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ABSTRACT

Objective: High-throughput electronic phenotyping algorithms can accelerate translational research using data

from electronic health record (EHR) systems. The temporal information buried in EHRs is often underutilized in

developing computational phenotypic definitions. This study aims to develop a high-throughput phenotyping

method, leveraging temporal sequential patterns from EHRs.

Materials and Methods: We develop a representation mining algorithm to extract 5 classes of representations

from EHR diagnosis and medication records: the aggregated vector of the records (aggregated vector represen-

tation), the standard sequential patterns (sequential pattern mining), the transitive sequential patterns (transi-

tive sequential pattern mining), and 2 hybrid classes. Using EHR data on 10 phenotypes from the Mass General

Brigham Biobank, we train and validate phenotyping algorithms.

Results: Phenotyping with temporal sequences resulted in a superior classification performance across all 10

phenotypes compared with the standard representations in electronic phenotyping. The high-throughput algo-

rithm’s classification performance was superior or similar to the performance of previously published electronic

phenotyping algorithms. We characterize and evaluate the top transitive sequences of diagnosis records paired

with the records of risk factors, symptoms, complications, medications, or vaccinations.

Discussion: The proposed high-throughput phenotyping approach enables seamless discovery of sequential re-

cord combinations that may be difficult to assume from raw EHR data. Transitive sequences offer more accu-

rate characterization of the phenotype, compared with its individual components, and reflect the actual lived

experiences of the patients with that particular disease.

Conclusion: Sequential data representations provide a precise mechanism for incorporating raw EHR records

into downstream machine learning. Our approach starts with user interpretability and works backward to the

technology.
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INTRODUCTION

Biomedical researchers are progressively applying modern machine

learning (ML) algorithms to data from electronic health records

(EHRs). Despite the natural excitement about the large amount of

information presented by EHRs, daunting challenges remain. As the

primary impetus for EHR implementation has been clinical care,

EHR observations reflect a complex set of processes that further ob-

scure their utility in research. Dimensionality, sparsity, heterogene-

ity, and quality issues present significant impediments for secondary

use of EHR data.1,2 In particular, the EHR observation records are

often not direct indicators of a patient’s true health state, but rather

reflect the clinical processes (eg, policies and workflows of the pro-

VC The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association.

All rights reserved. For permissions, please email: journals.permissions@oup.com

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/

open_access/funder_policies/chorus/standard_publication_model) 772

Journal of the American Medical Informatics Association, 28(4), 2021, 772–781

doi: 10.1093/jamia/ocaa288

Advance Access Publication Date: 14 December 2020

Research and Applications

http://orcid.org/0000-0002-0204-8978
http://orcid.org/0000-0002-4846-6059
https://academic.oup.com/
https://academic.oup.com/


vider and payor organizations), the patient’s interaction with the

system, and the recording process.3–5

As a result of the biases inherent in EHR data, identifying

cohorts of patients with certain health conditions can become com-

plex. In order to make precise assumptions about the presence of a

disease, we would need to perform phenotyping. The key task in

phenotyping is to identify patient cohorts with (or without) a certain

phenotype or clinical condition of interest.6,7 Developing specialized

phenotypic definitions from EHR data can be expensive and often

requires involvement by domain experts.8–11 Nevertheless, owing to

its critical role in reusing EHR data from research, several health-

care institutions are actively involved in constructing and validating

electronic phenotyping algorithms. Efforts to curate computational

phenotypes and discover clinical knowledge from EHR observations

must account for the potential biases introduced through the record-

ing process.4

Another underutilized aspect of electronic medical records is

their temporal dimension. EHRs contain important temporal infor-

mation about disease progression and treatment outcomes. How-

ever, EHR observations are often acquired asynchronously across

time (ie, measured at different time instants and sampled irregularly

in time) and include sparse and heterogeneous data.12–17 These

properties challenge the application of standard temporal analysis

methods to clinical data recorded in EHRs.

The record of the EHR diagnosis and its timestamp may not give

the true disease state or the actual onset of the disease. In this paper,

we utilize a novel sequential pattern mining (SPM) algorithm to con-

struct temporal data representations from EHR data. Using a high-

throughput feature selection algorithm, we then utilize the temporal

sequential representations to develop computational phenotyping

algorithms for 10 phenotypes. We demonstrate that the temporal se-

quential features significantly outperform raw EHR features that are

commonly used in computational phenotyping algorithms. Unlike

most deep learning approaches that have been developed to improve

prediction, our approach starts with user interpretability and works

backward to the technology.

