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Abstract

ATP-dependent DEAD-box helicases constitute one of the largest families of RNA helicases and are important regulators of
most RNA-dependent cellular processes. The functional core of these enzymes consists of two RecA-like domains. Changes
in the interdomain orientation of these domains upon ATP and RNA binding result in the unwinding of double-stranded
RNA. The DEAD-box helicase DbpA from E. coli is involved in ribosome maturation. It possesses a C-terminal RNA rec-
ognition motif (RRM) in addition to the canonical RecA-like domains. The RRM recruits DbpA to nascent ribosomes by
binding to hairpin 92 of the 23S rRNA. To follow the conformational changes of Dbpa during the catalytic cycle we initiated
solution state NMR studies. We use a divide and conquer approach to obtain an almost complete resonance assignment of
the isoleucine, leucine, valine, methionine and alanine methyl group signals of full length DbpA (49 kDa). In addition, we
also report the backbone resonance assignments of two fragments of DbpA that were used in the course of the methyl group
assignment. These assignments are the first step towards a better understanding of the molecular mechanism behind the

ATP-dependent RNA unwinding process catalyzed by DEAD-box helicases.
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Biological context

DEAD box helicases constitute the largest family of RNA
helicases in eukaryotes and are found in all organisms (Fair-
man-Williams et al. 2010). They are key players in virtually
every step of RNA biology and are implicated in infection
and disease (Steimer and Klostermeier 2012).

DEAD box helicases consist of two RecA-like domains
(Fig. 1) and use the energy generated by ATP hydrolysis to
unwind short stretches of duplex RNA (up to~ 15-20 nt)
in a nonprocessive manner (Fairman-Williams et al. 2010).
The residues that are involved in ATP or RNA binding and
the allosteric coupling between these two binding sites are
highly conserved among all members of the enzyme family
(Linder and Jankowsky 2011). The RNA unwinding activ-
ity is generally not sequence-specific, but DEAD box heli-
cases usually possess flanking N- and C-terminal sequences
that allow their selective recruitment to different cellular
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target sites (Fairman-Williams et al. 2010). Examples are
sequence-specific RNA binding domains (Hardin et al.
2010) or short unstructured sequence motifs that are used
to recruit helicases to their target site via protein—protein
interactions (Sharma and Jankowsky 2014).

The unwinding mechanism of DEAD-box helicases has
been extensively studied and is based on conformational
changes between the RecA-like domains, which are con-
nected by a flexible linker (Linder and Jankowsky 2011;
Putnam and Jankowsky 2013). Based on single molecule
FRET experiments (Theissen et al. 2008) and crystal
structures of different DEAD-box helicases with wildly
different interdomain orientations (e.g. (Caruthers et al.
2000; Story et al. 2001; Cheng et al. 2005)), it is generally
assumed that the two RecA domains tumble independently
in the apo state (Linder and Jankowsky 2011). Simultane-
ous binding of ATP and RNA induces the formation of a
closed state, where ATP is buried between the two RecA
domains and a bipartite RNA binding site is formed. This
leads to the destabilization and thereby the unwinding of
the RNA duplex (Putnam and Jankowsky 2013). In the
post unwinding state (the helicase/ATP/single-stranded
RNA complex) ATP is rapidly hydrolyzed to ADP and
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Fig.1 DbpA domain organization and backbone resonance assign-
ment of the N-terminal construct of DbpA. a The positions of the
RecA and RRM domains and their domain boundaries are shown.
The N- (red) and C-terminal (blue) constructs that were used in
the divide and conquer assignment approach are indicated below. b

phosphate, which leads to the disassembly of the complex
and allows for another round of unwinding (Theissen et al.
2008). Many structures of the apo and the post unwinding
state (bound to single-stranded RNA and ATP-analogs)
have been determined, but it is not clear how DEAD-box
helicases initially interact with the double-stranded RNA
substrate.

