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ABSTRACT

Objective: Machine learning is used to understand and track influenza-related content on social media. Because

these systems are used at scale, they have the potential to adversely impact the people they are built to help. In

this study, we explore the biases of different machine learning methods for the specific task of detecting

influenza-related content. We compare the performance of each model on tweets written in Standard American

English (SAE) vs African American English (AAE).

Materials and Methods: Two influenza-related datasets are used to train 3 text classification models (support

vector machine, convolutional neural network, bidirectional long short-term memory) with different feature

sets. The datasets match real-world scenarios in which there is a large imbalance between SAE and AAE exam-

ples. The number of AAE examples for each class ranges from 2% to 5% in both datasets. We also evaluate

each model’s performance using a balanced dataset via undersampling.

Results: We find that all of the tested machine learning methods are biased on both datasets. The difference in

false positive rates between SAE and AAE examples ranges from 0.01 to 0.35. The difference in the false nega-

tive rates ranges from 0.01 to 0.23. We also find that the neural network methods generally has more unfair

results than the linear support vector machine on the chosen datasets.

Conclusions: The models that result in the most unfair predictions may vary from dataset to dataset. Practi-

tioners should be aware of the potential harms related to applying machine learning to health-related social me-

dia data. At a minimum, we recommend evaluating fairness along with traditional evaluation metrics.

Key words: deep learning, classification, machine learning, social network, fairness

INTRODUCTION

Owing to the seasonal outbreaks of the influenza virus, there is an

interest in digital tools and techniques for multiple tasks, including,

but not limited to, digital contact tracing,1,2 epidemiological stud-

ies,3 and monitoring the prevalence of vaccinations.4 The tools and

techniques range from applications installed on user’s personal

phones to track the exact spread of a virus2 to the development of

machine learning–based techniques to study the spread of a virus us-

ing social media.5–9 Similarly, machine learning–based methods

have been developed to monitor the public’s view on vaccines to

combat the anti-vaccine narrative.4 Here, we examine machine

learning methods trained on social media data to track influenza-

related content.

Current evidence suggests that there is a disproportionate inci-

dence of disease and death among underrepresented minority

groups. For example, there are significant racial disparities in influ-

enza vaccinations.10,11 Tse et al12 report a nearly 10% difference in

the influenza vaccination rate between non-Hispanic Black/African

American adults over 50 years of age and non-Hispanic White

adults. Fiscella et al13 estimated that if influenza immunization rates
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were equal for all races, nearly 2000 minority deaths could be pre-

vented every year, saving more than 33 000 minority life-years.

In this article, we measure the fairness of machine learning–

based tools for the specific task of detecting influenza-related mes-

sages on social media. Machine learning– and technology-based

techniques have the potential to scale traditional public health tasks

from a few hundred people at a time to millions (eg, digital contact

tracing).1 Therefore, digital tools have the potential to improve pub-

lic health faster than ever before. Unfortunately, if there are even

small differences in the performance of these tools across various de-

mographic factors, then they have the potential to exacerbate the

health disparities instead of improving them.

To understand bias in influenza tracking models, we ask the fol-

lowing questions:

• What is the relationship between overall classifier performance

and fairness?
• Are the most (un)fair classifiers the same across different, but

similar, influenza-related datasets?

Biases have been found in the machine learning methods devel-

oped for a wide variety of natural language processing tasks, includ-

ing, but not limited to, text classification, learning word

embeddings, and machine translation. For example, text classifica-

tion models exhibit biases across gender and racial divides for tasks

such as offensive language identification, resulting in differences in

performance across groups.14–17 Overall, much of the prior work

has focused on traditionally nonbiomedical text classification tasks

(eg, hate speech classification).

Word embeddings have also been shown to contain biases.18–21

A word embedding is a learned representation or vector for text in

which words with similar meanings have a similar representation,

algorithmically capturing the meaning of words. Bolukbasi et al18

show that the word embedding for man is similar to doctor, while

woman is similar to nurse. Garg et al22 developed a technique to

study 100 years of gender and racial bias using word embeddings.

Kurita et al23 expanded on prior work to generalize bias measure-

ment metrics for word embedding to contextual word embeddings

(eg, BERT).24,25 Machine translation systems have also been shown

to exhibit biases.26,27 Font and Costa-Juss�a26 showed that the sen-

tence “She works in a hospital, my friend is a nurse” would correctly

translate the word friend to amiga. However, the sentence “She

works in a hospital, my friend is a doctor” tends to translate the

word friend to amigo, implying that the friend is male. In general,

many articles focus on testing whether bias exists in various models,

or on developing techniques to remove bias from classification mod-

els for specific applications. In this article, we focus on measuring

racial biases of machine learning methods in the biomedical natural

language processing (NLP) domain.

Fairness can be defined in multiple ways. In this article, we focus

on 2 specific definitions28–30: equality of opportunity and predictive

equality. Simply, both definitions together are called equalized odds.

Equality of opportunity assumes that the false negative rate (FNR)

(see Evaluation for a complete definition) is equal between 2 groups.

