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BACKGROUND AND PURPOSE: Precise registration of CT and MR images is crucial in
many clinical cases for proper diagnosis, decision making or navigation in surgical interven-
tions. Various algorithms can be used to register CT and MR datasets, but prior to clinical use
the result must be validated. To evaluate the registration result by visual inspection is tiring
and time-consuming. We propose a new automatic registration assessment method, which
provides the user a color-coded fused representation of the CT and MR images, and indicates
the location and extent of poor registration accuracy.

METHODS: The method for local assessment of CT–MR registration is based on segmenta-
tion of bone structures in the CT and MR images, followed by a voxel correspondence analysis.
The result is represented as a color-coded overlay. The algorithm was tested on simulated and
real datasets with different levels of noise and intensity non-uniformity.

RESULTS: Based on tests on simulated MR imaging data, it was found that the algorithm
was robust for noise levels up to 7% and intensity non-uniformities up to 20% of the full
intensity scale. Due to the inability to distinguish clearly between bone and cerebro-spinal fluids
in the MR image (T1-weighted), the algorithm was found to be optimistic in the sense that a
number of voxels are classified as well-registered although they should not. However, nearly all
voxels classified as misregistered are correctly classified.

CONCLUSION: The proposed algorithm offers a new way to automatically assess the CT–MR
image registration accuracy locally in all the areas of the volume that contain bone and to
represent the result with a user-friendly, intuitive color-coded overlay on the fused dataset.

In an increasing number of clinical cases, both X-ray
CT and MR images of the head are acquired for
diagnosis, surgical planning, and more recently for
surgical navigation. X-ray tomography offers high res-
olution in the visualization of bone structures, but its
soft tissue contrast is poor. Conversely, MR imaging
offers high contrast for the visualization of the soft-
tissue morphology, but it produces weak signal inten-
sity in bone. Since these two imaging modalities are
complementary, integration of both modalities to spa-

tially relate the two types of structural information is
desired in many clinical applications. The data inte-
gration process involves two steps: registration, the
process of bringing the image data into spatial align-
ment, and fusion, the process of presenting the data
in a common display. Fused representations of
CT–MR images are valuable in clinical diagnosis, in
planning surgery or radiation therapy, and in image-
guided surgical interventions.

Many methods have been proposed for registering
CT and MR medical images (1–3), including those
using stereotactic frames, pair-point matching, sur-
face measurements, segmented objects, and direct
use the gray-value intensities such as the widely used
mutual information algorithms (4, 5). Although vali-
dation experiments with controlled CT–MR datasets
have shown that certain algorithms achieve high reg-
istration accuracy (3), accuracy varies from one
CT–MR pair to another. Even the best algorithms can
sometimes fail, leading to errors of 6 mm or more (2).
Even when overall registration accuracy is good,
the registration error is nonuniform and varies in
different regions of the image. The location depen-
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dence of registration error has been thoroughly
analyzed for pair-point based registration (6). Be-
sides errors inherent to the registration process
itself (e.g., failure of the optimization process),
local registration errors may arise from geometric
distortions on the source images. On MR images,
geometric distortions are caused by magnetic field
inhomogeneities, image wrap-arounds, and chemi-
cal shift artifacts (7), whereas on CT, artifacts due
to electron-attenuated materials can be problem-
atic. Distortions due to patient movement or aniso-
tropic scale miscalibrations can also severely affect
local registration accuracy. Lastly, despite the avail-
able registration algorithms, image alignment is
often manually performed with visual inspection;
this is error prone and time-consuming.

These uncertainties and errors in the registration of
CT–MR image pairs may lead to uncertainty in diag-
nosis, surgical planning, or surgical procedure. There-
fore, visual or automatic assessment of registration
accuracy is necessary before the registered or fused
image pair is clinically used. A previous study has
shown that even experienced observers cannot reli-
ably detect misregistration of less than 2 mm (8).
Since registration error is not uniformly distributed
over a whole volume, a complete 3D plot of errors
would be of great use, as Woods proposed (9).

The purpose of our study was to assess an auto-
matic local registration algorithm for CT and MR
images of the head. This algorithm classifies individ-
ual voxels as well registered or badly registered on the
basis of a correspondence analysis of voxels of cortical

bone structures in CT and MR datasets. The results
are color coded and visualized in a fused CT–MR
image volume, making it easy for the human operator
to identify the regions of low and high registration
accuracy.