@ Springer

'H!>N-TROSY-HSQC spectrum of the °N,!*C labeled N-terminal
construct (residues 1-214) recorded at 800 MHz. Assigned backbone
amide signals are labeled. The side chain amide signal of Trp 187 is
indicated by an asterisk

We recently initiated NMR studies of the E. coli DEAD-
box helicase DbpA (UniProt.: P21693; 49.2 kDaj; 457 res-
idues). DbpA and its homolog YxiN from B. subtilis are
model DEAD box helicases and have been used in numerous
mechanistic and functional studies (Polach and Uhlenbeck
2002; Theissen et al. 2008; Henn et al. 2008, 2010; Areg-
ger and Klostermeier 2009). DbpA is involved in ribosome
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biogenesis (Sharpe Elles et al. 2009) and possesses a C-ter-
minal RNA recognition motif in addition to the canonical
RecA domains (Hardin et al. 2010). The RRM specifically
binds to hairpin 92 of the 23S rRNA and thereby recruits
DbpA to the nascent ribosome (Tsu et al. 2001). Hairpin 92
is part of the highly conserved peptidyl transferase center
which remains unstructured until the final stages of 50S
ribosomal subunit maturation (Nikolay et al. 2018). The hel-
icase activity of DbpA and YxiN is strongly activated upon
binding of hairpin 92 to the RRM (Diges and Uhlenbeck
2001; Samatanga et al. 2017), but the molecular mechanism
behind this allosteric activation process is not clear.

We report here the ILMVA methyl group assignment of
full length DbpA. These assignments will serve as the basis
for further studies on the mechanism behind the allosteric
activation of DbpA and on the RNA unwinding mechanism.
In this regard, it is noteworthy that neither the isolated C-ter-
minal RecA domain nor the isolated RRM could be obtained
in soluble form after expression in E. coli. A direct interac-
tion between the RRM and the C-terminal RecA domain
therefore seems likely and might be the basis for the allos-
teric activation of the helicase activity upon binding of hair-
pin 92 to the RRM.

Methods and experiments
Construct design

The gene coding for full length DbpA and two constructs
comprising the N-terminal RecA domain (residues 1-214)
or the C-terminal RecA domain plus the RRM (residues
209-457) were PCR amplified from genomic E. coli DNA
(strain BL21(DE3)) and cloned into a modified pET vector
with a TEV-cleavable, N-terminal hexahistidine tag. Point
mutations were introduced using the QuickChange approach
and verified by sequencing.

Sample preparation

For protein expression the plasmids were transformed into
E. coli BL21(DES3) cells. Cells were grown in M9 medium
(H,O based for protonated samples or D,0O based for deuter-
ated samples) containing 0.5 g/l ’NH,ClI and 2 g/l glucose
('H'*C-labeled for protonated samples, H'*C-labeled for
deuterated, uniformly *C-labeled samples or *H-labeled for
deuterated samples with selective methyl group labelling).
In order to adapt the cells to D,O-M9 medium the cells from
an initial preculture in LB medium were transferred to 10%
of the final volume of D,0-M9 medium to an OD, of 0.15
and grown over night at 37 °C. This culture was used to
inoculate the remaining D,0-M9 medium. Cells were grown
to an ODg, of 0.7-0.9 at 37 °C, then IPTG was added to

a concentration of 1 mM and proteins were expressed at
25 °C over night. Protonation of the methyl groups of Ile
(C8 methyl only), Val and Leu (ILV) in a °H,">N,'3C labeled
background was achieved by addition of 60 mg/l 2-Keto-
butyric acid-(**C,,3,3-d2) and 100 mg/l 2-Keto-3-methyl-
butyric acid-(13C5, 3-d) to the medium. For g, 3¢ labeling
of the methyl groups of Ile (Cd methyl only), Val, Leu, Met
and Ala (ILMVA) in a 2H,">N labeled background 60 mg/I
2-Ketobutyric acid-(4-'2C,3,3-d2), 100 mg/1 2-Keto-3-me-
thyl-butyric acid-(dimethyl-!>C,, 3-d), 100 mg/l L-methio-
nine-(methyl-'*C) and 100 mg/l L-alanine-(methyl-'3C,
2-d) were added to the medium. All precursors were added
1 h prior to induction except for alanine, which was added
20 min before induction (Kerfah et al. 2015; Schiitz and
Sprangers 2020). Isotopically labeled precursors and amino
acids were obtained from Cambridge Isotope Laboratories
(Ile and Leu/Val precursors) or Sigma-Aldrich (L-methio-
nine and L-alanine).

