OR-PAM scan
ning, which mainly focus on fast scanning mechanisms. Components 
such as a high-speed voice-coil stage, a galvanometer scanner, a 
microelectromechanical system (MEMS) scanning mirror, a micro lens 
array together with array ultrasonic transducers were used for fast- 
scanning OR-PAM [9–14]. A random-access scanning method was also 

applied in OR-PAM to accelerate the imaging speed by employing a 
digital micromirror device to scan only a selected region [15]. In these 
works, sophisticated and expensive hardware was used. Alternatively, 
sparse-scanning OR-PAM with post image processing offers a solution to 
improve imaging speed by scanning fewer points (in contrast to 
full-scanning). Methods such as compressive sensing technologies have 
been applied to sparse-scanning OR-PAM, which is formulated as a 
low-rank matrix recovery problem [16]. A high-quality image can be 
recovered from an OR-PAM image with sparse data. However, due to the 
relatively high sampling density (e.g., the sampling density of 0.5 
mainly demonstrated in [16]) and the complex realization of compres
sive sampling in experiments, enhancement of imaging speed is limited. 
Therefore, there is still a need for more efficient and practical algorithms 
to accelerate the imaging speed of OR-PAM. 

Significant advances have been made recently in image processing, 
mainly using deep learning algorithms (or convolutional neural net
works (CNNs)). After AlexNet achieved much better performance than 
the conventional algorithms in the image classification task in 2012 
[17], CNNs have been widely utilized to handle various vision tasks such 
as de-haze, de-noise, image classification, and image segmentation 
[18–21]. In addition to dealing with these problems, super resolution 
(SR) is another popular topic in the computer vision area, aiming to 
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restore low-resolution pictures. The SR problem is ill-posed because a 
low-resolution image theoretically corresponds to multiple 
high-resolution images. Therefore, CNNs are trained to learn the most 
reasonable mapping, which can generate a high-resolution image with 
vivid and clear details based on a low-resolution image. SRCNN is the 
first to implement SR with a simple and shallow CNN [22]. Then, SRGAN 
applied the concept of generative adversarial networks (GANs) together 
with CNNs to generate images with highly intuitive fidelity, instead of 
the plain pixel-wise similarity [23,24]. 

More recently, CNNs have also been applied to PA imaging, primarily 
for PA computed tomography (PACT), which is another implementation 
of PA imaging [3]. Antholzer et al. used the U-Net architecture to 
remove the artifacts in sparse PACT [25–27]. PA source detection and 
reflection artifact removal can also be achieved by CNN-based methods 
[28]. Emran et al. demonstrated fast LED-based PACT imaging based on 
CNN and recurrent neural network approaches and achieved an 8-fold 
increase in PACT imaging speed [29]. However, studies of CNN-based 
methods to improve PAM imaging speed are still lacking. 

Enhancing the quality of a low-sampling sparse OR-PAM image, i.e., 
restoring it to approach the latent full-sampling one, can be categorized 
as an SR problem. Similar to the usage in [22,24], the term “SR problem” 
here is not explicitly related to breaking the diffraction limit in physics. 
Instead, the term implies generating high-quality images from sparse 
OR-PAM with limited digital pixels. Hence, the problem is also ill-posed. 
Therefore, in this work, we propose a CNN-based method to improve the 
quality of the sparse OR-PAM image with the following advancement. 
First, efforts have been made to acquire an experimental dataset of 268 
OR-PAM images (256 × 256 × 180 pixels) of leaf veins that are used to 
train the CNN model in this work, and the rarely-seen OR-PAM dataset 
will be accessible online for further studies by other researchers. Sec
ondly, high-quality images are restored from 1/4 or 1/16 low-sampling 
images with poor quality, which may facilitate fast OR-PAM imaging. 
Thirdly, we extend our method to in vivo applications and achieved 
high-quality OR-PAM images of blood vessels of mouse ears and eyes, 
showing the feasibility of applying the method in biomedical research 
and potentially in clinics. It is worth mentioning that although OR-PAM 
is demonstrated in this work, the proposed method may also be applied 
to acoustic-resolution PAM (AR-PAM) and other point-by-point scan
ning imaging modalities, such as optical coherence tomography and 
confocal fluorescence microscopy. Note that in the following of this 
paper, PAM refers to OR-PAM unless otherwise specified. 