A high FNR could cause African Americans to potentially miss the

opportunity to be identified. For instance, as a hypothetical sce-

nario, if social media is mined to identify potential hotspots of the

influenza virus, then a high FNR could lead to inadequate resources

(eg, vaccinations) to fight the virus. Similarly, predictive equality is a

measure of the difference between the false positive rates (FPRs) of 2

groups. A high FPR could be particularly harmful in the hypotheti-

cal scenario of the use of machine learning to detect vaccine-related

misinformation. If information spread by African American commu-

nities is always (incorrectly) labeled as misinformation, then this

could further exacerbate the disparities in the vaccination rate. It is

also important to think about which is more important, predictive

equality or equality of opportunity. This importance depends on the

downstream application of the models. For the purpose of this arti-

cle, we assume they are equally important.

This article focuses on measuring racial bias using the definition

of equalized odds. Race is a complex construct, which is correlated

with multiple facets such as dialect, socioeconomic class, and com-

munity.31 Unfortunately, users do not generally self-report their race

on social media—at least it is not common on Twitter. Instead, fol-

lowing the practice of prior researchers,17,32–34 we rely on the corre-

lation between dialect and race for our analysis. Specifically, we

analyze the African American English (AAE) dialect. AAE has been

shown to transfer from the use in face-to-face conversations to writ-

ten text on social media.33,35–37 AAE is a common dialect spoken by

some, but not all, African Americans. It is important to emphasize

that not all speakers of AAE are African American and not all Afri-

can Americans are AAE speakers.35 For more information about the

correlation between AAE and racial constructs, please see Blodgett

et al.33

As previously mentioned, having a machine learning model that

is biased can have consequences. For instance, when using a machine

learning model to predict potential epidemics, the model could cor-

rectly predict the spread of influenza for communities with a high-

resource dialect like Standard American English (SAE), but, at the

same time, have a high false negative rate for communities using

low-resource dialects like AAE. In the computational linguistics

community, “low resource” is used to simply mark languages or dia-

lects that appear infrequently in the general population.38 Thus, if

we were to randomly sample English text from Twitter, then we

would expect only a small fraction of the text to be AAE. As a real-

world example on the impact of biased machine learning methods in

the real world, Obermeyer et al39 analyzed real world risk-

prediction software that is applied to roughly 200 million people.

The healthcare system relies on these algorithms to identify patients

for “high-risk care management” programs. Their research shows

that the algorithms were biased, causing differences in care between

Black and White patients. Overall, it is important to understand

how machine learning models will perform on a wide variety of

tasks when applied to underrepresented populations.

Finally, we summarize our 3 major contributions as follows.

First, we study the performance differences between SAE and AAE

of machine learning models applied to various influenza-related

tasks. Second, we explore the fairness of multiple machine learning

algorithms including linear support vector machines (SVMs) and

neural networks. Furthermore, we analyze the fairness of the neural

networks using multiple pretrained vectors to understand the impact

they have on the downstream performance of the model. Third, we

provide a detailed discussion about the results presented in this arti-

cle as well as this article’s limitations.

MATERIALS AND METHODS

We provide an overview of our study in Figure 1. This article’s

methodology can be summarized in 4 steps. First, we train a convo-

lutional neural network (CNN) to detect the dialect of individual

tweets (ie, SAE vs AAE). Second, the model is used to classify the di-
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alect of each tweet in various influenza-related datasets. Third, AAE

tweets are partitioned in the training and testing datasets. In this ex-

periment, we also subsample different numbers of AAE tweets in the

training data to measure the impact of varying amounts of AAE

training data on the fairness metrics. Fourth, we train and evaluate

various models (ie, neural networks and linear models) on multiple

influenza datasets to understand the biases in them and its relation-

ship with their overall performance. In the following subsections,

we describe the datasets we use for our experiments and each of our

analysis steps in detail.

Datasets
In this section, we provide context on each dataset that we investi-

gate. We also describe how they are used for training and evaluating

the fairness of machine learning–based influenza classifiers. Specifi-

cally, we make use of 3 datasets: Dialect,33 FluTrack,5 and Flu-

Vacc.4 Dialect is used for train a model to detect SAE or AAE text.

FluTrack and FluVacc are used to train the influenza-related classi-

fiers. The basic statistics of the influenza-related datasets are shown

in Table 1. Overall, AAE tweets appear infrequently throughout ev-

ery dataset used in our experiments, matching real-world condi-

tions. We describe each dataset in detail subsequently.

Dialect dataset

Blodgett et al33 developed a probabilistic model that combines geo-

located tweets with the U.S. Census block group geographic areas to

estimate message-level demographic information (block groups are

the smallest geographical unit for which the U.S. Census bureau

publishes sample data). Race and ethnicity information for each

block group comes from the Census’ 2013 American Community

Survey. We make use of 59 million released tweets released by

Blodgett et al33 that contain message-level demographic estimates.

Note that it is important to point out that message-level estimates

are indicating whether the text similar to text written in areas with

large African American or other communities (eg, Hispanic or

White). The estimates are not indicative of the race or ethnicity of

the individual users. Following the work by Elazar and Goldberg40

and Rios,17 we group the tweets into 2 linguistic styles: SAE and

AAE. We limit our study to all tweets annotated with AAE and SAE

with a confidence of at least 80%. This resulted in 1.6 million AAE

tweets and millions of SAE tweets. To reduce the size of the SAE

tweets, we randomly sample 5 million, resulting in a dataset of 6.6

million tweets. Finally, Dialect is used to train a CNN41 to detect

the dialect of each tweet. The CNN model is used in step 2 or our

data analysis process, as shown in Figure 1.