BACKGROUND

Although EHRs often include incomplete, inaccurate, or even biased

data, the wealth of information that they provide is sufficient for

constructing clinically relevant sets of observable characteristics that

define a disease or phenotype.4,18 The task in electronic phenotyping

is to determine patients with (or without) certain phenotypic charac-

teristics based on data from electronic medical records,7 which is

challenging due to the heterogeneity and complexity of multimodal

EHR data.6 As a result, developing specialized phenotypic defini-

tions from EHR data is generally expensive.8,9

Approaches to electronic phenotyping include rule-based meth-

ods and computational methods, which can be broadly character-

ized under text processing and supervised, semi-supervised, and

unsupervised statistical learning techniques.6,19 Applying supervised

and semi-supervised machine learning to EHR data for identifying

cohorts with clinical phenotypes is rapidly prevailing.11,19–37 How-

ever, such phenotyping models require a human-annotated gold-

standard training set, which remains a bottleneck.20 In addition, de-

fining clinically meaningful EHR features for computational pheno-

typing relies on a heavy dose of domain expert involvement, using

complex ad hoc procedures that are often hard to generalize and

scale.8–11 Despite the cost, several academic medical centers are ac-

tively involved in constructing and validating EHR phenotyping

algorithms. Some of the notable efforts include the i2b2-centered

efforts led by Harvard University and Mass General Brigham,21–29

the BioVU led by Vanderbilt University,30,31 and the multicenter

eMERGE (Electronic Medical Records and Genomics) Network

consortium,32–35 the PheKB (Phenotype Knowledgebase) website,36

and the Observational Medical Outcomes Partnership–centered

APHRODITE (Automated PHenotype Routine for Observational

Definition, Identification, Training and Evaluation),38 to name a

few.

For developing computational phenotyping algorithms with

EHR data, features are typically constructed by identifying relevant

clinical events (eg, diagnoses or medication records from structured

data or certain keywords from the clinical notes). A vector of these

records is obtained from patient-level marginal counts and cohort-

level aggregation. This approach is rudimentary and misses poten-

tially useful information that is available in the electronic medical

records. Of note, EHRs provide a wealth of longitudinal informa-

tion that can be leveraged to improve computational phenotyping

algorithms.18 Temporal representation mining methods offer techni-

cal solutions that can account for this aspect of the EHR.

Temporal representation mining involves providing a machine-

readable representation that formalizes the concept of time as it is

relates to a set of events and temporal relationships.39 In biomedical

research, development and evolution of temporal representation

mining approaches has been largely focused on the temporal ab-

straction40 of data from continuous clinical measurements.41 Yet,

discrete clinical data, such as diagnoses, medications, and proce-

dures, are poor candidates for the temporal abstraction approach.

While numerical observations, such as laboratory test results, have

explicit timestamps, precise numeric timestamped information is of-

ten unavailable in discrete clinical data.

SPM42 is a viable alternative approach for discrete data. The

goal in SPM is to discover “relevant” subsequences from a large set

of sequences (of events or items) with time constraints. The rele-

vance is often determined by a user-specified occurrence frequency,

known as the minimum support.43 The frequent sequential pattern

problem is to find the frequent sequences among all sequences.44 A

priori–based SPM methods, such as SPADE (sequential pattern dis-

covery using equivalence classes)45 and SPAM (sequential pattern

mining),46 are popular in the healthcare domain. For example, Perer

et al (2015) used the SPAM algorithm for mining long sequences of

events.25 The a priori property is that if a sequence cannot pass the

minimum support test (ie, is not assumed frequent), all of its subse-

quences will be ignored. However, for various reasons, temporal

patterns that are mined based on frequency may not make clinical

sense. For example, low blood pressure readings after the adminis-

tration of a specific, but irrelevant, medication may be frequently

observed yet have no real clinical meaning.47

Recently, we introduced the transitive SPM (tSPM) algorithm

along with an early implementation of the minimize sparsity and

maximize relevance (MSMR) algorithm.48 The tSPM algorithm pro-

vides a modified sequencing procedure to address some of the issues

caused by the recording processes in EHRs. The MSMR algorithm

offers a high-throughput feature engineering technique to improve

the frequency-based a priori property in the traditional SPM ap-

proach. As a proof of concept, we showed that the sequencing ap-

proach improves disease prediction and classification in a single

disease. In this study, we apply the tSPM algorithm—with an im-

proved MSMR algorithm—to computational phenotyping in EHR

data. We perform a comprehensive comparison of the transitive and
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traditional sequential representations with the conventional way of

using EHR observations as features for computational phenotyping

in 10 phenotypes. We also compare the phenotyping performance

with the state-of-the-art phenotyping algorithms published in re-

search informatics literature.