2. Methods 

2.1. PAM system 

The schematic of our PAM system is illustrated in Fig. 1. A 532-nm 
pulsed laser (FDSS532-Q4, CryLaS, Germany) with a pulse repetition 
frequency (PRF) of 1 kHz and a pulse duration of <2 ns was used to 

excite PA signals. The laser beam emitted from the laser head was split 
into two paths by a beam splitter (BS025, Thorlabs). The reflected light 
detected by a photodiode (DET10A2, Thorlabs) served as the trigger 
signal, which was fed to a data acquisition card (CSE1422, GaGe) with a 
14-bit resolution. The transmitted light passed a beam-shaping set 
(consisting of lens #1, lens #2, and an iris) to obtain an expanded 
collimated light beam. Note that the light intensity was controlled by 
neutral density filters in front of lens #1. The light beam was then 
focused by lens #3 and coupled into a single-mode fiber (SMF) via a 
fiber coupler (F-915, Newport). A probe mainly consisting of the SMF 
and the lens for light focusing was fabricated and used for PA excitation. 
We prepared the probes with different high resolutions of ∼2-4 μm to 
acquire images in this work. PA signals were detected by a custom-made 
ultrasound transducer (central frequency: 35 MHz; bandwidth: 
∼40 MHz) and amplified by a preamplifier (ZFL-500LN-BNC+, Mini- 
Circuits). The data acquisition card was then used for signal digitiza
tion at a sampling rate of 200 MS/s. In this system, both the probe and 
ultrasound transducer, as the PAM scan head (the dashed box in Fig. 1), 
were mounted on a two-dimensional (2D) motorized stage (M-404, 
Physik Instrumente [PI], Germany) for scanning during image 
acquisition. 

2.2. Dataset preparation 

In this work, a dataset of PAM images of bodhi and magnolia leaf 
veins was used to train and validate our CNN model. First, we immersed 
the prepared leaf samples in black ink in a container for at least 7 h. 
Then, the leaves were taken out of the container, and the remained ink 
(i.e., not within leaf vein networks) was removed by blowing. The leaves 
were then placed on a glass slide and sealed with silicone glue (GE 
Sealants). Secondly, the leaf samples were imaged by PAM. The probe 
with a resolution of 2 μm (measured by a beam profiler and a 10× beam 
expander) was used to scan the leaf samples with a data size of 256 ×

256 pixels and a step size of 8 μm, corresponding to a scanning range of 
∼2.05 mm. For each PA A-line, 180 pixels were acquired, corresponding 
to the depth range of ∼1.35 mm considering the sound speed of 1500 m/ 
s in water. That is, each three-dimensional PAM image has 256 × 256 ×

180 pixels. We acquired a dataset of 268 original full-scanning (or full- 
sampling) PAM images in total. 

The low-sampling sparse data were obtained by down-sampling the 
above full-scanning data. The process is illustrated in Fig. 2. Specifically, 
with 2× scaling in step size, only 1/2 pixels in one lateral dimension 
were selected and used (as indicated by the yellow-colored pixels in 
Fig. 2(a)) in the low-sampling image. That is, the low-sampling image 
(128 × 128 × 180 pixels) has only 1/4 pixels of the full-scanning image. 
In this regard, a 4-fold reduction in the image acquisition time can be 
expected to the first approximation. Similarly, with 4× scaling in step 
size, the low-sampling image (64 × 64 × 180 pixels) has only 1/16 
pixels and is expected to need only 1/16 image acquisition time, simi
larly, to the first approximation, compared to the full-scanning case. 
Considering that the resolution is much smaller than the step size (2 μm 
vs. 8 μm, 16 μm, and 32 μm), the down-sampling method used here will 
digitally produce a good approximation of the experimentally-acquired 
low-sampling images. Then, the maximum amplitude projection (MAP) 
along the depth direction was applied to obtain 2D images, which is 
commonly used for the OR-PAM image display. Fig. 2(b) shows one 
example by applying the down-sampling method. As can be seen, the 
image quality is degraded in the low-sampling images (e.g., blurs and 
discontinuities). Finally, the 268 sets of 2D PAM images were used for 
our CNN model, where the low-sampling PAM image (128 × 128 or 
64 × 64 pixels) was used as input and the full-scanning one (256 × 256 
pixels) as the ground truth. 

For each scaling rate (2× and 4× ), we split the dataset into training, 
validation, and test sets with a ratio of 0.8:0.1:0.1. All the pixel values 
were linearly scaled to the range of ( − 1, 1). Regular data augmentation 
operations, including flipping and rotation, were applied for training. 

