Skip to main content
. 2021 Mar 18;11:6215. doi: 10.1038/s41598-021-85652-1

Table 3.

Architectural details of the proposed MitosRes-CNN.

Layer number Processing unit Input Output Filters Filter size Stride Zero padding
Input layer Conv2D + BatchNorm2D + Leaky ReLU 3 × 120 × 120 32 × 60 × 60 32 3 × 3 2 1
Block 1 Conv2D + BatchNorm2D 32 × 60 × 60 64 × 60 × 60 64 1 × 1 1 1
Conv2D + BatchNorm2D [[64 × 60 × 60] × 3 + Leaky ReLU] × 3 64 × 60 × 60 64 3 × 3 1 1
AvgPool2D 64 × 60 × 60 64 × 30 × 30 64 3 × 3 2 1
Conv2D + BatchNorm2D + Leaky ReLU 64 × 30 × 30 96 × 30 × 30 96 1 × 1 1 0
Block 1 skip connection Conv2D + BatchNorm2D 32 × 60 × 60 96 × 30x × 30 96 1 × 1 2 0
Block 2 Conv2D + BatchNorm2D [[96 × 30 × 30] × 3 + Leaky ReLU] × 3 96 × 30 × 30 96 3 × 3 1 1
AvgPool2D 96 × 30 × 30 96 × 15 × 15 96 3 × 3 2 1
Conv2D + BatchNorm2D + Leaky ReLU 96 × 15 × 15 288 × 15 × 15 96 1 × 1 1 0
Block 2 skip connection Conv2D + BatchNorm2D 96 × 30 × 30 288 × 15 × 15 288 1 × 1 2 0
Block 3 Conv2D + BatchNorm2D [[288 × 15 × 15] × 3 + Leaky ReLU] × 2 288 × 15 × 15 288 3 × 3 1 1
Conv2D + BatchNorm2D [288 × 15 × 15] × 2 + Leaky ReLU 288 × 15 × 15 288 3 × 3 1 1
AvgPool2D 288 × 15 × 15 288 × 7 × 7 288 3 × 3 2 1
Conv2D + BatchNorm2D + Leaky ReLU 288 × 7 × 7 512 × 7 × 7 512 3 × 3 1 1
Block 3 skip connection Conv2D + BatchNorm2D 288 × 15 × 15 512 × 7 × 7 512 1 × 1 2 0
Average pooling AdaptiveAvgPool2D (4 × 4)
Dropout (p = 0.5)
Dense Fully Connected 8192 150 150 1
Dropout (p = 0.5)
Batch normalization Batch normalization 1D
Dense Fully Connected 150 2 2 1
Softmax