FluTrack dataset

The FluTrack database5 consists of 11 990 tweets collected from

years 2009 to 2012 (because the dataset was released using Tweet

IDs, only a subset of the dataset was available for our study, that is,

some tweets and accounts were deleted since the original study).

Each tweet is annotated with up to 3 labels (this is a multilabel clas-

Dialect
Dataset

Influenza
Datasets

Train CNN model to
detect the dialect of

tweets (SAE vs AAE)

Classify each tweet in
the influenza datasets
as either SAE or AAE.

Train and Evaluate
the overall

performance and
fairness of the

influenza classifiers

(1)
Train Dialect
Classifiers

(2)
Detect Dialect

of Influenza Tweets

(3)
Partition Influenza

Datasets into
Train/Test Splits

(4)
Train and Evaluate

Influenza Classifiers

AAE tweets
are used in
training and
test datasets

We vary the
number of

AAE tweets
in the 

training data

Figure 1. Overview of our data analysis pipeline. In summary, our pipeline has 4 major components: (1) training a dialect classifier to detect Standard American

English (SAE) and African American English (AAE), (2) training multiple machine learning models on influenza datasets, (3) partitioning the influenza datasets to

test fairness, and (4) the trained models are analyzed. CNN: convolutional neural network.

Table 1. Breakdown of total examples in each influenza-related dataset

FluTrack dataset summary FluVacc dataset summary

Class Total SAE AAE % SAE Class Total SAE AAE % SAE

Related 2436 2334 102 95.81 Vaccine related 9517 9258 259 97.28

Not related 1900 1830 70 96.32 Not related 483 466 17 96.48

Awareness 1294 1242 52 95.98 Intent 3148 3027 121 96.16

Infection 1359 1303 56 95.88 No intent 6365 6228 137 97.85

Self 1392 1338 54 96.12 Received 3097 2981 116 96.25

Other 664 638 28 96.08 Not received 743 708 35 95.29

AAE: African American English; SAE: Standard American English.
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sification task, not multiclass): related vs not related, awareness vs

infection, and self vs other. It is important to note that there is a hi-

erarchical structure between the labels. Specifically, only related

tweets are annotated with the awareness vs infection and self

vs other labels. During evaluation, to ensure the fairness estimates

are easy to interpret, we only evaluate the awareness vs infection

and self vs other classifiers on related test tweets, otherwise, we need

to handle cascading errors. . The first class (related vs not related)

categorizes each tweet based on whether it discusses an influenza-

related topic or not. If a tweet is related to influenza, then it is cate-

gorized based on whether it is raising awareness to influenza or if it

discusses a specific infection (awareness vs infection). Many tweets

may simply raise awareness, instead of discussing an infection,

meaning that tweets discuss beliefs related to influenza infections or

preventative influenza measures are not useful for disease surveil-

lance. Furthermore, each flu-related tweet is also labeled as self or

other depending on whether it is about the user (self) or about an-

other person (other). Both infection- and awareness-related tweets

can be annotated as either self or other. For instance, many tweets

discussing flu vaccines are annotated as awareness. So, the tweet “I

am going to get the flu shot” would be labeled with both the aware-

ness and self classes.

FluVacc dataset

Social media is not only useful for traditional disease surveillance

tasks. For instance, social media can also be used to understand the

public’s view about potential treatments and vaccinations. This is

important, especially if we want to combat potential misinformation

campaigns at scale.42 The FluVacc dataset is from Huang et al4 and

contains 10 000 annotated tweets. Each tweet is categorized with up

to 3 major classes: vaccine related vs not related, which classifies

whether a tweet is about influenza vaccines; received vs not received;

and intent vs no intent. Similar to the FluTrack dataset, this is a mul-

tilabel task, and there is a hierarchical structure between the vaccine

related vs not related class, and the others; at test time, to avoid han-

dling cascading errors in our analysis, we only apply the received vs

not received and intent vs no intent classifiers to vaccine-related

tweets Received vs not received is used to detect whether a tweet dis-

cusses a user actually receiving a vaccine. Similarly, intent catego-

rizes whether the user plans to receive the vaccine. It is important to

note that a tweet may discuss receiving a vaccine and express the in-

tent to receive it again.

Dialect detection with convolutional neural networks
As shown in step 2 of Figure 1, we train a CNN model41 to predict

the dialect of individual tweets using the Dialect dataset. The dialect

dataset is split into 80% for training or validation and 20% for test-

ing. Following Rios,17 we use the CNN architecture from Kim.41

The CNN model is trained with 900 filters that spans 3,4, and 5

words. For the AAE class, the final CNN has an F1 of 0.87, with a

precision of 0.91 and a recall of 0.84. The precision, recall, and F1

for the SAE class were 0.97, 0.95, and 0.96, respectively. Once the

model is trained, a new tweet can be passed through the CNN and

the predicted dialect of the tweet is returned. This allows us to sepa-

rate out data into different populations based on their dialects,

which is important because these attributes are not provided in in-

fluenza datasets. See the Supplementary Appendix for a detailed

evaluation of the dialect detection model on the influenza datasets.

