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Metabolomics analysis reveals 
a modified amino acid metabolism 
that correlates with altered oxygen 
homeostasis in COVID‑19 patients
José C. Páez‑Franco1,7, Jiram Torres‑Ruiz2,3,7, Víctor A. Sosa‑Hernández4, 
Rodrigo Cervantes‑Díaz5, Sandra Romero‑Ramírez5, Alfredo Pérez‑Fragoso3, 
David E. Meza‑Sánchez1, Juan Manuel Germán‑Acacio1, José L. Maravillas‑Montero1, 
Nancy R. Mejía‑Domínguez1, Alfredo Ponce‑de‑León6, Alfredo Ulloa‑Aguirre1, 
Diana Gómez‑Martín3 & Luis Llorente3* 

We identified the main changes in serum metabolites associated with severe (n = 46) and mild (n = 19) 
COVID-19 patients by gas chromatography coupled to mass spectrometry. The modified metabolic 
profiles were associated to an altered amino acid catabolism in hypoxic conditions. Noteworthy, 
three α-hydroxyl acids of amino acid origin increased with disease severity and correlated with altered 
oxygen saturation levels and clinical markers of lung damage. We hypothesize that the enzymatic 
conversion of α-keto-acids to α- hydroxyl-acids helps to maintain NAD recycling in patients with 
altered oxygen levels, highlighting the potential relevance of amino acid supplementation during 
SARS-CoV-2 infection.

COVID-19 is an emerging infection caused by the severe acute respiratory syndrome (SARS)-CoV-2 virus, whose 
main clinical features are fever, fatigue, cough, lymphopenia and, in severe cases, pneumonia with SARS, which 
if uncontrolled leads to multi-organic failure and dead1. In severe cases, hypoxia seems to play a distinct role in 
the adverse clinical outcomes of COVID-19 patients. Therefore, several clinical and pharmacological approaches 
for restoring oxygen levels to viable parameters are currently under evaluation2.

The physiological changes related to the presence of hypoxia that occur as an attempt to normalize oxygen 
levels include increase in respiratory rate, vasodilation, and vascularization as mechanisms to fulfill energetic 
requirements until normoxia is attained3. At the molecular level, hypoxia inhibits oxidative phosphorylation in 
mitochondria, which is the main source of adenosine triphosphate (ATP) for critical and energetic expensive 
processes such as ionic equilibrium and protein synthesis3.

Hypoxia inducible factor 1-α (HIF 1-α) is the master regulator of oxygen homeostasis in mammals and has 
crucial roles on metabolism through up-regulating genes involved in the glycolytic pathway during hypoxic 
conditions4. The activity of this transcription factor favors anaerobic glycolysis over mitochondrial respiration as 
a source of ATP when environmental O2 falls4. Despite that anaerobic glycolysis produces only 2 ATP molecules 
per molecule of glucose, this metabolic shift is accompanied by an increased glucose influx as a compensatory 
mechanism to reach high levels of ATP4. However, a sustained glycolytic metabolism may potentially lead to 
reduced nicotinamide dinucleotide (NAD) pools, which must be preserved to keep the cytosolic synthesis of 
ATP during hypoxia5. Although pyruvate is considered the final electron acceptor in this pathway, oxidation of 
this α keto-acid (α-KA) by lactate dehydrogenase is not the only way to replenish NAD levels in hypoxia. Other 
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α-keto-acid oxidases, such as malate dehydrogenase, are able to replenish the cytosolic NAD pools in hypoxic 
environments6.

In the present study, our metabolomics analysis disclosed dysregulation of pathways linked to energy produc-
tion (Krebs cycle, Warburg effect) and amino acid catabolism [BCAA (branched chain amino acids)], threonine, 
glutamine and glutamate) in COVID-19 patients. An increment of three different α hydroxyl acids (α-HA) linked 
to valine and threonine catabolism in infected patients was prominent, leading to the proposal that in hypoxic 
patients the α-KA derived from these amino acids become the final electron acceptors through the activity of 
their corresponding α-keto-acid oxidases. Accordingly, the increment of serum glutamate in COVID-19 patients 
could be related with an increased transaminase activity, an enzymatic process that generates α-KA as reaction 
products5.

Our results are in line with other COVID-19 metabolomics analyses, with emphasis on the relevance of amino 
acid catabolism during hypoxic conditions7–9. Interestingly, these metabolic signatures may have implications on 
the appearance of adverse effects due to SARS-CoV-2 infection, such as diabetes and neurological disabilities.

Results
Demographic and clinical features of control donors and patients with COVID‑19.  Sixty-five 
COVID-19 patients were included, 19 with mild disease and 46 with severe disease. In addition, 27 subjects with 
a negative PCR test for SARS-CoV-2 infection were included. The main clinical characteristics and demographic 
features of the patients and controls are shown in Table 1.

Using an untargeted metabolomics approach, we determined 46 different metabolites ([< 30% relative stand-
ard deviation (RSD) in quality control (QC) samples] in serum samples from patients and controls. The main 
characteristics of these compounds are shown in Table S1. The method showed high reproducibility as observed 
by principal component analysis (PCA) of QC samples, which forms a well-defined compact cluster (Figure S1).

We performed volcano plots analysis to identify those metabolites with the highest changes between the 
groups (Fold change > 0.5 and p.-adjusted values < 0.05, Fig. 1). When compared to control, we detected lower 
levels of threonine and citrate in COVID-19 patients. Inversely, α-Ketoglutarate, phenylalanine, glutamic acid and 
several intermediaries of amino acid catabolism (3-Hydroxyisovaleric, 3-Hydroxybutyric acid, α-Hydroxybutyric 
acid, α-Hydroxyisovaleric, 2,3-Dihydroxybutanoic acid) increase with disease severity. Only α-Hydroxyisovaleric 
acid (a metabolite of valine degradation pathway) increases between mild and severe patients (Table 2).

To obtain an overview of the main changes in our metabolomics data, we performed a heatmap and hierar-
chical clustering analysis using the 15 metabolites with the lowest p value (ANOVA p < 0.05) (Fig. 1). With this 
approach, we detected reduced levels of several amino acids (cysteine, isoleucine, glutamine, and threonine) 
and lower levels of glyceric and citric acid in COVID-19 patients. Conversely, increased levels of three different 
α-HA (α-hydroxyisovaleric acid, α-hydroxybutyric and 2,3 dihydroxybutanoic acid and malic acid) and two 
amino acids (glutamic acid and phenylalanine) were identified in infected patients. However, this analysis is 
not able to generate a perfect clustering between the analyzed groups and to discriminate for disease severity.