MATERIALS AND METHODS

We aimed to answer a principle question: can temporal representa-

tions mined through SPM improve computational phenotyping with

EHR data? Developing the computational phenotyping algorithms

with temporal sequences follows 2 steps: (1) a phenotype-agnostic

representation mining and (2) a semi-supervised phenotype-specific

dimensionality reduction, the MSMR algorithm (Figure 1). We use

terms feature and data representation interchangeably.

Representation mining
We only used the medication and diagnosis records data. For the

diagnosis records, we used the International Classification of Dis-

eases–Ninth and Tenth Revisions–Clinical Modification. For medi-

cations, we use RxNorm codes. Given a list fR1; R2; . . . ; Rng of

diagnosis or medication records, we mined 3 vectors of data repre-

sentations:

First, we constructed a baseline representation that applies the

conventional approach for using EHRs as features for computa-

tional phenotyping. We henceforth call this the aggregated vector

representation (AVR) approach.

Second, we mined a set of temporal sequential representations

by sequencing the medication and diagnosis records in electronic

medical records. For the temporal sequencing, we utilized the tradi-

tional SPM schema, in which immediate sequences are mined.

Third, and to account for irregularity of clinical records and the

recording processes, we mined the novel tSPM schema,48 in which

sequences of unlimited lengths are possible.

AVR representations

In the AVR approach, which is the conventional approach for using

EHR data as records for computational phenotyping, the marginal

count of a vector of a selected medical record (often diagnosis codes)

is calculated for each patient. The patient p, is represented by a vec-

tor of the length equal to the number of unique events in their medi-

cal records. The initial set of AVR representations are all possible

records, and for each patient, we record only the numbers

kp
1; kp

2; . . . ; kp
n of each record. For each i and patient p, we think

of the kp
1’s as samples of a random variable Xi. Our goal is then to

predict the class label Y, given X1;X2; . . . ; Xn.

For example, when type 2 diabetes mellitus (T2DM) is a feature

in the AVR approach, the number of times the diagnosis record for

T2DM is recorded in a patient’s electronic record is used as the clas-

sifier for training and testing.

SPM representations

In the traditional SPM approach, for each patient p, we recorded the

times tp
i1 � tp

i2 � . . . � tp

ik
p
i

at which the record Ri was logged. The

SPM features are all possible pairs of distinct records

Ri; Rj

� �
; i 6¼ j. To count the frequency of SPM representations, for

a given patient p and a given time t, we let t0 > t be minimal such

that for some i and some ‘ � kp
j , tp

i‘ ¼ t0. That is, t0 is the first time

strictly bigger than t at which a record is logged for the patient (it is

possible to have multiple records at the same timestamp). For

patient p, and a given index i 2 f1; 2; . . . ; ng, let Spi be the set of all

pairs ðj; ‘0Þ, with j 2 f1; 2; . . . ; ng and ‘0 � kp
j , such that the record

j is logged right after record i at time tp

i‘0
. Formally, j; ‘0ð Þ 2 Spi if and

only if kp
i ; kp

i � 1 and there exists ‘ � kp
j such that ti‘ð Þ0 ¼ ti‘0

For each i; j � n; i 6¼ j, let rijp ¼ jSpij. We think of the rijps as

samples of a random variable Xij and the goal is to predict the class

label Y given Xij

� �
i 6¼j

.

tSPM representations
In the tSPM algorithm, the features are again all possible pairs of

distinct medical records Ri; Rj

� �
; i 6¼ j. For a fixed patient p,

and i 6¼ j � n, we set rijp to be 1 if kp
i � 1; kp

j � 1; and tp
i1 � tp

j1,

and 0 otherwise. In words, rijp is 1 if and only if both records Ri and

Rj were logged for the patient, and the first record of medical record

i was before, or at the same time as, the first record of medical re-

cord j. Here, for each fixed i 6¼ j, we think of the rijps as samples of a

random variable tXij. Then our goal is to predict the class label Y

given tXij

� �
i 6¼j
:

The use of the first record (rather than all records) is a specifica-

tion difference in the way the sequential patterns are organized in

tSPM compared with SPM. This difference helps to address the issue

of repeated problem list entries.48

Dimensionality reduction
If all pairs of sequences in the transitive sequencing approach exist,

there will be exactly nðn�1Þ
2 pairs ði; jÞ with i 6¼ j and i; j � n. To ex-

tract features for phenotyping, we applied a formal dimensionality

reduction procedure that aims to minimize sparsity and maximize

relevance (MSMR)48 to all 3 feature vectors. To minimize sparsity,

MSMR removes any feature that has a prevalence smaller than

0.5%. For maximizing relevance, MSMR is principally a semi-

supervised dimensionality reduction algorithm that takes a silver-

standard class label Y 0 to compute information gain metrics for all

features. MSMR is able to effectively scale to large dimensionality

spaces, and thus is a high-throughput algorithm.

For the remaining features, MSMR computes the empirical mu-

tual information using an estimation of the entropy of the empirical

probability distribution.49,50 Mutual information provides a mea-

surement of the mutual dependence between 2 random variables,

which unlike most correlation measures can capture nonlinear rela-

tionships.50,51 We ranked the data representations based on the

computed mutual information with the silver-standard labeled out-

come (in ties, we used prevalence to determine the ranking) and con-

ventionally select the top 20 000 data representations from each

approach.

We further dissected the relevance property by applying a filter-

type feature extraction method using joint mutual information

(JMI).52 The algorithm starts with a set S containing the top feature

according to mutual information, then iteratively adds to S the fea-

ture X maximizing the JMI score:

JjmiðXÞ ¼
X

X�2S

IðXX�; YÞ

Here, IðZ; YÞ denotes the mutual information between random

variables Z and Y (a measure of the information shared by Z and

Y—it can be expressed as the entropy of Z minus the entropy of Z

given Y). The random variable XX� is simply the random variable

corresponding to the joint distribution of X and X�. In the end, we
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select the top features that were added to the set S. The joint mutual

information score also takes into account the redundancy between

the features: 2 features not only could each be highly relevant on

their own, but also could be strongly correlated. Brown et al53 sug-

gested that the JMI score provides the “best trade-off [. . .] of accu-

racy and stability.”

The JMI step allows for integration of representations from dif-

ferent types. To obtain combined feature sets (AVR þ sequential

patterns), we also compute the joint mutual information when the

AVR and SPM/tSPM representations are available.

We used high-performance computing resources environment at

Mass General Brigham for representation mining (R code available

Figure 1. The 2 steps involved in the high-throughput phenotyping with temporal sequences. AVR: aggregated vector representation; C.V.: cross validation;

MSMR: minimize sparsity and maximize relevance; SPM: sequential pattern mining; tSPM: transitive sequential pattern mining.
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at github.com/hestiri/TSPM) and MSMR (R package available at

github.com/hestiri/MSMR) algorithms, both of which are imple-

mented to leverage parallel computing.

Study populations
We used data on 10 phenotypes from the Mass General Brigham Bio-

bank: Alzheimer’s disease, chronic obstructive pulmonary disease

(COPD), congestive heart failure, coronary artery disease (CAD),

stroke, rheumatoid arthritis, T1DM, T2DM, ulcerative colitis, and

atrial fibrillation. For each phenotype, 2 pseudo-cohorts are avail-

able. Based on a list of International Classification of Diseases–Ninth

and Tenth Revisions codes for the respective phenotype, a given pa-

tient in the pseudo-cohort has at least 1 record of the respective diag-

nosis code(s), as well as an outcome label, which determines the

“true” presence of the phenotype. We use the term pseudo-cohort to

distinguish these patient cohorts from validated disease cohorts.