After expression cells were harvested by centrifugation,
resuspended in buffer A (400 mM NaCl, 50 mM sodium
phosphate, pH 7.4, 10 mM imidazole) supplemented with
0.1% (v/v) triton x-100 and 1 mg/ml lysozyme and lysed
by sonication. Cell debris was removed by centrifugation
and the supernatant was loaded onto a gravity flow Ni-NTA
colum equilibrated in buffer A. The column was washed
with wash buffer (1 M NaCl, 25 mM sodium phosphate, pH
7.4) to remove nucleic acids bound to DbpA and with buffer
A supplemented with 20 mM imidazole. DbpA was eluted
with elution buffer (150 mM NacCl, 25 mM sodium phos-
phate, pH 7.4, 300 mM imidazole). The hexahistidine tag
was removed by TEV cleavage during dialysis over night at
4 °C against dialysis buffer (150 mM NaCl, 25 mM sodium
phosphate, pH 7.4, 1 mM DTT). DbpA was loaded onto
a NiNTA column equilibrated in dialysis buffer. The flow
through was collected, mixed with ¥2 volume of 60% glyc-
erol (v/v) and loaded onto a 5 ml HiTrap HP heparin column.
DbpA was eluted using 10-50% gradient over 50 ml (buffer
A: 25 mM HEPES, pH 7.3, 20% (v/v) glycerol, buffer B:
as buffer A+1 M NaCl). The heparin column was omitted
for the N-terminal RecA domain as it lacks the positively
charged RRM that is essential for binding to the heparin
column. As the final purification step DbpA was subjected to
size exclusion chromatography (SEC) using a Superdex 75
16/600 column (SEC buffer: 125 mM NaCl, 25 mM HEPES,
pH 7.3, 1 mM DTT). NMR samples were prepared in SEC
buffer supplemented with 5% (v/v) D,0.

NMR experiments
The sample for the assignment of the N-terminal RecA
domain (residues 1-214) was > N,'3C labeled at a con-

centration of 400 pM. Higher concentrations lead to a
strong decrease in signal intensity in the heteronuclear 3D
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spectra. The assignment of the N-terminal RecA domain
was based on the following spectra: 'H'>N-HSQC*, 'H'*C-
HSQC, 3D-HNCA, 3D-HN(CA)CO*, 3D-CBCA(CO)NH,
3D-HNCO*, 3D-HNCACB*, 3D-HBHA(CBCACO)NH,
3D-(H)CCH-TOCSY, 3D-H(C)CH-TOCSY, 3D-(H)CCH-
COSY and 3D-H(C)CH-COSY (Sattler et al. 1999) (aster-
isks indicate TROSY based spectra (Salzmann et al. 1998)).
The assignments from the '> N,'*C labeled sample were
extended and transferred to the deuterated, ILM VA labeled
sample based on a 3D-CCH-NOESY spectrum (SOFAST-
HMQC-based, (Rossi et al. 2016)) and a model of the struc-
ture of the N-terminal RecA domain. The model was gener-
ated using the SWISS-MODEL server (Waterhouse et al.
2018) and the structure of the DEAD-box helicase VASA
as template (pdb identifier 2DB3, (Sengoku et al. 2006)).

The sample for the assignment of the C-terminal construct
(residues 209—457) was protonated at the methyl groups of
Ile (C8 methyl only), Val and Leu in a 2H,'>N,'*C labeled
background at a concentration of 740 pM. To increase the
solubility and long term stability of the sample the NaCl
concentration was increased to 250 mM and 25 mM Arg/
Glu was added to the sample buffer. The assignment of the
backbone resonances and ILV methyl groups of the C-ter-
minal construct was based on the following spectra: 'H!>N-
HSQC*, 'H'3C-HMQC, 3D-HNCACB*, 3D-HN(CO)
CACB*, 3D-HN(CA)CO#*, 3D-HNCO*, 3D-(H)CC(CO)
NH*, 3D-H(CCCO)NH?*, 3D-HCH- and 3D-CCH-NOESY
(SOFAST-HMQC-based, (Rossi et al. 2016)). The assign-
ment was expanded to the Met and Ala methyl groups using
a ILMVA 'H'3C-methyl group labeled sample in a *H,'>N
labeled background based on 3D-HCH-, 3D-CCH- and
3D-CNH-NOESY spectra in combination with models of the
C-terminal RecA domain and the RRM. The models were
generated based on the structures of the DbpA homolog
YxiN from Bacillus subtilis (pdb identifiers 2HJV (Caru-
thers et al. 2006) and 3MOJ (Hardin et al. 2010) for the
RecA and RRM domains, respectively).