To further categorize the patients according to the metabolic profile, we performed a supervised multivari-
ate partial least squares-discriminate analysis (PLS-DA). To assess the robustness of the model classification, 
cross validation and permutation analysis were performed for the following comparisons: Control versus severe 
COVID-19 (CvsS), control versus mild COVID-19 (CvsM), mild COVID-19 versus severe COVID-19 (MvsS), 
and control versus mild COVID-19 versus severe COVID-19 (CvsMvsS), obtaining good prediction parameters 
except for the MvsS groups, indicating a less metabolic variation in this set of subjects (Table 3). The Variable 
Importance to the Projection (VIP) metabolites relevant to group each cluster are depicted in Fig. 2; as shown, 
VIP values belong to amino acid, α-HA, fatty acids, and Krebs cycle intermediaries.

Mitochondrial dysregulation as a feature of severe COVID‑19.  To identify the disturbed pathways 
between the study groups, enrichment analysis (Metaboanalyst v4.0) employing the metabolites with the highest 
VIP values from PLS-DA analysis was applied; pathways with p < 0.05 are shown in Table 4. Pathways associated 
with the metabolism of BCAA, glutamate and phenylalanine were differentially expressed in patients with mild 
and severe COVID-19 as well as in controls. Additionally, we observed a possible involvement of the Warburg 
effect, as this process is differentially regulated in COVID-19 patients bearing different disease severity in com-
parison with controls. Further, differential pathways analysis among COVID-19 patients identified a potential 
mitochondrial dysregulation in those with severe disease. We also found that BCAA metabolism was differen-
tially expressed in the studied groups, and glutamine and glutamate metabolism exhibited a high impact on the 
metabolic profile of COVID-19 patients (Fig. S2).

Correlation of a distinct metabolic profile with ventilatory parameters and diverse clinical 
features.  We performed a Spearman’s correlation analysis between VIP metabolites with routine clinical 
tests for oxygen homeostasis and clinical markers recently described for lung impairment and poor prognosis 
in SARS-CoV-2 infection. Figure 3 and Table S2 show significant correlations between metabolites and clini-
cal variables. A generalized linear mixed models to examine the effect of patient condition (H, M or S) over 
VIP metabolites levels, including the presence of obesity and hypertension as random factors (Supplemental 
Table S3), revealed that only oleic acid did not show significant differences derived from the patients’ condition 
(HvsMvsS). For generalized linear models with age as a covariate, only 3-Hydroxyisovaleric acid, anhydrogluci-
tol and threonic acid are influenced due to the patient age. Nonetheless, this variable does not replace the effect 
of COVID-19 (Supplemental Table 4). Furthermore, after adjustment, we also found that BMI influences the 
levels of 3-Hydroxyisovaleric and citric acid. However, these changes are explained based on the composite effect 
of BMI and COVID-19 status as well.
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Discussion
We identified altered levels of amino-acids, Krebs cycle intermediaries, and α-HA in serum samples from mild 
and severe COVID-19 patients. The analysis of these metabolic profiles revealed a relationship between an altered 
metabolism of BCAA, glutamate, glutamine, and Warburg effect with the severity of the disease. In particular, 
hypoxemia in COVID-19 patients could impair redox, energetic, and immune responses1. In this context, the 
term metabolic flexibility refers to the transcriptomic, proteomic and metabolic changes that need to be adapted 

Table 1.   Demographic, clinical, and laboratory parameters of the participants. P-value for Kruskal–Wallis, U, 
cχ2 or Fisher exact test.