For each of the phenotypes, a small dataset included patient

pseudo-cohorts with gold-standard outcome labels. To create gold-

standard labels, teams of board-certified clinicians or nurses

reviewed clinical notes and other required data of samples of

patients selected from patients consented into the Mass General

Brigham Biobank between April 2012 and April 2017 and with 1 or

more diagnosis record of the phenotype. The gold-standard pheno-

type pseudo-cohort datasets include labels for an average of 351

patients (ranging from 163 to 700 patients). For the 10 phenotypes,

larger pseudo-cohorts were also pulled from the Biobank, with an

average population of over 6000 patients. For these patients, silver-

standard labels are curated using a generative transfer learning algo-

rithm.54 The average number of phenotype records was 28 in the

gold-standard datasets and 20 in the silver-standard datasets. Sup-

plementary Table S1 provides descriptive data on each of the pheno-

type pseudo-cohorts. The use of data for this study was approved by

the Mass General Brigham Institutional Review Board

(2017P000282).

Model training and evaluation
We applied logistic regression classifiers with L1 regularization to

the training sets (with silver-standard labels) for developing the com-

putational phenotyping algorithms, using bootstrap cross-

validation. Regularized logistic regression classifiers are the most

popular classifiers in EHR phenotyping.8,11,38,55–57 From each data

representation class (AVR, SPM, and tSPM), a nested set of the top

50-200 representations are extracted from the MSMR algorithm for

phenotyping. In addition, using the MSMR algorithm, we extracted

hybrid feature sets that included both the AVR and sequential repre-

sentations. This resulted in 2 additional feature sets combining the

top AVR representations with the SPM and tSPM representations.

Overall, we trained computational phenotyping algorithms on 5

classes of feature sets: (1) AVR, (2) SPM, (3) tSPM, (4) AVRþSPM,

and (5) AVRþtSPM.

We evaluated the phenotyping algorithms against the gold-

standard labels available in the held-out test sets to compute the

areas under the receiver-operating characteristic curve. Furthermore,

we iterated the training process 10 times with bootstrap sampling

and use the median performance metrics for comparing the feature

sets. Overall, for each phenotype, we trained 50 classifiers (5 feature

sets � 10 bootstrap cross-validation iterations). All features are

scaled and centered. Finally, we evaluated the clinical meaning of

the top transitive sequences used in the phenotyping algorithms.

RESULTS

As expected, we mined millions of tSPM sequences. Table 1 presents

the number of unique representations by type before and after

MSMR’s sparsity reduction. On average, we used over 7000 unique

medication and diagnosis codes, from which we mined, on average,

over 322 000 SPM and about 6 000 000 tSPM sequential represen-

tations. Removing sparse representations (prevalence smaller than

0.5%) resulted in on average over 4000, 28 000, and 1 000 000

unique AVR, SPM, and tSPM features, respectively. Using the mu-

tual information and the JMI filters, the MSMR algorithm further

shrunk these features to a final vector of between 50 and 200 fea-

tures for each phenotype.

To address the research question, phenotyping results are pre-

sented in Table 2 (also illustrated in Figure 2). Overall, we found

that temporal sequences provided the best phenotyping performan-

ces across all 10 phenotypes (except in CAD, in which we had a tie).

Combining sequences with AVR features only resulted in the best

overall performance in COPD and rheumatoid arthritis. Among the

sequential representations, in an overwhelming majority of the phe-

notypes, transitive sequences were included in the best results. The 2

exception to this were in CAD (in which the difference was 0.001)

and T2DM. For 6 of the 10 phenotypes, we were able to find areas

under the receiver-operating characteristic curve reported from

Table 1. The number of unique representations by type before and after MSMR’s sparsity reduction

Phenotype Mined unique representations Representations after sparsity screening

AVR SPM tSPM AVR SPM tSPM

AD 6193 209 389 3 844 039 1661 28 672 1 211 853

AFIB 9050 172 134 3 190 557 5460 23 957 795 316

CAD 14 406 476 617 9 142 990 5599 23 480 810 862

CHF 6857 391 679 7 419 996 6415 39 265 1 349 704

COPD 6284 369 062 6 527 854 5412 37 721 1 556 750

RA 5203 305 787 5 782 618 4517 19 157 790 214

Stroke 5573 281 298 4 692 549 3395 24 186 839 268

T1DM 6673 385 626 7 086 684 3334 46 260 1 538 308

T2DM 10 439 429 115 8 376 105 5887 26 331 920 251

UC 4904 207 256 3 920 849 1893 14 651 603 902

AD: Alzheimer’s disease; AFIB: atrial fibrillation; AVR: aggregated vector representation; CAD: coronary artery disease; CHF: congestive heart failure; COPD:

chronic obstructive pulmonary disease; MSMR: minimize sparsity and maximize relevance; RA: rheumatoid arthritis; SPM: sequential pattern mining; T1DM:

type 1 diabetes mellitus; T2DM: type 2 diabetes mellitus; tSPM: transitive sequential pattern mining; UC: ulcerative colitis.
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other published phenotyping studies. In 5 of the 6 phenotypes, the

performances we obtained from temporal sequences was substan-

tially superior.