The methyl group assignments of the two constructs could
then be transferred to full length DbpA (residues 1-457) as
the '"H'>C-HMQC spectra of the individual domains overlay
very well with the spectrum of the full length protein. Two
methionine methyl group signals (M1 and M114) could not
be assigned based on the recorded spectra. An M114E point
mutation was thus introduced into full length DbpA. This
allowed for the assignment of the M 114 methyl group by
comparison with the spectrum of wild type DbpA and also
led to the assignment of the last unassigned methyl group
signal as M1.

All spectra were recorded at 298 K on 600 and 800 MHz
Bruker Neo Avance NMR spectrometers equipped
with nitrogen (600 MHz) or helium cooled (800 MHz)
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cryoprobes. Spectra were processed with Topspin 4.0.2 and
analyzed using CARA (Keller 2004).

Assignments and data deposition

As the RecA domains of DEAD-box helicases have been
shown to tumble independently in the apo state (Linder
and Jankowsky 2011) we used a divide and conquer
approach (Sprangers and Kay 2007) for the assignment
(Fig. 1a). Two constructs of DbpA comprising the N-ter-
minal RecA domain (residues 1-214) or the C-terminal
RecA domain plus the RRM (residues 209-457) could be
expressed and purified with high yield and showed well
dispersed 'H!>N TROSY-HSQC spectra (Figs. 1b, 2). In
addition the "H'*C-HMQC spectra of the two constructs
overlap very well the spectrum of full length DbpA (resi-
dues 1-457) (Fig. 3). This indicates that the RecA domains
of the two constructs indeed do not interact with each
other and allowed us to transfer the methyl groups assign-
ments to full length DbpA.

For a °N,!3C labeled sample of the N-terminal RecA
domain 88% of the HY, N, Ca, Cp and C’ backbone reso-
nances could be assigned (Fig. 1b). These assignments
were extended to the side chain methyl groups using
3D-TOCSY and 3D-COSY experiments. Despite the rela-
tively small size of the construct (22 kDa) HCC(CO)NH
experiments yielded very low signal intensities. This is
most likely the result of transient, nonspecific intermo-
lecular interactions as increasing protein concentrations
also lead to decreasing signal intensities in heteronuclear
3D spectra. The methyl group assignments obtained for
the '°N,'3C labeled sample were subsequently transferred
to the perdeuterated, ILMVA labeled sample (Fig. 3) and
extended to the Met methyl groups based on a 3D-CCH-
NOESY experiment. In total 97% (134 out of 138) of the
ILMVA methyl groups of the N-terminal RecA domain
could be assigned.

For the assignment of the C-terminal construct (resi-
dues 209-457) a 2H,5N,13C labeled sample (protonated
at the ILV methyl groups) was used that allowed for the
assignment of 93% of the HY, N, Ca, CP and C’ back-
bone resonances (Fig. 2). Based on these assignments the
majority of the ILV methyl groups were assigned using
HCC(CO)NH type spectra. These assignments were then
used as starting points for the assignment of the remain-
ing ILMVA methyl groups (Fig. 3) based on 3D-NOESY
spectra (HCH-, CCH- and CNH-type) and a homology
model of the RecA and RRM domains.

As the sum of the methyl group spectra of the two
assigned constructs is virtually identical to the spectrum
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Fig.2 Backbone resonance assignment of the C-terminal con-
struct of DbpA (residues 209-457) that comprises the C-terminal
RecA domain and the RRM. 'H'>N-TROSY-HSQC spectrum of a
2H,N,13C labeled sample recorded at 800 MHz. Assigned backbone

of full length DbpA (Fig. 3) the methyl group assignments
could directly be transferred to the full length protein. In
total 98% (260 out of 266) of the ILMVA methyl groups
of DbpA were assigned. The assignments have been

8.0 6.0

S('H) [ppm]

amide signals are labeled. Assigned Trp side chain amide signals
are indicated by asterisks. The inset on the top left shows the boxed
region in the center of the spectrum

deposited at the Biological Magnetic Resonance Bank
under the accession numbers 50355 (N-terminal RecA
domain), 50356 (C-terminal RecA domain plus RRM) and
50357 (full length DbpA).
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recorded at 800 MHz on perdeuterated samples that are 'H,'3C-
labeleled at the ILMVA methyl groups. Assigned methyl group sig-
nals are labeled. The insets on the top show close-ups of the two
boxed regions in the center of the spectrum
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