Parameter Control donors Mild COVID–19 Severe COVID-19 P-value

Demographic features

Sex F:17–62.9% F:9–47.4% F:17–36.9%

0.098F: Female M:10– 37.1% M:11–52.6% M:29–63.0%

M: Male Total: 27 Total: 19 Total: 46

Age (Average-SD) 35.4 ± 8.8 40.7 ± 10.7 49.6 ± 13.6 2.658 × 10–5

BMI (Average SD) 26.9 ± 4.3 26.9 ± 3.4 27.8 ± 3.8 0.011

Comorbidities

Overweight 11/27—40.7% 3/19—15% 15/46—32% 0.195

Obesity 5/27—18.5% 3/19—15% 20/46—42.6% 0.014

DM2 2/27– 7.4% 2/19—10% 12/46—25.5% 0.085

Hypertension 1/27—3.7% 1/19—5% 17/46—36.2% 5.697 × 10–4

Cardiopathy 0–0% 0—0% 5/46—10.6% 0.1146

Vital signs

Temp (ºC) – 37.4 ± 0.7 37.2 ± 0.8 0.095

Hearth rate (bpm) – 101.3 ± 19.3 103.6 ± 17.0 0.680

Respiratory rate (bpm) – 20.1 ± 3.8 25.2 ± 6.5 0.002

Mean arterial pressure (mmHg) – 95.1 ± 11.6 97.6 ± 14.9 0.982

SO2 (%) – 94.8 ± 1.4 86.5 ± 9.2 4.889 × 10–8

Symptoms

Cough – 15/19—75% 38/46—80.9% 0.734

Headache – 15/19—75% 24/46—51.1% 0.055

Fever – 16/19—80% 42/46—89.4% 0.407

Dyspnea – 5/19—25% 33/46—70.2% 0.001

Arthralgia – 11/19—55% 26/46—55.3% 0.999

Myalgia – 11/19—55% 31/46—66% 0.570

Sore Throat – 5/19—25% 15/46—31.9% 0.770

Nausea – 1/19—5% 4/46—8.5% 0.999

Diarrhea – 2/19—10% 10/46—21.3% 0.483

Fatigue – 9/19—45% 20/46—42.5% 0.790

Arterial blood gases

FiO2 (%) – – 27.9 ± 12.6

pH art – – 7.33 ± 0.2

Arterial PO2 (mmHg) – – 83.7 ± 43.2

Arterial PCO2 (mmHg) – – 28.9 ± 3.7

HCO3 (mmol/L) – – 21.4 ± 2.8

Lactate (mmol/L) – – 1.67 ± 0.9

PAFI – – 265.7 ± 104.3

Anion gap (mmol/L) – – 14.3 ± 2.4

Laboratory tests

Glucose (mg/dL) – – 134.04 ± 76.2

CRP (mg/dL) – – 13.3 ± 8.4

Ferritin (ng/mL) – – 555.3 ± 408.2

DHL (U/L) – – 373.07 ± 162.8

ALT (U/L) – – 39.06 ± 36.5

AST (U/L) – – 41.6 ± 29.7

Creatinine (mg/dL) – – 0.97 ± 0.3

Albumin (g/dL) – – 3.99 ± 0.8
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to particular pathological conditions10. Globally, hypoxia favors anaerobic glycolysis (over beta oxidation, pentose 
phosphate pathway and cellular respiration) as a source of ATP to fulfill the energetic requirements of several 
critical processes such as RNA expression, and protein and lipid synthesis11.We detected modified levels of three 
intermediaries of the Krebs cycle. Citrate serum levels fell in severe COVID-19 patients and positively correlated 
with lower oxygen saturation levels. On the other hand, α-ketoglutarate and malate transiently increased in mild 
COVID-19 patients, showing a positive correlation with lactate and anion gap markers, both indicators of meta-
bolic acidosis. Although it is unclear whether the degree of these changes were caused by the hypoxic conditions, 
the analysis of the differential metabolic signatures exhibited by mild and severe COVID-19 patients suggests 
that citric cycle and Warburg effect play a significant role for discriminating both groups. In normoxia, glucose 
conversion to acetyl Co-A and glutamine to α-ketoglutarate are the major sources of mitochondrial carbon inter-
mediaries for the Krebs cycle12. However, in hypoxia, the flux of acetyl-coA is inhibited and glutamine-derived 
α-ketoglutarate can be reductively carboxylated to isocitrate by isocitrate dehydrogenase as a way to replenish 
mitochondrial NAD levels and increase citrate pools in the Krebs cycle12,13. This process has been extensively 
studied in cancer-derived hypoxia14. Thus, citrate may diffuse to cytosol where it could be further processed by 
the enzyme ATP citrate lyase to Acetyl-Co-A and oxaloacetate15. The cytosolic activity of malate dehydrogenase 
also might support an enhanced glycolysis through the conversion of oxaloacetate to malate, regenerating NAD6. 
In addition to the potential inhibition of the Krebs cycle, ATP citrate lyase activity could also explain the altered 
levels of citrate in mild COVID-19 patients.

We observed reduced levels of glutamine in severe and mild COVID-19 patients and this change negatively 
correlated with lactate dehydrogenase (LDH), C reactive protein (CRP), and PO2 levels, and positively with 
PCO2; these markers have been associated with lung damage and altered oxygen homeostasis in COVID-19 
patients16,17. In vitro experiments also have demonstrated that hypoxia increases glutamine transport into the 
cells through HIF2-alpha upregulation of SLC1A5 genes18. These interconnected processes might potentially 
link glutamine hypoxic catabolism with NAD recycling and malate synthesis. According to our results, several 
reports detected reduced levels of this amino acid in COVID-19 cohorts, notwhitstanding, little is understood 
about this decrement and its potential therapeutic implications7,8,19. Further studies are needed to more precisely 
assess whether glutamine is linked to reductive carboxylation in hypoxic patients.

On the other hand, three different α-HA of amino acid origin (α-Hydroxyisovaleric acid, α-Hydroxybutyric, 
and 2,3-Dihydroxybutanoic acid) were significantly increased in samples from mild and severe COVID-19 
patients and positively correlated with CRP and LDH and negatively with SO2 and serum albumin. Reduced 
levels of this protein have been associated with increased mortality in severe hypoxic hepatitis and COVID-
1920–22. Similar to glutathione, albumin has an antioxidant activity over ROS control in ischemic and hypoxic 
liver23. The association between increased α-HA and lower albumin levels may be related to the decline in protein 
synthesis and modification of amino acid metabolism due to hypoxia24,25. In this regard, α-Hydroxyisovaleric 
acid is a product of valine catabolism and is used as a marker of maple syrup urine disease (MSUD), a clinical 
condition derived from inactivating mutations in branched-chain α-keto acid dehydrogenase complex (BCKDH), 
an enzyme essential for BCAA catabolism26. BCAA that are not required for protein synthesis are deaminated to 
α-KA (producing glutamate from α-ketoglutarate) by branched chain aminotransferases (BCAT) and funneled 

Figure 1.   Changes in serum metabolites of controls vs COVID-19 patients. Volcano plots of metabolites that 
increase (red) or decrease (blue) in (a) mild COVID-19 versus controls, (b) severe COVID-19 vs controls 
and (c) severe versus mild COVID-19. Cut off fold change > 0.5, p value < 0.05. (d) Heatmap visualization and 
clustering analysis of differential metabolites among controls (C), mild (M) and severe (S) COVID-19 patients. 
Only the 15 metabolites with the lowest p values (by ANOVA) are shown.
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to mitochondrial BCKDH, where they are further metabolized in the Krebs cycle27. However, in hypoxic condi-
tions, the halt of respiratory chain promotes an increase in NADH/NAD ratio, inactivating BCKDH complex 
and boosting α-KA levels28. Subsequently, cellular peroxidases oxidizes the resultant α-KA to α-HA in a NADH 
dependent manner29,30. As in MSUD, α-KA and α-HA are increased in patients with respiratory diseases that 
disturb oxygen homeostasis, and this increment is probably related to BCKDH inhibition and α-Keto oxidase 
activity28,31,32.

We identified as well modified serum valine, leucine, isoleucine, 2-keto-3-methylvaleric acid, and 3-Hydroxy-
isovaleric acid levels, which indeed are included in the BCAA metabolic pathway. These changes could suggest a 
modified BCAA metabolism in COVID-19 patients. Noteworthy, we also identified a trend towards restoration 
of the levels of these amino acids in patients with severe COVID-19 when compared to those with mild disease. 
In fact, 4-Hydroxyproline, a marker of amino acid mobilization from skeletal muscle to liver, displayed a trend 
towards higher levels in severe COVID-19 patients, suggesting that in severe disease, there is an increased 
requirement of tissue BCAA in order to replenish NAD.