Influenza classification models
We compare 3 models on each of the influenza datasets in step 4

(Figure 1): linear SVM, CNN, and bidirectional long short-term

memory (BiLSTM). Furthermore, for both neural network models,

we analyze the use of different pretrained word embeddings. We

briefly describe each model subsequently.

Linear SVM

In biomedical research using social media, linear models have been

shown to outperform neural networks for some tasks (eg, identifying

adverse drug reactions).43 We trained a linear SVM using term fre-

quency–inverse document frequency weighting of unigrams and

bigrams (ie, single words [eg, vaccine] and pairs of words like [eg,

flu vaccine] are used as features) and L2 regularization. Term fre-

quency–inverse document frequency weighting is a statistical mea-

sure that weights how important words are in a corpus.

Furthermore, we searched for the best C value from the set f
0:0001; 0:001; 0:01; 0:1; 1; 10g using a validation dataset. The SVM

is implemented using the LinearSVC classifier in scikit-learn.44

Convolutional neural network

The CNN architecture has shown success in text classification

across many biomedical tasks.45–47 For the CNN model imple-

mented in this article, we use the architecture from Kim.41 Essen-

tially, the CNN can discover patterns and identify semantics found

in different sized n-grams for the purpose of classification. Specifi-

cally, for each task, the Kim CNN models were trained with 512 fil-

ters for each span width of 3, 4, and 5 words. Because of the cost of

training the model, hyperparameters were chosen manually follow-

ing some of the best practices described in Zang and Wallace.48 In

general, we found the ngram ranges of 3, 4, and 5 words (similar to

the Kim)41 to perform the best with 512 filters with a dropout rate

of 0.5. From our limited tests, further increasing the filters did not

improve the CNN’s performance. The model was trained with the

Adam optimizer49 for 30 epochs. The best epoch was chosen based

on a held-out validation dataset. The model was implemented using

the Keras Python package.50

Bidirectional LSTM

We trained a BiLSTM model, which has been shown to perform

well across a wide variety of biomedical NLP tasks.46,51 Unlike the

CNNs, BiLSTM models are recurrent networks that are able to cap-

ture dependencies between words. BiLSTM units perform well with

time series and sequence data since information can be kept across

the entire sequence. By implementing a BiLSTM, dependencies of

words are captured in both directions, forward and backward. The

BiLSTM model is trained with a hidden state size of 512 for each di-

rection. The model was trained with the Adam optimizer49 for 30

epochs. The best epoch was chosen based on a held-out validation

dataset. For the BiLSTM, we tried a few other hyperparameter con-

figurations, eg, decreasing and increasing the size of the hidden state

as well as the number of hidden layers. Overall, a hidden state size

of 512 resulted in the best performance. As the number of layers in-

creased, the training time grew exponentially for only a return of

less than a fraction of a percentage point. The dropout rate was set

to 0.5. The model was implemented using the Keras Python pack-

age.50
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Pretrained word embeddings

Pretrained word embeddings have been shown to make a large im-

pact on the overall performance of neural network-based text classi-

fication models.41 In this article, we also explore the overall

performance of the CNN and BiLSTM models trained with different

pretrained embeddings. We evaluate several variations of GLOVE

and Word2Vec.52,53 Specifically, we test the pretrained Twitter-

specific embeddings GLOVE 27B embeddings (http://nlp.stanford.

edu/data/glove.twitter.27B.zip)with dimensions ranging from 50 to

200, GLOVE 6B embeddings (http://nlp.stanford.edu/data/glove.6B.

zip)trained on Wikipedia 2014 and Gigaword 5 with 300 dimen-

sions, and Word2Vec Skip-Gram-based embeddings trained on

Google News (https://drive.google.com/file/d/0B7XkCwpI5KDYNl-

NUTTlSS21pQmM/edit)with 300 dimensions.

Evaluation
We evaluate the 3 influenza classifiers using both overall performance

(ie, precision, recall, and F1) and fairness. Intuitively, based on our

chosen evaluation metrics, we answer the following questions: Which

classifier has the best overall performance on each influenza dataset?

Which classifier is the fairest? Are fairness and overall performance re-

lated, that is, is the most accurate classifier the fairest?

To measure the fairness of the different models, we compare the

absolute differences between the FPR and FNR calculated indepen-

dently on SAE and AAE.30 FPR and FNR are defined as

FPR ¼ FP

FPþ TN
and FNR ¼ FN

FN þ TP

where TP, FP, FN, and TN represent the number of true positives,

false positives, false negatives, and true negatives, respectively. Each

score is calculated for the entire test dataset and the SAE and AAE

test examples independently. The FPR and FNR scores for each

group are combined using the false positive equality difference

(FPED) and false negative equality difference (FNED).14 Essentially,

FPED is measuring the predictive equality, and FNED is measuring

the equality of opportunity. FPED and FNED are defined as

FPED ¼
X

t2T
FPR � FPRt and FNED

¼
X

t2T
FNR � FNRt;

respectively, where T ¼ fAAE, SAEg. FPR and FNR represent the

overall false positive and false negative rates, respectively. FPRt and

FNRt represent the group-specific (ie, AAE or SAE) false positive

and false negative rates. Smaller FPED and FNED scores represent

fairer classifiers. Intuitively, if models have large false positive (or

false negative) rates for certain underrepresented groups (eg, African

Americans), then large absolute differences in FPR/FNR could po-

tentially have unfair consequences if the model is used without this

knowledge.