Clinical evaluation of the top transitive sequences
From a clinical standpoint, the important transitive sequences can

be subdivided into specific categories. Many of the most common

sequences were the diagnosis code paired with a risk factor, symp-

tom, complication, or treatment for that disease. It was also com-

mon to see the disease code paired with the influenza or

pneumococcal 23 vaccination (PPSV23). Table 3 shows a sampling

of the identified components that were found to be in sequence with

the respective disease for the given phenotype. Each of these compo-

nents, when in sequence with the diagnosis code, has increased accu-

racy for identifying the phenotype. For example, in the case of CAD,

the diagnosis code on its own only identifies true coronary artery

disease 34% of the time (ie, based on the chart reviews, only 34% of

the patients that had the diagnosis code actually had a confirmed

case of CAD). However, when the risk factor, hypertension, pre-

cedes the diagnosis code, the accuracy increases to 68%. If the

symptom chest pain precedes CAD, the sequence accuracy increases

to 70%. If the complication cardiac dysrhythmia precedes the diag-

nosis, the accuracy of the sequence increases to 71%. And if the

treatment clopidogrel precedes the diagnosis, the accuracy of the se-

quence is 97%.There are also cases in which the diagnosis code is in

sequence with a vaccination or a need for a vaccination. This also

leads to increased accuracy for the sequence compared with the

components. For example, the sequence “PPSV23 Rheumatoid

arthritis” is 75% accurate for rheumatoid arthritis. However,

“PPSV23” is only 22% accurate and “Rheumatoid Arthritis” is only

68% accurate.

In some cases, the diagnosis code it not even included in the se-

quence. Instead, the sequence is composed exclusively of risk fac-

tors, symptoms, complications, treatments, or vaccines and still

offers a high level of accuracy for identifying the specific phenotype.

For example, in the case of COPD, “Cough Tiotropium” is 49% ac-

curate for identifying COPD and only includes a symptom and a

treatment. Sometimes both components of the sequence come from

the same category. For example, in the case of T1DM, “Insulin

Glucagon” is a sequence of 2 treatments and accurately identifies

the phenotype 63% of the time.

DISCUSSION

We argue that sequences present more precise information by reduc-

ing some of the noise in the EHR data. For instance, we might have

N observations of the diagnosis code B in patient i’s medical record.

When the diagnosis code B is deemed a relevant feature for pheno-

type X (whether through our proposed MSMR or expert ascertion),

in the conventional (AVR) approach for computational phenotyping

B is directly incorporated (as a feature) into the classification algo-

rithm. Sequential data representations, instead, provide a more pre-

cise way for incorporating the record B into downstream modeling,

in that only a proportion of the record B may hold useful informa-

tion for classification that precedes another record (eg, B! C) or

follows another record (A! B). The MSMR algorithm allows for

seamless discovery of such precise sequential record combinations.

Table 2. Area under the receiver-operating characteristic curve

Data representation Phenotype Median AUC Top AUC Literature Phenotype Median AUC Top AUC Literature