Table 2.   Comparison of metabolites with fold changes > 0.5 according to disease severity. Fold-change was 
calculated using Metaboanalyst 5.0. p values were calculated using the Mann–Whitney test for MvsS and 
Kruskal Wallis test for multiple comparisons (CvsMvsS). Comparisons are included as follows: mild COVID-
19 versus controls (MvsC); severe COVID-19 versus controls (SvsC) and severe versus mild COVID-19 
(SvsM).

Combination Metabolite FC log2(FC) p-.adjusted
Kruskal–Wallis CvsMvsS
p.-adjusted

M/C

Glutamic acid 2.8108 1.491 5.89 × 10–9 M–C; S–C
2.21E−10–4.96E−09

Phenylalanine 1.616 0.69239 1.73 × 10–8 M–C; S–C
1.38E−10–4.96E−09

α-Hydroxybutyric acid 1.5999 0.67798 9.26 × 10–4 M–C; S–C; S–M
5.73E−09–8.59E−08

α-Ketoglutarate 1.5639 0.64511 3.04 × 10–5 M–C; S–C; M–S
0.00021638–0.00060858

3-Hydroxyisovaleric acid 1.5081 0.59277 0.02247 M–C; S–C
0.00094552–0.0018499

Threonine 0.62777 − 0.6717 6.68 × 10–8 C–M; C–S
5.73E−09–8.59E−08

S/C

Glutamic acid 2.3519 1.2338 1.45 × 10–9 M–C; S–C
2.21E−10–4.96E−09

α-Hydroxybutyric acid 2.3094 1.2075 4.04 × 10–8 M–C; S–C; S–M
5.73E−09–8.59E−08

α-Hydroxyisovaleric acid 1.9297 0.94837 7.55 × 10–6 S–C; S–M
3.04E−06–1.71E−05

3-Hydroxybutiric acid 1.8519 0.88901 0.012145 S–C; S–M
0.008355–0.012532

2,3-Dihydroxybutanoic acid 1.7324 0.79276 5.73 × 10–5 M–C; S–C
5.43E−05–0.00024421

3-Hydroxyisovaleric acid 1.6932 0.75971 5.46 × 10–4 M–C; S–C
0.00094552–0.0018499

Citric acid 0.62276 − 0.68326 3.21 × 10–6 C–S; M–S
9.24E−07–7.07E−06

4-Hydroxyproline 0.57272 − 0.80409 2.77 × 10–4 C–M; C–S
1.09E−05–5.47E−05

M/S
α-Hydroxyisovaleric acid 1.7032 0.76821 0.014705 S–C; S–M

3.04E−06–1.71E−05

Anhydroglucitol 0.62921 − 0.66838 0.0011881 M–C; M–S
0.0004461–0.00095594

Table 3.   Predictability values of partial least squares-discriminate analysis (PLS-DA). C versus M, Control 
versus Mild; C versus S, Control versus Severe; M versus S, Mild versus Severe; and C versus M versus S, 
Control versus Mild versus Severe. Q2, R2 and accuracy were calculated via double cross validation procedure 
with tenfold-CV, non-independent set was used.

Measure C vs M C vs S M vs S
C vs M 
vs S

R22 0.836 0.845 0.568 0.797

Q22 0.691 0.723 0.262 0.667

Accuracy 0.957 0.973 0.831 0.826
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Threonine levels decreased in severe and mild COVID-19 patients; this decrement could be potentially related 
to an enhanced catabolism as we also identified increased levels of α-Hydroxybutyric and 2,3-Dihydroxybuta-
noic acids, both oxidized metabolites of threonine conversion to α-HA. α-Hydroxybutyric acid is synthetized 
by the activity of lactate dehydrogenase over α-Ketobutyrate, a product of methionine/threonine catabolism 
and cysteine anabolism33. The increase of this metabolite correlated positively with higher levels of serum LDH. 
In this context, given that α-Ketobutyrate is a substrate of BCKDH, the increase of its corresponding α-HA 
could be related with the potential inactivity of the mitochondrial enzymatic machinery34,35. On the other hand, 

Figure 2.   Partial least squares-discriminate analysis (PLS-DA) plot of differential metabolites from control 
and COVID-19 patients and their corresponding VIP values. (a) PLSDA score plots for control (H-red), mild 
(M-green) and severe (S-blue) patients .VIP schematic scores of PLS-DA analysis for CvsMvsS (b), CvsM (c), 
CvsS (d), and MvsS (e) groups.

Table 4.   Enriched pathway analysis identified in COVID19 patients. Results of the enrichment pathways 
according to Metaboanalyst (v4.0), employing the VIP values from PLS-DA analysis as the input metabolites.

Groups Enriched metabolite set Hits p value Holm P FDR

C versus M

Glycine and serine metabolism 5 0.00103 0.101 0.0547

Valine, leucine and isoleucine degradation 5 0.00112 0.108 0.0547

Propanoate metabolism 4 0.00241 0.231 0.0786

Phenylalanine and tyrosine metabolism 3 0.00669 0.636 0.118

Urea cycle 3 0.0074 0.695 0.118

Warburg effect 4 0.00792 0.737 0.118

Malate-aspartate shuttle 2 0.00843 0.775 0.118

C versus S

Glutamate metabolism 3 0.0312 1.0 0.874

Glutathione metabolism 2 0.0358 1.0 0.874

Warburg effect 3 0.0483 1.0 0.874

M versus S

Valine, leucine and isoleucine degradation 4 0.00686 0.672 0.392

Citric acid cycle 3 0.00799 0.775 0.392

Glutathione metabolism 2 0.0314 1.0 0.655

Transfer of acetyl groups into mitochondria 2 0.0343 1.0 0.655

Warburg effect 3 0.0402 1.0 0.655

Glycine and serine metabolism 3 0.042 1.0 0.655

Cysteine metabolism 2 0.0468 1.0 0.655

C versus M versus S

Glutamate metabolism 3 0.0312 1.0 0.793

Glutathione metabolism 2 0.0358 1.0 0.793

Warburg effect 3 0.0483 1.0 0.793
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Figure 3.   Spearman’s correlation analysis. Correlation analysis of the modified metabolites in severe COVID-
19 patients and the clinical parameters considered. Blue numbers indicate a positive association. Red numbers 
denote a negative association. Squared values denote associations with values p < 0.05. RR = Respiratory 
rate, SpO2 = Oxygen saturation, LDH = Lactate dehydrogenase, FiO2 = Fraction of inspired oxygen, Art 
pH = Arterial pH, PaO2 = Partial pressure of oxygen, PaCO2 = Partial pressure of CO2, Art HCO3 = Arterial 
bicarbonate, PaFi = PaO2/ FiO2, TB = Total bilirubin, DB = Direct bilirubin, IB = Indirect bilirubin, ALT = Alanine 
aminotransferase, AST = Aspartate aminotransferase, AP = Alkaline phosphatase, Alb = Albumin. Exact p values 
are referred in Supplemental Table 2.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6350  | https://doi.org/10.1038/s41598-021-85788-0