Fig. 1. Schematic of the PAM system. BS, beam splitter; PD, photodiode; ND, 
neutral density filter; L1, lens #1; L2, lens #2; L3, lens #3; FC, fiber coupler; 
SMF, single mode fiber; UST, ultrasound transducer; Amp, preamplifier; DAQ, 
data acquisition card; PC, personal computer. 
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2.3. Network architecture and settings 

The architecture of the proposed CNN is shown in Fig. 3. We utilized 
16 residual blocks [24] and 8 Squeeze-and-Excitation (SE) blocks [30] as 
the key parts of feature extraction. Inspired by SRGAN [24], the residual 
blocks elaborated in Fig. 3(b) can well extract features in SR tasks. 
Moreover, we found that the SE block [30] (shown in Fig. 3(c)) with the 
channel-wise attention mechanism contributed to network convergence 
and performance. The “Upconv” block consisted of a 2× up-sampling 
layer and a standard convolutional layer (with a kernel size of 3, num
ber of filters of 256, and stride of 1). For the 2× scaling experiments (i.e., 
1/4 pixels for the low-sampling data), only one “Upconv” block was 
applied, while for the 4× scaling experiments (i.e., 1/16 pixels for the 
low-sampling data), two “Upconv” blocks were adopted successively. 
The Tanh activation function was used for the final output layer, and the 
Sigmoid activation function was used for the second dense layer (also 

called a fully connected layer) in each SE block. Other convolutional 
layers and dense layers all adopted ReLU activation functions. 

The perceptual loss was applied to train the CNN model. As indicated 
in [24,31–34], although pixel-wise mean squared error (MSE) and mean 
absolute error (MAE) loss functions significantly improve the pixel-wise 
metrics like peak signal-to-noise ratio (PSNR) and structural similarity 
index (SSIM) [35], the generated image is likely to be too smooth and 
the quality is poor from a subjective point of view. This phenomenon 
was found to be quite severe for PAM images (demonstrated later in 
Section 3.3). Hence, a perceptual loss function was adopted to train the 
CNN model. Specifically, we calculated the MSE based on the output 
feature map of the 7th convolutional layer of VGG19 [24,31,34,36,37], 
which can give a high-level feature description of the image. The VGG19 
model was pretrained on the ImageNet dataset [38]. With the prediction 
Ipred and the ground truth projection Igt to calculate the perceptual loss, 
the two feature maps from the 7th convolutional layer of VGG19 can be 
expressed as ϕ(Ipred) and ϕ(Igt), respectively. Thus, the perceptual MSE 
loss should be: 

Loss =
1

nx × ny × nf

∑nx

x=1

∑ny

y=1

∑nf

f=1
(ϕ(Igt)x,y,f − ϕ(Ipred)x,y,f )

2
, (1)  

where nx, ny, and nf denote the dimensions of the feature map. 
In our experiments, the proposed CNN model was implemented using 

the Keras framework with the TensorFlow backend. Adam optimizer 
was applied with β1 = 0.5 and β2 = 0.999. The learning rate was 2e − 4. 
A single Nvidia 2080Ti GPU was used for training. We trained the model 
for 40000 iterations with a batch size of 8. During training, the inter
mediate models were evaluated every 200 iterations using the validation 
set. The intermediate model with the best validation performance was 
selected and used as the final model in this work. 

3. Results and analysis 

3.1. Leaf vein experiment by the down-sampling method for testing 

As detailed in Section 2, the CNN model was trained using the dataset 
generated by the down-sampling method. Representative results of the 
recovered PAM images are shown in Fig. 4, and the quantitative statis
tical results for the test set are listed in Table 1, where PSNR and SSIM 
(by comparing the recovered PAM images with the corresponding 
ground truth) metrics were both calculated. 

In Fig. 4, besides our restoration method, three other representative 
methods, the conventional bicubic interpolation, a re-trained EDSR 
model [39], and a re-trained Residual U-Net model [40], were applied 
for comparison. EDSR is a typical and effective CNN-based method 
originally designed for natural image SR problems. Residual U-Net is 

Fig. 2. The process of generating low-sampling images from the full-scanning 
ones. (a) Illustration of the down-sampling method. (b) An example by 
applying the down-sampling method. Scale bar: 500 μm. All images in (b) share 
the same scale bar. 

Fig. 3. The architecture of the proposed CNN model. (a) The overview of the proposed CNN model. (b) The details of each residual block. (c) The details of each SE 
block. The Tanh activation function follows the last convolution layer, and the second dense layer in each SE block uses the Sigmoid activation function, while all the 
other convolutional layers and dense layers adopt ReLU activation functions. Different t values correspond to various scaling rates. 