RESULTS

For evaluation, following prior work in methodological testing pro-

cedures of machine learning in the biomedical context,54 we per-

formed Monte Carlo cross-validation testing—sometimes referred

to as repeated subsampling. Specifically, the dataset was split into

10 unique training, validation, and test splits. A total of 80% of the

data was used for training and validation. A total of 20% of the

data was used for testing. A total of 20% of each training data split

was used as a validation dataset. Furthermore, because of the vari-

ance in performance produced by neural networks, on each data

split, we repeatedly train each model 10 times (ie, each model was

trained on each split 10 times using different random seeds). This

procedure results in a total of 100 instances trained of each model.

The results reported in this article are the average across both the

data splits and multiple runs. Note that for some classes, there were

not enough AAE tweets to evaluate using AAE tweets in both the

training and testing datasets. Therefore, we report 2 sets of experi-

ments. First, when we report the overall results in Tables 2 and 3,

we did not use any AAE examples in the training data. Moreover, in

the Supplementary Appendix we perform fairness experiments

where all of the AAE examples are only used for testing. This is actu-

ally a likely scenario in which many dialects will not appear in a

training dataset (eg, Chicano English or AAE variants such as urban

or rural AAE). Therefore, these supplementary experiments will pro-

vide insight into how these models will perform for low-resource

dialects that do not appear in the training dataset. Second, for the

fairness results in Table 4 and Figures 2 and 3, up to 50% of the

AAE tweets are used for training, while the other 50% are used for

testing. For significance testing, we follow the strategy proposed in

Table 2. The mean P, R, and F1 scores for the 3 labels in the FluTrack dataset

Related vs unrelated Awareness vs infection Self vs other

P R F1 P R F1 P R F1

Linear SVM 0.766 0.823 0.793 0.821 0.816 0.818 0.766 0.823 0.793

CNN GloVe 300 0.809c 0.850b 0.827c 0.903c 0.906c 0.905c 0.809c 0.847b 0.827c

CNN Twitter GloVe 50 0.813c 0.832 0.822c 0.850c 0.848c 0.849c 0.813c 0.832 0.823c

CNN Twitter GloVe 100 0.816c 0.850b 0.832c 0.919c 0.881c 0.900c 0.816c 0.850b 0.832c

CNN Twitter GloVe 200 0.800c 0.822 0.811c 0.866c 0.882c 0.874c 0.800c 0.822 0.811c

CNN Word2Vec 300 0.796c 0.839a 0.817c 0.902c 0.903c 0.903c 0.796c 0.839a 0.817c

BiLSTM GloVe 300 0.771 0.836 0.802b 0.857c 0.771 0.812 0.771a 0.836 0.802b

BiLSTM Twitter GloVe 50 0.759 0.845a 0.799a 0.748 0.760 0.754 0.759 0.845a 0.799a

BiLSTM Twitter GloVe 100 0.795c 0.794 0.794 0.821 0.752 0.785 0.795c 0.794 0.794

BiLSTM Twitter GloVe 200 0.767 0.837 0.800a 0.876c 0.737 0.800 0.767 0.837 0.800a

BiLSTM Word2Vec 300 0.788c 0.829 0.808c 0.833a 0.819 0.826 0.788c 0.829 0.808c

P: precision; R: recall. Bold font indicates the best result obtained in each column.
aP value (resulting from the Wilcoxon signed rank test) between .05 and .01.
bP value (resulting from the Wilcoxon signed rank test) between .01 and 0001.
cP value (resulting from the Wilcoxon signed rank test) that is �.001.
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prior biomedical studies54 using the Wilcoxon signed rank test. Sig-

nificance is calculated with respect to the linear SVM model (ie, we

check if the neural network models are significantly better than the

linear SVM for the overall results). For fairness metrics, we test if

neural network models are significantly worse than the linear SVM.

FluTrack experiments
The overall performance results on the FluTrack5 dataset is pre-

sented in Table 2. Both neural network-based models (ie, the CNN

and BiLSTM) outperformed the baseline linear SVM. When com-

paring the CNN to the BiLSTM, the CNN outperformed the

BiLSTM consistently across multiple word embeddings. This is an

important factor to remember when discussing the fairness measure-

ments. The best CNN model for related performed nearly 0.03 (3%)

better than the best BiLSTM model. Similarly, the best awareness

CNN model outperforms the best BiLSTM model by nearly 0.08

(8%). With regard to the best pretrained word embeddings for the

CNN model, the Twitter GloVe 100 word embeddings outper-

formed the others for the Related and Self labels. Twitter GloVe 300

was the best for the Awareness label. For the BiLSTM, Word2Vec

300 generally had the best F1.