www.nature.com/scientificreports/

2,3-Dihydroxybutanoic acid is a product of threonine catabolism probably generated by the activity of cytosolic 
transaminases and oxidases, a conversion that may potentially restore NAD during hypoxia36. All the enzymes 
involved in α-KA oxidation rely on NADH (or NADPH) as a co-substrate and their activities are important to 
maintain the energetic and redox states in health and disease. However, the mechanisms involved in BCAA and 
threonine intermediaries in hypoxia are still incompletely understood37.

A mechanism that links HIF1-alpha with the increase in BCAA transport and aminotransferase activity in 
hypoxic glioma cells was recently described38. In this cell context, the in vitro accumulation of BCAA in cerebral 
cortex of normoxic rats promotes glucose internalization and, interestingly, induces lower levels of CO2 release. 
These data suggest the presence of aerobic or anaerobic glycolysis regulated by the BCAA levels despite the 
presence of normoxia39. Interestingly, BCAT exhibits a CXXC motif that presumably acts as redox sensor and 
predisposes its aminotransferase activity by the cellular redox state40.

Although the effects of BCAA metabolism in hypoxia are still poorly understood, an evolutive advantage 
cannot be ruled out. In this regard, cells from the fungus Aspergillus nidulans increase the synthesis of BCAA 
as a mechanism to regenerate NAD and NADP during hypoxia41. Interestingly, the in vitro addition of BCAA, 
such as valine and leucine, rises the survival rate of mice infected with Klebsiella Pneumoniae42. Our present data 
suggest that hypoxia promotes the metabolic funneling of BCAA and threonine to α-KA synthesis and then to 
α-HA as a compensatory mechanism to replenish NAD levels in COVID-19 patients (Fig. 4).

In support to this hypothesis, we observed decreased serum levels of BCAA and threonine in COVID 
19 patients, an effect that has been previously identified in several studies of chronic obstructive pulmonary 
disease37. It has been shown that BCAA mobilization from skeletal muscle to liver is essential for human adapt-
ability to lower oxygen levels43, which is in agreement with our findings. Recent data highlight the relevance of 
BCAA administration as an strategy to attenuate protein muscle loss in COVID-19 critical patients44.

Figure 4.   Proposed model for the serum metabolic changes observed in COVID-19 patients. Red arrows 
represent metabolic flux inhibited during hypoxia. Blue arrows represent increased flux in hypoxia. ME Malic 
enzyme. The graphs were constructed with the normalized values from control subjects (C), mild (M), and 
severe (S) patients. Asterisks indicate statistical significance according to the Dunn test. p* < 0.05 ** < 0.01, 
*** < 0.001, **** < 0.0001.
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An scenario with high amino transferase activity requires a constant flux of α-Ketoglutarate, a nitrogen 
acceptor, which could be achieved through an enhanced glutamine catabolism12. In this regard, α-KA synthe-
sis mediated by aminotransferases generates glutamate as a byproduct. Accordingly, we observed an increase 
in glutamic acid levels, which correlated positively with anion gap values in severe COVID-19. Glutamate is 
an important neurotransmitter that, if unbalanced, promotes several neurological abnormalities45,46. In fact, 
patients with hypoxia may exhibit impaired activity of glutamate and several other neurotransmitters involved 
in homeostasis of the central nervous system, which may explain some of the neurological features found in 
COVID-19 patients47.

On the other hand, the appearance of new onset or worsening of pre-existing diabetes has been identified 
in COVID-19 patients48. α-Hydroxybutyric acid is an early marker of insulin resistance in the non-diabetic 
population49,50. Additionally, high levels of 2,3- Dihydroxybutanoic acid and α-Hydroxybutyric acid were detected 
in type I diabetes patients36. Gall et al54 proposes that individuals with an augmented fatty acid metabolism 
display NADH/NAD imbalance resembling hypoxic conditions that unleash a change in BCAA metabolic fate, 
predisposing to diabetes development. Although there are still missing paths connecting BCAA metabolism 
with diabetes, a plausible explanation for the presence of insulin resistance in COVID-19 patients may be partly 
connected to BCKDH state51.

Conclusion
Three different α-hydroxyl-acids are increased in severe COVID-19. The underlying biochemical traits may 
involve a modified amino acid metabolism derived from lung damage and hypoxic conditions. It is tempting to 
propose that the enzymatic conversion of α-keto-acids to α-hydroxyl-acids helps to maintain NAD recycling in 
patients with altered oxygen levels, highlighting the potential relevance of amino acid supplementation during 
SARS-CoV-2 virus infection.

Methods
Subjects.  Sixty-five COVID-19 patients, confirmed by a positive RT-PCR test for SARS-CoV-2 on a naso-
pharyngeal swab, and 27 control donors with a negative PCR test for SARS-CoV-2 were recruited at a third 
level referral center in Mexico City (Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán) from 
March to June, 2020.