J. Zhou et al.                                                                                                                                                                                                                                    



Photoacoustics 22 (2021) 100242

4

Fig. 4. Results of the leaf vein experiment by 
the down-sampling method. The recovered 
PAM images are obtained from 1/4 (a) and 1/ 
16 (b) low-sampling sparse PAM images. The 
numbers below the images indicate the PSNR 
(dB) and SSIM values (by comparing the entire 
image with the corresponding ground truth). In 
both (a) and (b), the top row shows the results 
from a magnolia leaf (the first sample), and the 
bottom row from a bodhi leaf (the second 
sample). Scale bar: 500 μm. All images, 
excluding zoom images, share the same scale 
bar. (c) Comparison of PSNR and SSIM values of 
the two samples in histograms.   

Table 1 
Leaf vein experiment: comparison of PSNR and SSIM values.   

2× 4×

PSNR (dB) SSIM PSNR (dB) SSIM 

Bicubic 23.4936 ± 1.8718  0.7721 ± 0.0457  19.9941 ± 1.9204  0.5773 ± 0.0683  
EDSR 24.2356 ± 1.7999  0.5955 ± 0.0115  21.5557 ± 2.0176  0.6264 ± 0.0808  
Residual U-Net 25.2166 ± 1.8106  0.7657 ± 0.0282  22.4960 ± 1.6238  0.6817 ± 0.0592  
Ours 26.1431 ± 1.7022  0.8183 ± 0.0599  23.1760 ± 1.9290  0.7159 ± 0.0602   

J. Zhou et al.                                                                                                                                                                                                                                    



Photoacoustics 22 (2021) 100242

5

another well-known CNN architecture that has been widely adopted for 
various image restoration problems. The recovered PAM images were 
obtained from 1/4 and 1/16 (Fig. 4(a) and 4 (b), respectively) 
low-sampling sparse PAM images. For each scaling rate, two represen
tative results are provided in Fig. 4. Zoom images (denoted by the green 
and cyan boxes for 2× and 4× scaling cases, respectively) are also dis
played for better comparison. Fig. 4(c) shows the comparison of PSNR 
and SSIM values in histograms. 

By checking the zoom images in Fig. 4, the three CNN-based methods 
are superior to bicubic interpolation from the intuitive view. Specif
ically, first, the results by bicubic interpolation are blurred and overly 
smoothed. Secondly, the low-sampling image suffers from discontinu
ities, which are not recovered by bicubic interpolation. By contrast, no 
such issues are observed by CNN methods, and the recovered images 
look more natural and closer to the full-scanning ones. Bicubic inter
polation (and other conventional methods) uses the weighted average 
values of a local area, while the CNN models can learn more high-level 
(or more global) information to predict pixel values better. It is worth 
noting that the above issues (blurring, over smoothing, and disconti
nuity) of the recovered images using bicubic interpolation become 
obviously severer for the recovery from the 1/16 low-sampling case 
(Fig. 4(b)) compared with that from the 1/4 low-sampling case (Fig. 4 
(a)), while the consistently high quality and high fidelity for the 
recovered images using the CNN methods are achieved for the recovery 
from both the 1/4 and 1/16 low-sampling cases. That is, as the scaling 
increases, the advantages of the CNN methods become more apparent 
than the bicubic interpolation. Furthermore, as shown in Fig. 4(c), the 
recovered images by our CNN method have the highest PSNR and SSIM 
values compared with those by the other two CNN methods. 

A similar trend can be found in the statistical results (mean and 
standard deviation values) on the test set, as shown in Table 1. For the 
4× scaling case, compared with bicubic interpolation, our model’s PSNR 
and SSIM values (average of the test set) are greatly improved by 
3.1819 dB and 0.1386. Besides, according to the two metrics, our model 
outperforms the re-trained EDSR model and Residual U-Net model for 
both 2× and 4× scaling cases. Therefore, our method can provide 
relatively high-quality PAM images from very sparse data, which was 
demonstrated quantitatively and subjectively. 