AVR AD 0.869 0.872 NA RA 0.962 0.963 0.933-0.96111,58,59

SPM 0.863 0.875 0.970a 0.970

SPMþAVR 0.883 0.886 0.970a 0.971

tSPM 0.898a 0.913a 0.966 0.966

tSPMþAVR 0.851 0.857 0.964 0.972a

AVR AFIB 0.940 0.940 NA Stroke 0.875 0.876 NA

SPM 0.941 0.942 0.880 0.881

SPMþAVR 0.942 0.942 0.887 0.894a

tSPM 0.943a 0.943a 0.879a 0.879

tSPMþAVR 0.940 0.941 0.876 0.877

AVR CAD 0.976a 0.976a 0.896-0.9311,58,59 T1DM 0.980 0.980 0.98159

SPM 0.974 0.974 0.978 0.978

SPMþAVR 0.976a 0.976a 0.978 0.978

tSPM 0.975 0.975 0.993a 0.993a

tSPMþAVR 0.975 0.975 0.978 0.978

AVR CHF 0.883 0.885 0.72-0.879,60,61 T2DM 0.936 0.936 0.99,59

SPM 0.868 0.868 0.944 0.945

SPMþAVR 0.866 0.872 0.956a 0.959a

tSPM 0.898a 0.901a 0.926 0.926

tSPMþAVR 0.893 0.896 0.922 0.922

AVR COPD 0.862 0.862 NA UC 0.955 0.955 0.87-0.9759,20,58,59

SPM 0.866 0.867 0.953 0.953

SPMþAVR 0.864 0.866 0.951 0.953

tSPM 0.860 0.860 0.957a 0.957a

tSPMþAVR 0.871a 0.872a 0.953 0.953

AUC: area under the curve; AVR: aggregated vector representation; CAD: coronary artery disease; CHF: congestive heart failure; COPD: chronic obstructive

pulmonary disease; NA: we were not able to find AUC ROC in the published literature; RA: rheumatoid arthritis; SPM: sequential pattern mining; T1DM: type 1

diabetes mellitus; T2DM: type 2 diabetes mellitus; tSPM: transitive sequential pattern mining; UC: ulcerative colitis.
aTop within-phenotype performance.
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Our approach starts with user interpretability and works backward

to the technology.

Furthermore, the sequences not only lead to more precise pheno-

typing, but also uniquely capture 2 distinct events that reflect the

patient’s experiences of those events. For example, “Cardiac dys-

rhythmia -> Cognitive deficit as a late effect of cerebrovascular dis-

ease” is an important sequence for identifying the stroke phenotype.

This is likely a common narrative for a stroke patient. The individ-

ual develops a cardiac dysrhythmia that leads to the formation of a

clot in the heart, that then causes a cerebrovascular accident that

Figure 2. Distribution of phenotyping areas under the receiver-operating characteristic curve (AUC ROCs) by phenotype and data representation. AD: Alzheimer’s

disease; AFIB: atrial fibrillation; AVR: aggregated vector representation; CAD: coronary artery disease; CHF: congestive heart failure; COPD: chronic obstructive

pulmonary disease; MSMR: minimize sparsity and maximize relevance; RA: rheumatoid arthritis; SPM: sequential pattern mining; T1DM: type 1 diabetes mellitus;

T2DM: type 2 diabetes mellitus; tSPM: transitive sequential pattern mining; UC: ulcerative colitis.
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leads to cognitive deficits. By sequencing the diagnoses and medica-

tions, we developed a rich feature set in which individual labels can

accurately tell a patient’s story. Analyzing such sequences could give

new insight into disease trajectories. Applying this method to new

and emerging diseases (eg, COVID-19 [coronavirus disease 2019])

and then analyzing the sequence features could help us to under-

stand how the disease progresses.

The diagnostic labels and medications listed in Table 3 were all se-

lected by the proposed MSMR algorithm as the significant features

for identifying the given phenotype. Each of these labels when in se-

quence with the disease also has clinical meaning. For example,

“Hypertension -> Alzheimer’s Disease” suggests that hypertension

precedes Alzheimer’s disease. The scientific literature supports this re-

lationship. Several longitudinal studies have shown that midlife hyper-

tension is consistently associated with the development of Alzheimer’s

disease, implying that hypertension is a risk factor.62–64 Another ex-

ample is the sequence “Congestive heart failure -> Chronic kidney

disease.” Again, the literature supports this relationship. In a system-

atic review of 16 studies with more than 80 000 patients with conges-

tive heart failure, 29% had moderate-to-severe kidney impairment.65

Therefore, congestive heart failure preceding chronic kidney disease

makes sense because chronic kidney disease is a known complication.

These sequences not only are more accurate, but also tell a clinical

narrative that corresponds with the patient’s experience.