Upon patient assessment, general laboratory tests were performed (complete blood count, glucose, blood 
urea nitrogen (BUN), creatinine (Cr), liver function tests, C-reactive protein (CRP), lactate dehydrogenase 
(LDH), creatinine kinase (CPK), fibrinogen, D-dimer, coagulation tests and ferritin). The severity of the disease 
was classified as follows: Mild/Moderate illness: Fever, signs of airway disease, with or without a tomographic 
image indicating pneumonia. Severe illness, any of the following: respiratory failure, respiratory rate > 30 bpm, 
O2 saturation < 92% at rest, PaO2/FiO2 < 300 mmHg52 . Once obtained, the serum was processed immediately 
and frozen to − 80 °C until GC/MS analysis, which was performed following a randomized scheme in the same 
way as COVID-19 samples. All samples from subjects included were drawn upon admission to the triage at 
the emergency department for the patients and at the epidemiology unit where the hospital staff attended for 
randomized nasopharyngeal PCR testing, during the morning shift and in a fasting state (minimum 8 h). The 
study was approved by the institutional ethics and research committees of Instituto Nacional de Ciencias Médi-
cas y Nutrición Salvador Zubirán (Ref. 3341). In those subjects that met the inclusion criteria, serum samples 
were collected from an antecubital vein and stored at − 80 °C until the day of metabolomics processing. Written 
informed consent to participate in the study was obtained from all participants. All analytical methods were 
carried out in accordance with relevant guidelines and regulations.

Gas chromatography/mass spectrometry (GC/MS) analysis.  Forty-five microliters of serum sample 
and 10 µL of internal standard (IS—tetradecanoic acid, methyl tricosanoate, 5α-cholestane—0.36 mg/mL) were 
mixed in 150 µL of 1:3 chloroform–methanol and thoroughly mixed for 2 min. Samples were incubated at − 
20 °C for 20 min and then centrifuged at 14,000 rpm for 15 min. One-hundred and fifty microliters of recovered 
supernatants were dried under nitrogen flow. Each precipitate was redissolved in 20 uL of methoxyamine and 
incubated for 90 min at 37  °C in a shaking incubator. Thereafter, 40 µL of MBSTFA + 1% TMCS was added 
to each sample and incubated for 30 min at 37  °C. One microliter was applied to a GC/MS system (Agilent 
5977A/7890B, Santa Clara, CA, USA) with an automatic autosampler (G4513A, Agilent) and run under the fol-
lowing conditions: splitless column flow 1 ml/min, inlet temperature 200 °C, EI source temperature 200 °C, and 
interface temperature 250 °C. A column HP5ms (30 m × 250 µm × 0.25 µm, Agilent) with helium 99.9999% as a 
mobile phase was employed. The running method consisted of 1 min hold at 60 °C with an increased ramp of 10 
°C/min to 325 °C, with a final held time of 10 min.

Briefly, to assess the system suitability along all the analysis we employed three different internal standards 
(IS). To identify any issues in the derivatization process, we employed tridecanoic acid as a metabolite prone to 
derivatization. To check shifts over the retention times we included additionally 5-alpha cholestane and tricosa-
noic acid methyl ester. The RSD values for the IS over all the experimental process (encompassing 104 samples 
in 12 batches = 12 days of analysis) were 12.89, 10.78 and 11.57% respectively (before the normalization process). 
For the intraday variation, we injected a QC1 (consisting of equal volumes of all the samples of the batch) every 
5 samples along the entire batch. We observed an average %RSD value of 17.7% (the average of all metabolite 
RSD values (triplicate) in each batch [12 batches]). For the inter-day variation, we generated a QC2 consisting 
of ten aleatory selected samples. We observed an inter-day RSD value of 17.5% (average of RSD values for each 
metabolite in 12 batches). The %RSD values for each metabolite are shown in supplementary Table 1. These 
results are in accordance with Fiehn Laboratory recommendations for metabolomic analysis (< 30% RSD)53.
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Deconvolution and identification.  GC/MS data was transformed to .mzdata using the Agilent Chemsta-
tion software (Agilent). Feature detection, spectral deconvolution and peak alignment were performed using the 
Mzmine2 software54. The parameters used were: RT range, 5.5–27.5 min; m/z range, 50–500; m/z tolerance, 0.5; 
noise level, 1 × 103; and peak duration range, 0.01–0.2 min. Further metabolite selection was performed accord-
ing to the rule of 80%. Identifications were determined using the National Institute of Standards and Technol-
ogy (NIST) 2.0 spectral library. Results higher than 70% (R > 700), were accepted as correct, while values below 
this limit were marked as unknown and omitted. Only identified metabolites with %RSD lower than 30% were 
selected to further uni- or multivariate statistical analysis.

Statistical analysis.  Peak heights raw data was normalized by sum, log-transformed and autoscaled 
(mean-centered and divided by the standard deviation) for statistical multivariate analysis. PLS-DA and hierar-
chical cluster analysis were performed by the Ward’s method using Metaboanalyst 4.055. For univariate analysis, 
data were normalized by sum and then the Kruskal–Wallis test was applied to examine the three levels of patient 
condition (control, moderate, and severe), followed by the Dunn’s post hoc test and unpaired Mann–Whitney 
test to examine differences between mild and severe conditions. For these analyses, the GraphPad Prism version 
6 software (GraphPad Software Inc., San Diego, CA) was employed. p values < 0.05 were considered significant. 
Spearman’s correlation analysis, generalized linear models and generalized linear mixed models were performed 
in R version 4.0.2 (R Foundation for Statistical Computing).

Metabolic pathway analysis: Enrichment analysis.  The VIP values from PLS-DA analysis were selected 
to implement the enrichment pathway analysis in Metaboanalyst (v.4.0). In the case of α-Hydroxyisovaleric acid, 
the corresponding α-KA was used as the input metabolite. KEGG database does not have the correspondent 
α-HA derived of BCAA’s catabolism in its library. Only the enrichment analysis with p values < 0.05 are pre-
sented.

Received: 10 October 2020; Accepted: 2 March 2021

References
	 1.	 Lake, M. A. What we know so far: COVID-19 current clinical knowledge and research. Clin. Med. 20, 124–127. https://​doi.​org/​

10.​7861/​clinm​ed.​2019-​coron (2020).
	 2.	 Geier, M. R. & Geier, D. A. Respiratory conditions in coronavirus disease 2019 (COVID-19): Important considerations regarding 

novel treatment strategies to reduce mortality. Med. Hypotheses 140, 109760 (2020).
	 3.	 Michiels, C. Physiological and pathological responses to hypoxia. Am. J. Pathol. 164, 1875–1882 (2004).
	 4.	 Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309 

(2010).
	 5.	 Gray, L. R., Tompkins, S. C. & Taylor, E. B. Regulation of pyruvate metabolism and human disease. Cell. Mol. Life Sci. 71, 2577–2604 

(2014).
	 6.	 Everaers, R. A. 乳鼠心肌提取 HHS Public Access. Physiol. Behav. 176, 139–148 (2017).
	 7.	 Shen, B. et al. Proteomic and metabolomic characterization of COVID-19 patient sera. SSRN Electron. J. https://​doi.​org/​10.​1101/​

2020.​04.​07.​20054​585 (2020).
	 8.	 Thomas, T. et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. 