3.2. Leaf vein experiment using experimentally-acquired sparse data for 
verification 

To further verify the feasibility of our method, besides the low- 
sampling images obtained from the operation in Fig. 2, 
experimentally-acquired sparse PAM images were also fed to our trained 
CNN, which is closer to practical applications. We scanned the same ROI 
with a scanning step size of 8 μm and 16 μm (or 8 μm and 32 μm). In this 
demonstration, the full-scanning PAM image with 128 × 128 pixels and 
the corresponding low-sampling PAM image with 64 × 64 (or 32× 32) 
pixels were experimentally scanned over the same ROI. The low- 
sampling PAM images were used as the input and the corresponding 
images with 128 × 128 pixels as the reference. Two representative re
sults are shown in Fig. 5(a), where the top and bottom rows show the 1/ 
4 and 1/16 low-sampling cases, respectively. In Fig. 5(a), the advantages 
of our CNN model (no issues of blurring, over smoothing, and discon
tinuity) are also observed. Our CNN model also achieves the highest 
PSNR and SSIM values, as shown in Fig. 5(b). The results verify that by 
using our CNN model for sparse-scanning and post processing, fast PAM 
imaging can be realized, and the images with similar quality to the very 
time-consuming full-scanning corresponding image can be recovered. 

3.3. Ablation investigation 

The ablation investigation of the proposed CNN was elaborated. Two 
essential components (SE blocks and perceptual loss) of our method 
were analyzed to show their effectiveness. 

As shown in Fig. 3(a) and (c), we applied the SE block [23] after some 
residual blocks. With the channel-wise attention design, the SE block is 
thought to be useful for channel information selection. The investigation 
results (including mean and standard deviation) are shown in Table 2. 
We found that the CNN without SE blocks was hard to converge during 
training and showed relatively poor results. For example, for 4× scaling 
test set, the PSNR and SSIM values for the CNN without SE blocks are 
reduced by 1.3876 dB and 0.0936, respectively. 

The perceptual loss is one of the most critical parts of our method. As 
explained previously, training with pixel-wise MSE and MAE contributes 
to getting higher PSNR and SSIM values. However, it probably results in 

Fig. 5. Results of the leaf vein experiment by 
experimentally-acquired low-sampling data for 
verification. (a) The top and bottom rows show 
the 1/4 and 1/16 low-sampling cases, respec
tively. The low-sampling images are collected 
by using a larger scanning step size. The 
numbers below the images indicate the PSNR 
(dB) and SSIM values (by comparing the image 
with the corresponding full-scanning reference 
image). Note that noise and laser fluctuations 
lead to some difference between pixel values of 
the same position from different scans of the 
full-scanning and low-sampling images. Scale 
bar: 300 μm. All images share the same scale 
bar. (b) Comparison of PSNR and SSIM values 
of the two cases in histograms.   
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finding a pixel-wise average solution that loses the fine texture [24, 
31–34]. To illustrate the argument, we trained three models with one 
different setting: one used the perceptual loss function while the other 
two utilized the conventional pixel-wise MSE and MAE loss functions, 
individually. We compared the recovered images by the three models 
with the ground truth. Representative results for the 1/16 low-sampling 
case are shown in Fig. 6. Images from left to right in Fig. 6 show the 
full-scanning image (ground truth) and the recovered PAM images by 
our CNN model with pixel-wise MSE loss, with pixel-wise MAE loss, and 
with perceptual loss, respectively. Similarly, PSNR and SSIM values 
were calculated, as shown below the recovered images. 

According to Fig. 6, PSNR and SSIM values of the cases of MSE loss 
and MAE loss are higher than those from the case of perceptual loss. 
However, the recovered PAM images of the cases of MSE loss and MAE 
loss are so smooth that they differ from the ground truth a lot from the 
perceptive point of view. Some small branches even disappear (e.g., the 
parts indicated by the blue arrows in Fig. 6). By contrast, although the 
recovered PAM image of the case of perceptual loss has relatively low 
metric values, it looks very much like the corresponding ground truth (e. 
g., more textures in the ground truth restored), which may be more 
critical for biomedical applications. In this regard, it is essential to apply 
such a perceptual loss function. 

It is also important to point out that both assessments of the 
perceptive point of view and pixel-wise metrics should be considered to 
evaluate the effects of image recovery. In Figs. 4 and 5, we are able to 
attain excellent results by our CNN model in terms of both assessments, 
which would be the best outcome. 

3.4. In vivo experiment 

We also extended our verification to in vivo experiment to better 
demonstrate the practical applications of our model. The CNN models 
trained on the leaf vein dataset were further fine-tuned (i.e., by transfer 
learning) by some additional in vivo PAM vascular images, which were 
acquired using the probe with a resolution of ∼3-4 μm and a scanning 
step size of 4 μm. Specifically, 101 in vivo PAM vascular images of mouse 
ears were used, with 90 images for transfer learning and 11 images for 
testing. The training settings for the transfer learning were the same as 
those for the leaves described previously. No layers were frozen for 
transfer learning. 