While risk factors, symptoms, complications, and medications

paired with the disease may make intuitive sense, vaccinations in se-

quence with the disease are less obvious. Their inclusion in such

sequences may be a result of the specific criteria for receiving the vac-

cination increasing the probability that the disease code matches the

phenotype. The Centers for Disease Control and Prevention recom-

mends PPSV23 for patients under 65 years of age with chronic dis-

eases such as heart disease, lung disease, and DM and all adults over

65 years of age.66 And while influenza is recommended yearly to all

adults, it is very important for those at high risk for serious complica-

tions to influenza.67 The sequence of a vaccination with the disease

code may be an accurate label because the vaccination’s presence in

the chart further verifies that the patient has a chronic disease.

More complex algorithms such as recurrent neural networks

(RNNs)68 and RNN-based models such as long short-term memory69

and gated recurrent unit70 have been used to account for time.71–78

These algorithms often result in highly predictive models, but they are

hard to understand, limiting their utility in healthcare settings. The

transitive sequences are similar to simple forms of recurrent events in

RNN-based models. The difference is that we do not provide any gate

or memory constraint and would accept all possible sequences. This

resulted in a large dimensional space. The MSMR algorithm is

allowed to pick up what is relevant to the outcome of interest. How-

ever, in this article, we only studied 2-deep sequences. We envision

extracting deeper sequences, which would further increase dimension-

ality. In that case, future research may need to apply memory con-

straints on what to remember from the past.

Despite the billions of dollars that have been spent to institute

meaningful use of EHR systems over the past several decades, chal-

lenges still remain for using EHR data to rapidly address pressing

health issues including the COVID-19 pandemic. This machine

learning pipeline, which includes both representation mining and

the MSMR algorithm, is capable of engineering predictive features

without the need for expert involvement to model different pheno-

types and outcomes. Without that bottleneck, this method provides

a much faster way for extracting meaningful data from the EHR.

Table 3. Common components of sequences associated with each phenotype

Risk factor Symptoms Complications Medications Vaccination

AD �Hypertension

�High cholesterol

�Donepezil

�Memantine

�Need for Influenza

vaccination

AF �Hyperlipidemia �Palpitations �Cardiomegaly �Warfarin

�Digoxin

CAD �Hyperlipidemia

�Hypertension

�Chest pain �Cardiac dysrhyth-

mia

�Nitroglycerin

�Clopidogrel

�Need for influenza

vaccination

CHF �Hypertension �Shortness of Breath

�Pulmonary conges-

tion

�Pulmonary conges-

tion

�Chronic kidney dis-

ease

�Furosemide

�Spironolactone

COPD �Shortness of breath

�Cough

�Other nonspecific

abnormal finding

of lung field

�Tiotropium

�Albuterol

�Need for influenza

vaccination

RA �Pain in limb �Screening exam for

pulmonary tubercu-

losis

�Hydrochloro

�Etanercept

PPSV23

Stroke �Cardiac dysrhythmia

�Hyperlipidemia

�Cognitive deficits as

late effect of cere-

brovascular disease

�Other late effects of

cerebrovascular

disease

�Lovenox

�Statin

�Need for influenza

vaccination

T1DM �Obesity

�High cholesterol

�Insulin �Influenza vaccina-

tion

T2DM �Obesity

�High cholesterol

�Other malaise and

fatigue

�Metformin

�Atorvastatin

�Need for PPSV23

UC �Abdominal pain

�Diarrhea

�Anemia �Prednisone

�Mesalamine

AD: Alzheimer’s disease; AF: atrial fibrillation; CAD: coronary artery disease; CHF: congestive heart failure; COPD: chronic obstructive pulmonary disease;

PPSV23: pneumococcal 23 vaccination; RA: rheumatoid arthritis; T1DM: type 1 diabetes mellitus; T2DM: type 2 diabetes mellitus; UC: ulcerative colitis.
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CONCLUSION

We presented a high-throughput approach for computational phe-

notyping using temporal sequential data representations. In contrast

to the popular deep learning approaches, our approach started with

user interpretability and worked backward to the technology. Fea-

ture engineering in this approach is fully automated using silver-

standard labels. We also demonstrated that using transitive sequen-

ces of EHR diagnosis and medication records as features for compu-

tational phenotyping yields improved phenotyping performance

compared with the timeless raw EHR records. Sequential data repre-

sentations provide a precise mechanism for incorporating raw EHR

records into downstream machine learning. Together, the temporal

sequences and the machine learning pipeline can be rapidly deployed

to develop computational models for identifying and validating

novel disease markers and advancing medical knowledge discovery.
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