JCI Insight https://​doi.​org/​10.​1172/​jci.​insig​ht.​140327 (2020).
	 9.	 Troisi, J. et al. Serum metabolomic prole of symptomatic and asymptomatic SARS-CoV-2 infected patients. Cell 1, 21. https://​doi.​

org/​10.​21203/​rs.3.​rs-​34085/​v1 (2020).
	10.	 Goodpaster, B. H. & Sparks, L. M. Metabolic flexibility in health and disease. Cell Metab. 25, 1027–1036 (2017).
	11.	 Wheaton, W. W. & Chandel, N. S. Hypoxia. 2. Hypoxia regulates cellular metabolism. Am. J. Physiol. Cell Physiol. 300, C385–C393 

(2011).
	12.	 Wise, D. R. et al. Hypoxia promotes isocitrate dehydrogenasedependent carboxylation of α-ketoglutarate to citrate to support cell 

growth and viability. Proc. Natl. Acad. Sci. USA 108, 19611–19616 (2011).
	13.	 Sun, R. C. & Denko, N. C. Growth 19, 285–292 (2015).
	14.	 Altman, B. J., Stine, Z. E. & Dang, C. V. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 619–634 

(2016).
	15.	 Icard, P., Poulain, L. & Lincet, H. Understanding the central role of citrate in the metabolism of cancer cells. Biochim. Biophys. 

Acta Rev. Cancer 1825, 111–116 (2012).
	16.	 Han, Y. et al. Lactate dehydrogenase, an independent risk factor of severe COVID-19 patients: A retrospective and observational 

study. Aging (Albany. NY) 12, 11245–11258 (2020).
	17.	 Wang, L. C-reactive protein levels in the early stage of COVID-19. Med. Mal. Infect. 50, 332–334 (2020).
	18.	 Yoo, H. C. et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell 

Metab. 31, 267-283.e12 (2020).
	19.	 Barberis, E. et al. Large-scale plasma analysis revealed new mechanisms and molecules associated with the host response to sars-

cov-2. Int. J. Mol. Sci. 21, 1–25 (2020).
	20.	 de la Rica, R. et al. Low albumin levels are associated with poorer outcomes in a case series of COVID-19 patients in Spain: a 

retrospective cohort study. Microorganisms 8, 1–13 (2020).
	21.	 Violi, F. et al. Is Albumin predictor of mortality in COVID-19?. Antioxid. Redox Signal. 00, 1–4 (2020).
	22.	 Chang, P. et al. Low serum albumin predicts early mortality in patients with severe hypoxic hepatitis.  World J Hepatol 9, 959–966 

(2017).
	23.	 Strubelt, O., Younes, M. & Li, Y. Protection by albumin against ischaemia- and hypoxia-induced hepatic injury. Pharmacol. Toxicol. 

75, 280–284 (1994).
	24.	 Preedy, V. R., Smith, D. M. & Sugden, P. H. The effects of 6 hours of hypoxia on protein synthesis in rat tissues in vivo and in vitro. 

Biochem. J. 228, 179–185 (1985).
	25.	 Chee, N. T., Lohse, I. & Brothers, S. P. MRNA-to-protein translation in hypoxia. Mol. Cancer 18, 1–13 (2019).

https://doi.org/10.7861/clinmed.2019-coron
https://doi.org/10.7861/clinmed.2019-coron
https://doi.org/10.1101/2020.04.07.20054585
https://doi.org/10.1101/2020.04.07.20054585
https://doi.org/10.1172/jci.insight.140327
https://doi.org/10.21203/rs.3.rs-34085/v1
https://doi.org/10.21203/rs.3.rs-34085/v1


11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6350  | https://doi.org/10.1038/s41598-021-85788-0

www.nature.com/scientificreports/

	26.	 Burrage, L. C., Nagamani, S. C. S., Campeau, P. M. & Lee, B. H. Branched-chain amino acid metabolism: from rare Mendelian 
diseases to more common disorders. Hum. Mol. Genet. 23, 1–8 (2014).

	27.	 Neinast, M., Murashige, D. & Arany, Z. Branched chain amino acids. Annu. Rev. Physiol. 81, 139–164 (2019).
	28.	 Walker, V., Gentry, A. J., Green, L. R., Hanson, M. A. & Bennet, L. Effects of hypoxia on plasma amino acids of fetal sheep. Amino 

Acids 18, 147–156 (2000).
	29.	 Jones, J. M., Morrell, J. C. & Gould, S. J. Three human peroxisomal 2-hydroxy acid oxidases. Biochemistry 275, 12590–12597 (2000).
	30.	 Liebich, H. M. & Först, C. Hydroxycarboxylic and oxocarboxylic acids in urine:products from branched-chain amino acid deg-

radation and from ketogenesis. J. Chromatogr. B Biomed. Sci. Appl. 309, 225–242 (1984).
	31.	 Bakkeren, J. A. J. M., Sengers, R. C. A. & Trijbels, J. M. F. Simulating an inborn error of metabolism. Eur. J. Pediatr. 47, 41–47 

(1977).
	32.	 Cooper, A. J. L., Ginos, J. Z. & Meister, A. Synthesis and properties of the α-keto acids. Chem. Rev. 83, 321–358 (1983).
	33.	 Ballèvre, O., Prugnaud, J., Houlier, M. L. & Arnal, M. Assessment of threonine metabolism in vivo by gas chromatography/mass 

spectrometry and stable isotope infusion. Anal. Biochem. 193, 212–219 (1991).
	34.	 Paxton, R., Scislowski, P. W. D., Davis, E. J. & Harris, R. A. Role of branched-chain 2-oxo acid dehydrogenase and pyruvate dehy-

drogenase in 2-oxobutyrate metabolism. Biochem. J. 234, 295–303 (1986).
	35.	 Pettit, F. H., Yeaman, S. J. & Reed, L. J. Purification and characterization of branched chain a-keto acid dehydrogenase complex of 

bovine kidney (multienzyme complex/subunit composition/structural organization). Biochemistry 75, 4881–4885 (1978).
	36.	 Kassel, D. B., Martin, M., Schall, W. & Sweeley, C. C. Urinary metabolites of L-threonine in type 1 diabetes determined by combined 

gas chromatography/chemical ionization mass spectrometry. Biol. Mass Spectrom. 13, 535–540 (1986).
	37.	 Engelen, M. P. K. J. & Schols, A. M. W. J. Altered amino acid metabolism in chronic obstructive pulmonary disease: new therapeutic 

perspective?. Curr. Opin. Clin. Nutr. Metab. Care 6, 73–78 (2003).
	38.	 Zhang, B. et al. Regulation of branched-chain amino acid metabolism by hypoxia-inducible factor in glioblastoma. Cell. Mol. Life 