PSNR and SSIM values calculated based on the in vivo test set are 
listed in Table 3. According to Table 3, our method also achieves the 
highest metric values compared with the other techniques. Similar to 
Table 1, our method has more improvements for the 4× scaling case 
than those for the 2× scaling case compared with bicubic interpolation. 

Besides quantitative comparison, the comparison from the percep
tive point of view was conducted by checking PAM images. One repre
sentative result is shown in Fig. 7. The full-scanning image, acquired 
previously [41], has a size of 704 × 608 pixels. Because the main body of 
our CNN architecture (excluding SE blocks) is a fully convolutional 
network, it can handle images with arbitrary input sizes without any 
cropping and montage operations. As can be seen, the qualitative ad
vantages of CNN methods (sharper edges, high fidelity, and more 
continuous patterns) over bicubic interpolation are still preserved in the 
in vivo images of mouse ear blood vessels. The advantages can be much 
better appreciated in the 1/16 low-sampling case (Fig. 7(b)) than in the 
1/4 low-sampling case (Fig. 7(a)). Although the other two CNN 
methods, EDSR and Residual U-Net, also show good visual performance 
as our CNN model in Fig. 7, our CNN model attains the highest metric 
values (Figs. 7(a)-7 and (b)-7), as also described above (statistical results 
in Table 3). That is, compared with EDSR and Residual U-Net, our 
method reaches the best outcome in both assessments of the perceptive 
point of view and pixel-wise metrics. 

Further, we attempt to test our model for different patterns other 
than the tree-like patterns (e.g., with branches and subbranches) that 
have been demonstrated so far. Therefore, an in vivo PAM image of blood 
vessels of a mouse eye, which have radial patterns, was also tested. The 
PAM image with 448 × 448 pixels was acquired previously by the probe 
with a resolution of ∼3 μm and a scanning step size of 4 μm [42]. The 
CNN model used for Fig. 7 (i.e., for PAM vascular images of mouse ears) 
was directly applied to the PAM vascular images of mouse eyes without 
further training. 

The results are shown in Fig. 8. Similarly, we compared the full- 
scanning PAM image (ground truth) and the PAM images recovered 
by bicubic interpolation and by the three CNN methods. The recovered 
PAM images were also obtained from the 1/4 and 1/16 low-sampling 
sparse PAM images. As shown in Fig. 8, our method achieves the high
est metric values among the four methods. From the perceptive point of 
view, our method renders a recovered PAM image with sharper edges 
and more continuous patterns than bicubic interpolation, especially for 

Table 2 
Ablation investigation of the existence of SE blocks.   

2× 4×

PSNR (dB) SSIM PSNR (dB) SSIM 

Without SE blocks 24.9429 ± 1.7847  0.8124 ± 0.0444  21.7884 ± 1.8139  0.6223 ± 0.0655  
With SE blocks 26.1431 ± 1.7022  0.8183 ± 0.0599  23.1760 ± 1.9290  0.7159 ± 0.0602   

Fig. 6. Comparison between the CNN models with pixel-wise MSE / MAE loss and perceptual loss. The recovered PAM images are obtained from a 1/16 low- 
sampling sparse PAM image. The numbers below the images indicate the PSNR (dB) and SSIM values (by comparing the image with the corresponding ground 
truth). Scale bar: 500 μm. All images share the same scale bar. Comparison of PSNR and SSIM values in histograms is provided. 
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the 1/16 low-sampling case. This can be appreciated more clearly by 
comparing the zoom images. Therefore, even if using the CNN model 
trained by images with tree-like patterns, we still achieve good perfor
mance when applying our model to images with radial patterns, showing 
the robustness of the CNN method to some degree. 

4. Discussion 

To speed up PAM imaging speed, fast-scanning PAM has been 
extensively investigated by employing sophisticated and expensive 
hardware. Alternatively, sparse-scanning PAM offers an elegant solution 
to realize fast PAM imaging utilizing software-based post processing. We 
proposed a CNN method to deal with the sparse data as an SR problem, 
specifically to recover from the low-sampling sparse PAM images. We 
adopted several key settings, including residual blocks, SE blocks, and 
perceptual loss function, in our method. As a result, our method pro
duced excellent results in both the perceptive point of view and pixel- 
wise metrics. 