In Figure 2, we report the fairness results on the FluTrack data-

set. The results are reported for the FluTrack class with the greatest

number of AAE examples, related vs unrelated. In summary, we

found that the neural network models generally had higher FPED

and FNED scores than the linear SVM for the other classes. For the

results in Figure 2, 50% of AAE related vs unrelated examples are

used for training and the other 50% are used for testing. From the

50% of AAE examples used in the training dataset, we report the

results of using different proportions of AAE examples in the train-

ing data: 0%, 20%, 40%, 60%, 80%, 100%. The scores do not

vary substantially as more AAE examples are used in the training

dataset. For instance, the CNN model, trained with the Word2Vec

300 embeddings, has similar FPED scores using 0% of the AAE

Table 3. The mean P, R, and F1 scores for the 3 labels in the FluVacc dataset

Related vs unrelated Received vs not received Intent vs no intent�

P R F1 P R F1 P R F1

Linear SVM 0.987 0.994 0.991 0.886 0.939 0.911 0.829 0.828 0.828

CNN GloVe 300 0.993c 0.999c 0.996c 0.922b 0.961b 0.944b 0.932c 0.876c 0.903c

CNN Twitter GloVe 50 0.993c 0.999c 0.996c 0.917c 0.942 0.920a 0.900c 0.904c 0.902c

CNN Twitter GloVe 100 0.991c 0.999c 0.995c 0.926c 0.946 0.936b 0.931c 0.893c 0.912c

CNN Twitter GloVe 200 0.991c 1.00c 0.995c 0.945c 0.951a 0.948b 0.923c 0.904c 0.902c

CNN Word2Vec 300 0.992c 0.999c 0.996c 0.922c 0.949 0.935b 0.908c 0.876c 0.892c

BiLSTM GloVe 300 0.987 0.998c 0.992c 0.874 0.936 0.904 0.833 0.784 0.808

BiLSTM Twitter GloVe 50 0.987 0.996b 0.991 0.828 0.951 0.885 0.822 0.750 0.784

BiLSTM Twitter GloVe 100 0.985 0.997c 0.991 0.882 0.892 0.887 0.770 0.874c 0.818

BiLSTM Twitter GloVe 200 0.991c 0.998c 0.994c 0.902a 0.894 0.898 0.798 0.865c 0.830

BiLSTM Word2Vec 300 0.987 0.998c 0.993c 0.853 0.920 0.885 0.837 0.819 0.828

P: precision; R: recall. Bold font indicates the best result obtained in each column.
aPvalue (resulting from the Wilcoxon signed rank test) between .05 and .01.
bP value (resulting from the Wilcoxon signed rank test) between .01 and 0001.
cP value (resulting from the Wilcoxon signed rank test) that is �.001.

Table 4. FluVacc results for the Intent class using a training dataset with a balanced number of AAE and SAE examples

P R F1 FPED FNED

Linear SVM 0.786 0.780 0.783 0.095 0.105

CNN GloVe 300 0.752 0.787 0.768 0.095 0.082

CNN Twitter GloVe 50 0.759 0.764 0.758 0.146c 0.093

CNN Twitter GloVe 100 0.760 0.790a 0.773 0.122b 0.086

CNN Twitter GloVe 200 0.777 0.784 0.779 0.096 0.081

CNN Word2Vec 300 0.766 0.741 0.752 0.080 0.064

BiLSTM GloVe 300 0.752 0.727 0.738 0.190c 0.104

BiLSTM Twitter GloVe 50 0.755 0.668 0.707 0.257c 0.172c

BiLSTM Twitter GloVe 100 0.755 0.717 0.734 0.250c 0.143c

BiLSTM Twitter GloVe 200 0.764 0.730 0.745 0.218c 0.142c

BiLSTM Word2Vec 300 0.772 0.644 0.699 0.172c 0.112a

This table shows theresults of undersampling the SAE examples to be equal to the number of Intent AAE examples. Bold font indicates the highest score in

each column.

AAE: African American English; FNED: false negative equality difference, FPED: false positive equality difference; P: precision; R: recall; SAE: Standard Amer-

ican English.
aP value (resulting from the Wilcoxon signed rank test) between .05 and .01.
bP value (resulting from the Wilcoxon signed rank test) between .01 and 0001.
cP value (resulting from the Wilcoxon signed rank test) that is �.001.
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examples as it does use 100%. We find similar results with the

FNED scores (eg, BiLSTM Word2Vec 300). See the Supplementary

Appendix for FluTrack fairness experiments for more classes using

all of the AAE examples in the test set.

FluVacc results
The overall performance results on the FluVacc4 dataset is presented

in Table 3. The results on FluVacc are similar to the findings on Flu-

Track. Specifically, we find that the CNN outperforms both the lin-

ear SVM and BiLSTM models across the precision, recall, and F1

metrics for each label. Specifically, the best CNN model for intent

detection is 0.912, a nearly 10% absolute improvement over the lin-

ear SVM (0.828) and the best BiLSTM model (0.828). The best

CNN model for the received label also outperformed the other

methods by a large margin (eg, by more than a 4% absolute im-

provement over the next best BiLSTM model). Moreover, unlike the

FluTrack results, the linear SVM model generally performs equiva-

lent or better than the BiLSTM. For instance, the linear SVM’s F1

score for the received label is 0.01 (1%) better than the best per-

forming BiLSTM model. For the related label, while the CNN per-

formed best overall, the results are similar across models. We found

that the related label is relatively easy to classify because of certain

keywords not appearing often in the not related label (eg,

“vaccine”). We also find that the best pretrained word embeddings

vary from model to model. For instance, the best embeddings for the

CNN are generally GloVe 100 and GloVe 300, while the best

BiLSTM embeddings are GloVe 300 and Word2Vec 300.