Sci. https://​doi.​org/​10.​1007/​s00018-​020-​03483-1 (2020).
	39.	 Sgaravatti, M. Æ. et al. Inhibition of brain energy metabolism by the branched-chain amino acids accumulating in maple syrup 

urine disease. Neurochem. Res. 33, 114–124. https://​doi.​org/​10.​1007/​s11064-​007-​9423-9 (2008).
	40.	 Conway, M. E. Emerging moonlighting functions of the branched-chain aminotransferase (BCAT) proteins. Antioxid. Redox 

Signal. https://​doi.​org/​10.​1089/​ars.​2020.​8118 (2020).
	41.	 Shimizu, M., Fujii, T., Masuo, S. & Takaya, N. Mechanism of de novo branched-chain amino acid synthesis as an alternative electron 

sink in hypoxic Aspergillus nidulans cells. Appl. Environ. Microbiol. 76, 1507–1515 (2010).
	42.	 Liu, S. et al. Metabolic regulation protects mice against Klebsiella pneumoniae lung infection. Exp. Lung Res. 44, 302–311 (2018).
	43.	 Chicco, A. J. et al. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: lessons from AltitudeOm-

ics. J. Biol. Chem. 293, 6659–6671 (2018).
	44.	 Romano, L. et al. Short report—medical nutrition therapy for critically ill patients with COVID-19. Eur. Rev. Med. Pharmacol. Sci. 

24, 4035–4039 (2020).
	45.	 Yudkoff, M. Interactions in the metabolism of glutamate and the branched-chain amino acids and ketoacids in the CNS. Neurochem. 

Res. 42, 10–18 (2017).
	46.	 Sperringer, J. E., Addington, A. & Hutson, S. M. Branched-chain amino acids and brain metabolism. Neurochem. Res. 42, 1697–1709 

(2017).
	47.	 Payus, A. O., Lin, C. L. S., Noh, M. M., Jeffree, M. S. & Ali, R. A. SARS-CoV-2 infection of the nervous system: A review of the 

literature on neurological involvement in novel coronavirus disease-(COVID-19). Bosn. J. Basic Med. Sci. 20, 283–292 (2020).
	48.	 Rubino, F. et al. New-onset diabetes in Covid-19. N. Engl. J. Med. 383, 789–791 (2020).
	49.	 Tricò, D. et al. Elevated a-hydroxybutyrate and branched-chain amino acid levels predict deterioration of glycemic control in 

adolescents. J. Clin. Endocrinol. Metab. 102, 2473–2481 (2017).
	50.	 Gall, W. E. et al. Α-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. 

PLoS ONE 5, e10883 (2010).
	51.	 Gentile, S., Strollo, F., Mambro, A. & Ceriello, A. COVID-19, ketoacidosis and new-onset diabetes: are there possible cause and 

effect relationships among them?. Diabetes Obes. Metab. 22, 2507–2508. https://​doi.​org/​10.​1111/​dom.​14170 (2020).
	52.	 Liu, W. et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. 

Chin. Med. J. (Engl.) 133, 1032–1038 (2020).
	53.	 Fiehn, O. Metabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profiling. Curr. Protoc. 

Mol. Biol. 20, 16. https://​doi.​org/​10.​1002/​04711​42727.​mb300​4s114 (2016).
	54.	 Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing 

mass spectrometry-based molecular profile data. BMC Bioinform. 11, 1–11 (2010).
	55.	 Chong, J. et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–

W494 (2018).

Acknowledgements
This study was supported by a grant from CONACyT (F0005-2020-01-313252). We would like to thank the 
technical support from the Bioinformatics, Biostatistics, and Computational Biology Unit of the Red de Apoyo a 
la Investigación of the National University of Mexico and the Instituto Nacional de Ciencias Médicas y Nutrición 
Salvador Zubirán.

Author contributions
J.C.P.F. and J.J.T.R. contributed equally in the design and performance of experiments, analysis, and wrote the 
manuscript. V.A.S.H., R.C.D. and S.R.R. performed experiments and analyzed data. D.E.M.S. assisted in process-
ing and preservation of patient samples. A.P.F. collect patient data, generated and organize the clinical database. 
J.M.G.A., J.L.M.M., A.P.L. and A.U.A. assisted in writing and editing the manuscript. N.R.M.D. performed 
bioinformatics and statistical analyses. D.G.M., L.G.L.P. designed the experiments, supervised general work 
and edited the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​85788-0.

https://doi.org/10.1007/s00018-020-03483-1
https://doi.org/10.1007/s11064-007-9423-9
https://doi.org/10.1089/ars.2020.8118
https://doi.org/10.1111/dom.14170
https://doi.org/10.1002/0471142727.mb3004s114
https://doi.org/10.1038/s41598-021-85788-0
https://doi.org/10.1038/s41598-021-85788-0


12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6350  | https://doi.org/10.1038/s41598-021-85788-0

www.nature.com/scientificreports/

Correspondence and requests for materials should be addressed to L.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Metabolomics analysis reveals a modified amino acid metabolism that correlates with altered oxygen homeostasis in COVID-19 patients
	Results
	Demographic and clinical features of control donors and patients with COVID-19. 
	Mitochondrial dysregulation as a feature of severe COVID-19. 
	Correlation of a distinct metabolic profile with ventilatory parameters and diverse clinical features. 

	Discussion
	Conclusion
	Methods
	Subjects. 
	Gas chromatographymass spectrometry (GCMS) analysis. 
	Deconvolution and identification. 
	Statistical analysis. 
	Metabolic pathway analysis: Enrichment analysis. 

	References
	Acknowledgements