In our work, we applied different full-scanning step sizes for leaf 
veins and mouse vessels (i.e., 8 μm and 4 μm, respectively). This is in 

part because the feature size of leaf veins is larger than that of mouse 
vessels. Different parameters and patterns (such as different full- 
scanning step sizes, different resolutions of PAM, and tree-like and 
radial patterns) used in our demonstrations also show the robustness of 
our CNN method. On the other hand, as expected, to apply our CNN 
method to low-sampling sparse PAM images with fine features, a small 
scanning step size for acquiring the low-sampling image has to be 
adopted accordingly. Otherwise, when the scanning step size is larger 
than the feature size (e.g., 2:1), some originally isolated pixels (i.e., 
disconnected from adjacent pixels) cannot be recovered by our CNN 
method. Interestingly, we found that for originally continuous patterns 
(in contrast to isolated pixels) such as tortuous blood vessels, our CNN 
method can excellently recover the patterns even when the scanning 
step size is larger than the feature size (e.g., the two samples in Fig. 4 
(b)). Specifically, for example, for the first sample in Fig. 4(b), by 
comparing the zoom images of the cases of “Low-sampling” and 
“Recovered by ours” with that of “Full-scanning,” the recovered PAM 
image by our method enables the recovery of fine features (the branch 
tip (at the center of the zoom images) whose feature size is smaller than 
the scanning step size of 32 μm) and continuous patterns, showing the 

Table 3 
In vivo mouse ear vessel experiment: Comparison of PSNR and SSIM values.   

2× 4×

PSNR (dB) SSIM PSNR (dB) SSIM 

Bicubic 25.0855 ± 1.7853  0.7709 ± 0.0249  21.3115 ± 2.0410  0.5743 ± 0.0695  
EDSR 25.0279 ± 1.6590  0.7507 ± 0.0212  21.4274 ± 1.6949  0.5526 ± 0.0574  
Residual U-Net 25.0937 ± 1.4864  0.7767 ± 0.0180  22.4326 ± 2.0770  0.6355 ± 0.0559  
Ours 26.3509 ± 1.6034  0.7880 ± 0.0192  23.3825 ± 2.3061  0.6483 ± 0.0839   

Fig. 7. Demonstration of in vivo PAM images of 
blood vessels of the mouse ear. (a) The 1/4 low- 
sampling case. (b) The 1/16 low-sampling case. 
(a,b)-1 Full-scanning; (a,b)-2 Low-sampling; (a, 
b)-3 Bicubic interpolated; (a,b)-4 Recovered by 
EDSR; (a,b)-5 Recovered by Residual U-Net; (a, 
b)-6 Recovered by ours; (a,b)-7 Comparison of 
PSNR and SSIM values in histograms. The 
numbers below the images indicate the PSNR 
(dB) and SSIM values (by comparing the entire 
image with the corresponding ground truth). 
Scale bar: 500 μm. All images, excluding zoom 
images, share the same scale bar.   
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SR ability and fidelity of our CNN method for selected applications such 
as blood vessels with continuous line patterns. This is because part of the 
continuous branch was still scanned, and the CNN methods produce 
images based on high-level and global information. 

In practice, other than the total scanning pixels, factors such as laser 
PRF, scanning mechanisms (e.g., a motorized stage or a MEMS scanner), 
and data storage in the computer will affect and limit the ultimate 
scanning speed of PAM. Given certain laser PRF, the scanning time is 
approximately proportional to the total scanning pixels if the time taken 
for other parts is relatively short and can be neglected. In this regard, by 
reducing the sampling density to 1/4 or 1/16 in the low-sampling PAM 
images, the scanning time can be reduced to 1/4 or 1/16, respectively, 
compared with the full-scanning counterpart. Together with the post 
processing by the CNN methods, high-quality PAM images similar to the 
full-scanning counterpart can be obtained. It should be noted that the 
post-processing time is much shorter than the 2D scanning time, and 
therefore negligible. With our current PAM system (PRF of 1 kHz), the 
time taken for other parts mainly lies in the response time of the 
motorized stage. Thus, the scanning time will be closely proportional to 
the total scanning pixels when the scanning range in a B-scan is suffi
ciently long, which makes the time taken for other parts relatively short. 
For better illustration, we studied the relation between the scanning 
time and the total scanning pixels for two scanning ranges of 0.768 mm 
and 6.144 mm. Each scanning range used a 3 μm (full-scanning) and 
12 μm (4× scaling rate or low-sampling) scanning step size. That is, the 
total scanning pixels were reduced by 4 times from the full-scanning to 
the low-sampling for each scanning range. For the case of the scanning 
range of 0.768 mm, the B-scan time is reduced by ∼2 times from the full- 
scanning to the low-sampling (0.453 s vs. 0.228 s). On the other hand, 
for the case of the scanning range of 6.144 mm, the B-scan time is 

reduced by ∼3.4 times (2.553 s vs. 0.760 s), which is closer to the scaling 
rate of 4. Investigation of the speed improvement with our CNN model 
on a high-speed PAM system (e.g., using a MEMS scanner) is of interest 
for future work. 