In Figure 3, we report the fairness results of using AAE tweets in

the training set for the FluVacc dataset. Again, we used the class

with the largest number of evenly distributed AAE examples, the in-

tent vs no intent class. For a majority of the models for the task of

intent classification, there is no consistent pattern of improvement

of the FPED and FNED scores as we add more AAE tweets to the

training set. On the contrary, adding AAE tweets seems to have little

effect on the FPED and FNED scores. It is important to note that

there is still an imbalance between SAE and AAE tweets in the train-

ing data. However, to the best of our knowledge, this is realistic be-

cause current research methodologies do not generally spend time

collecting equal amounts of examples across all dialects. Therefore,

our results paint a realistic picture about how current models per-

form. Finally, for the FPED scores, we also observe that the SVM

generally results in the smallest score. See the Supplementary Appen-

dix for FluVacc fairness experiments for more classes using all of the

AAE examples in the test set.

Figure 2. FluTrack’s experimental results using African American English (AAE) tweets in both the training and test datasets. The false positive equality difference

(FPED) and false negative equality difference (FNED) scores are plotted using different percentages of AAE tweets in the training dataset.

Figure 3. FluVacc’s experimental results using African American English (AAE) tweets in both the training and test datasets. The false positive equality difference

(FPED) and false negative equality difference (FNED) scores are plotted using different percentages of AAE tweets in the training dataset.
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How much does the imbalance between SAE and AAE examples

in the training dataset affect the fairness metrics? In Table 4, we

evaluate the performance of each model on the intent class using a

balanced training dataset. We use the intent class because it has the

largest number of AAE examples for both the intent and no intent

cases. The SAE tweets are undersampled at random to match the total

number of AAE examples. The results of this experiment are shown in

Table 4. We make 2 major findings. First, while not directly compara-

ble to Table 3, we find that undersampling results in a drop in F1

compared with using all of the dataset. Moreover, the linear SVM

resulted in the most accurate method, which is expected given the

smaller training dataset. Interestingly, we find that the BiLSTM

method results in the most unfair results (ie, the highest FPED and

FNED scores). The CNN models have higher FPED scores than the

SVM and both the SVM and CNN have similar FNED scores.

Qualitative error analysis
In this section, we provide a couple of AAE examples (the examples

have been slightly altered to preserve the privacy of users in the data-

set) that resulted in incorrect predictions by the classifiers. We want to

provide some insight into what aspects of AAE are potentially causing

the problems. We found many examples in which the models had

trouble classifying AAE text when they contain phonological variants

of words. For instance, in the example from the FluVacc dataset

“Iont think my sister is making me go to school tomorrow since

it’s flu shot day at school”

should be classified as “no intent.” However, all of the classifiers

classify it as “intent” instead. The suspected cause is the word

iont—a well-known AAE phonological word variant55—which

means “I don’t.” The likely cause of the errors is the limited number

of AAE tweets. However, because it is not feasible to always collect

enough AAE examples to handle these AAE word variants, how

could this example be handled correctly? One potential solution

would be to use models that operate at the character level, not the

word level. Substrings of iont could correlate with I don’t. The use

of character information has been shown to be helpful in reducing

bias in named entity recognition models.56 Therefore, similar solu-

tions could potentially help for influenza classification.

We found other AAE tweets that caused erroneous predictions

for reasons not related to phonological word variants. For instance,

the FluVacc example AAE tweet,

“I ain’t donating shat y’all kiss my aas already forced me to get

the flu shot bullshat”

was correctly classified by the SVM classifier as received. However,

most of the neural network methods incorrectly classified it has not

received. In this example, we believe that the neural networks overfit

the negation word ain’t, and potentially, the curse words (expressing

negative sentiment toward the vaccine). In this case, an obvious po-

tential solution is to further regularize the neural networks to reduce

overfitting (eg, with a larger dropout rate or L2 regularization).

However, while more regularization may help, it is nontrivial to do

when there are a small number of minority samples, or worse, mi-

nority samples do not appear in the dataset. It is important to note

that it is likely not possible to collect large amounts of data for all

dialects, so more data are not a solution for fair classifiers. Because

it looks like the CNN and BiLSTM may rely on surface-level infor-

mation, rather than on real natural language understanding, it may

be beneficial to explore novel methods of training neural networks

by augmenting the data using adversarial learning.57

DISCUSSION

Overall, the major finding of this article is that machine learning

methods for influenza-related tasks using social media data are bi-

ased. We did not simply detect bias, we also quantified it across mul-

tiple machine learning models and datasets. With the interest of

using social media to track the spread of viruses, these inaccuracies

can cause a model to misrepresent certain neighborhoods as hot

spots, or worse, identify communities with underrepresented popu-

lations as unlikely to develop a large number of infections. This can

occur if the community, as a whole, uses a different dialect that is

not consistent with the general population in which the data was

collected. Note that the results of this experiment are specific to the

datasets we evaluated. The models may be biased differently on

other datasets and tasks.

Another interesting finding which generalizes across both the

FluTrack and FluVacc datasets is that simple, ngram-based linear

SVM models are competitive with some neural networks in terms of

overall performance. We find that linear SVMs generally, but not al-

ways, result in fairer predictions then the best neural network meth-

ods on the 2 datasets we analyzed. Though neural network–based

methods can achieve better performance compared with traditional

statistical methods, interpretability is a major limitation for these

deep learning methods. Therefore, in this case, linear SVMs provide

a strong baseline while offering interpretability and fair results (as

compared with the best neural network methods).