Enhancing the quality of low-sampling sparse PAM images has been 
studied based on the alternating direction method of multipliers algo
rithm (ADMM). In our work, instead, a deep learning-based method was 
employed to deal with such enhancement of sparse PAM images. The 
deep learning-based method has advantages in regular scanning (in 
image acquisition) and fast processing speed (in post processing). First, 
regular scanning is much easier to implement than random scanning 
that is required for using a compressive sampling scheme [16]. For 
regular scanning, one can simply change to a larger scanning step, as 
demonstrated in this work. Secondly, to generate an image of about 1M 
pixels from the sparse data (i.e., the recovered latent full-scanning image 
has 1M pixels), the proposed CNN method costs about 0.35 s (with a 
single Nvidia 2080Ti GPU), while the ADMM requires 475.09 s (with the 
Intel Core 3.60 GHz). More importantly, we verified that our CNN 
method provides excellent performance even for the 1/16 low-sampling 
data, while the method in [16] mainly demonstrated the case with 1/2 
low-sampling data to guarantee the quality of the recovered images. In 
other words, our method can significantly boost the PAM imaging speed. 
Fast PAM imaging would benefit in vivo imaging applications such as 
mitigating motion blurs due to, for example, animal breathing. 

A work similar to ours has been published very recently [43]. 
Comparison of the two works is elaborated. (i) Both CNN models have 
typical architecture. Specifically, Residual Blocks to avoid vanishing 
gradient and SE blocks to further improve the performance are adopted 
in our CNN model, while a variation of U-Net, consisting of Dense Blocks 
to make the CNN deeper without vanishing gradient is used in [43]. (ii) 

Fig. 8. Demonstration of in vivo PAM images of blood vessels of the mouse eye. (a) The top and bottom rows show the 1/4 and 1/16 low-sampling cases, respectively. 
The numbers below the images indicate the PSNR (dB) and SSIM values (by comparing the entire image with the corresponding ground truth). Scale bar: 500 μm. All 
images, excluding zoom images, share the same scale bar. (b) Comparison of PSNR and SSIM values of the two cases in histograms. 
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The two CNN models have different advantages in terms of input sparse 
PAM image size and scaling rate. Our CNN model can accept arbitrary 
input sparse PAM image size, whereas the CNN model in [43] cannot 
due to the architecture characteristics of U-Net. On the other hand, the 
scaling rate in our CNN model has to be an integer (as shown in this 
work), while that in the CNN model in [43] can be a non-integer. (iii) 
Further, more samples and patterns (leaf veins, mouse ear blood vessels, 
mouse eye blood vessels) were demonstrated in this work, while only 
mouse brain vasculature was studied in [43]. (iv) We noticed that a 
low-sampling rate of 1/16 (i.e., 6.25%) was demonstrated in this work, 
while a smaller low-sampling rate of 2% was reported in [43]. We 
compared the full-scanning feature size (the smallest vessel diameter) in 
this work (Fig. 7(a)-1) and in [43] (Fig. 5(a)-1 in [43]) and found that 
∼2 pixels and ∼4 pixels in one dimension are sampled for the 
full-scanning feature size in this work and in [43], respectively. This 
may explain that the CNN model in [43] can still work well at a smaller 
low-sampling rate. Therefore, in this regard, it can be considered that 
the performance of our CNN model is still comparable to the recent 
study [43]. 

5. Conclusion 

We proposed a novel CNN-based method to improve the quality of 
sparse PAM images, which can equivalently improve PAM imaging 
speed. The CNN model was trained on the dataset of PAM images of leaf 
samples. Residual blocks, SE bocks, and perceptual loss function are 
essential in our CNN model. Both 1/4 and 1/16 low-sampling sparse 
PAM images were tested, and the proposed CNN method show 
remarkable performance in terms of perceptive point of view compared 
with conventional bicubic interpolation. PSNR and SSIM values using 
our method are also better than those using bicubic interpolation, EDSR, 
and Residual U-Net. We have also extended our method to in vivo PAM 
images of blood vessels of mouse ears and eyes, and the recovered PAM 
images have a high resemblance to the full-scanning ones. The CNN 
method to deal with sparse PAM images may also be applied to AR-PAM 
and other point-by-point scanning imaging modalities such as optical 
coherence tomography and confocal fluorescence microscopy. Our work 
opens up new opportunities for fast PAM imaging. 
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