In summary, it is important to think about the potential impact

the unfair results can have on minority communities. If statistics

based on machine learning methods are used by policymakers, then

unfair models could impact underrepresented group’s access to cer-

tain over-the-counter medications, or worse, affect basic healthcare

resources offered to their communities. For instance, if vaccines are

limited, and a model incorrectly predicts that communities with cer-

tain large underrepresented populations will not be impacted by in-

fluenza (ie, high FPED), then they will be unfairly impacted. This

could potentially increase health disparities that already exist be-

cause of economic disparities.

Limitations to this study
There are 4 limitations to this study. First, we rely on a SAE vs AAE

dialect classifier to partition the datasets. The classifier is neither

perfect nor is the classifier’s training data. However, as was shown

in prior work17 and in our dialect evaluation in the Supplementary

Appendix, the classifier does a good job at identifying tweets that

contain common AAE syntactic and phonetic constructions.

Second, the number of AAE tweets is small. However, there is

still evidence of bias in other classes with substantially more AAE

data (eg, intent vs no intent which has more than 100 AAE tweets in

each class). Furthermore, the bias is consistent across 2 datasets and

multiple classes.

Third, we focus on dialect, which is directly related to neither

race nor ethnicity. While there has been a wide array of research

that predicts social identity (eg, race and sex) using text information,

relying on text information alone to infer population-level statistics

for race and ethnicity excludes people that do not write in a way

that matches their group-identities “norm.” Because race and eth-

nicity are impossible to fully detect automatically, we believe a more
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inclusive way of obtaining social identity information is through op-

tional self-reported surveys. The approach of asking rather than pre-

dicting (ie, relying on self-identified demographic information) is

also recommended for studies about sex.58,59 Overall, detecting so-

cial identity automatically can potentially lead to adverse outcomes.

Hypothetically, predictions of social identity could be used to de-

prive people of opportunities. Yet, there are potential benefits of so-

cial identity detection methods in the field of biomedical

informatics. For example, identity predictions could be used to mea-

sure potential health disparities. The decision process of choosing

which applications will result in harm is complex. There have been

recent proposals to introduce ethical review boards at the organiza-

tional level to help make such decisions—potentially extending the

duties of current institutional review boards.62 Currently, ethical

issues in natural language processing applications are unlikely to

raise the flags required to trigger an institutional review board ap-

proval process.63

Fourth, while we predict dialect, we do not make use of manu-

ally curated dialect annotations. Our evaluation strategy in the Sup-

plementary Appendix relies on measuring well-known AAE

phonetic and syntactic constructions. Moreover, our dialect classi-

fier is trained using estimated dialect annotations. Why don’t we

manually annotate a small set of AAE tweets to evaluate or train the

dialect classifier? Our answer to this question has 2 main points.

First, it is difficult to decide a priori the “threshold” required for a

tweet to be considered AAE. Is a tweet written in AAE if it contains

a single AAE phonetic construct (eg, sumn)? Does it need more than

2 phonetic constructions? Does the tweet need to contain common

syntactic patterns (eg, habitual be) to be AAE? Instead, we evaluate

the dialect classifier in the Supplementary Appendix by comparing

how likely well-known phonetic and syntactic constructions are in

tweets labeled as SAE vs AAE by our classifier. We find that the

well-known AAE constructions are more likely in tweets classified

as AAE. We believe this evaluation strategy provides more flexibility

than relying on an artificial threshold. Second, we only rely on a

small number of well-known constructions. Thus, could manually

annotation (eg, using Amazon Mechanical Turk) without relying on

a few well-known constructions increase the variation of AAE text?

Potentially, but, if we annotate tweets as AAE without relying on

well-known constructions, we are at-risk of analyzing mock AAE

rather than AAE itself.60,61 Ronkin and Karn61 defined mock AAE

as “outgroup misappropriation of the language variety, which [in-

dexes] racist stereotypes by reducing African Americans to stock

outgroup images.” Thus, at a minimum, we believe that such an an-

notation task would require self-identified AAE speakers, or new

influenza-related data would need to be collected from self-

identified AAE speakers on social media. But, beyond the minimum

approach, more work is required to understand the best AAE anno-

tation technique. Recent work in racial categorization for algorithm

fairness suggests “various choices that go into the operationalization

of race for the purposes of fairness-informed analysis or interven-

tions significantly impact the result” and “measurement of race

should be considered as an empirical problem in its own right.”64

Because dialect annotation strategies can have an impact on the out-

come of algorithm fairness studies, we find that the empirical prob-

lem of annotating dialect should be carefully considered.

CONCLUSION

In this article, we used 2 influenza-related social media datasets to

understand the potential biases in machine learning models trained

on them. The major finding of this article is that the resulting models

are biased. Therefore, practitioners should be aware of the potential

harms related to biased methods. As future work, it is important to

expand this study to other tasks, machine learning models (eg,

BERT24) and demographic factors. Given the generalizability of the

framework presented in this article, it can easily be applied to other

datasets. Beyond measuring bias, we believe that it is also important

to adapt recent methods to reduce the bias of state-of-the-art ma-

chine learning approaches65 to the biomedical NLP domains.
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