Methods

Outline of the Assessment Method
The proposed registration assessment method for CT–MR

images of the head was based on a correspondence analysis of
cortical bone structures. On CT images, dense structures such
as bones appear bright and correspond to strong absorption of
X-rays, whereas on MR images, the signal intensity of dense
structures is low because of their low content of excitable
hydrogen atoms.

The registration assessment method is summarized in five
steps, as follows (Fig 1): First, the CT and MR datasets (Fig 1A
and B) are registered and resampled to obtain voxel-by-voxel
correspondence. Second, cortical bone structures on the CT
image are segmented by using a user-adjustable threshold,
initialized based on Hounsfield units (Fig 1C). The isolated
volume of cortical bone structures is labeled SCT. Third, the
bone volume SCT is mapped onto the MR dataset, resulting in
an MR subvolume labeled SMR1. Fourth, a custom segmenta-
tion algorithm of cortical bone structures in the MR volume is
applied, yielding a subvolume labeled SMR2. Voxels that belong
to both SMR1 and SMR2 are classified as safe, which represents
high registration accuracy, and colored green. Voxels that be-
long to SMR1 but not SMR2 are classified as unsafe, representing
a low registration accuracy; these are colored red. Fifth, a fused
CT–MR image is synthesized by overlaying the color-coded
subvolume SMR1 onto the original MR image (Fig 1D).

FIG 1. Steps in the correspondence
analysis algorithm.

A and B, Pair of registered CT (A) and
MR imaging (B) datasets.

C, Subvolume SCT containing the seg-
mented cortical bone structures of the
original CT image.

D, Result of registration assessment
overlaid onto the original MR image.
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Segmentation of Cortical Bone Structures on MR Images
The CT–MR registration assessment method requires a seg-

mentation of bone in the MR images (step 4), which is difficult
because of the low signal intensity of bone and the difficulty in
distinguishing this from other low-intensity signals resulting
from background, air cavities, or cerebro-spinal fluids (CSF)
(10). The segmentation algorithm developed for this applica-
tion consisted of a combination of thresholding and
region-growing.

Thresholding.—To find an adequate threshold to separate
bone structures from soft-tissue, we used the nonparametric
and unsupervised method of automatic threshold selection pre-
sented by Otsu (11). This method “selects an optimal threshold
to separate objects from their background. Ideally, the histo-
gram of the image has a deep valley between the peaks repre-
senting objects and background. However, for most real images
it is difficult to detect the bottom of the valley precisely,
especially when the valley is flat and broad or when the two
peaks are extremely unequal in height” (11). This algorithm
computes the optimal threshold k to separate object classes 0
and 1 by maximizing the between-class variance �B

2(k), as
follows (Eq 1).

1)

�B
2�k*� � max��0�k���0�k� � �T�2 � �1�k���1�k� � �T�2�,

where �0(k) and �1(k) are the respective probabilities of class
0 and 1 occurring on the image, �0 and �1 are the respective
mean gray values of the object classes 0 and 1, and �T the mean
gray level of the entire image. The between-class variance is
introduced as a discriminant criterion to measure the goodness
of class separation.

MR images have more than two main object classes (air,
CSF, bone, gray matter, white matter, muscle and fat). When
this algorithm was applied to MR images of the head, the
computed threshold (t1 in Fig 2A) roughly separated the low-
signal-intensity classes from the high-signal-intensity classes.
The low-signal-intensity classes include air, bone, CSF, and
some soft tissues, whereas the high-signal-intensity class repre-
sent soft tissues. A single application of the Otsu algorithm, as
shown by the thresholded image @ xk � MR, xk � t1 (Fig 2B),
produced an overestimated threshold for the segmentation of
cortical bone. It was necessary to further separate the low-
intensity class into its subclasses to obtain an adequate thresh-
old for bone segmentation.

For this reason, Otsu’s algorithm was performed again.
This time we considered only the voxels that had gray values
less than the initial Otsu threshold t1. The result was a new
threshold t2, which separated the lowest-intensity subclass—
air background—from the rest. This threshold underesti-
mated the intensity barrier that separated bone structures

FIG 2. Bone Segmentation in MR Images (triple application of Otsu method).
A, Gray-value histogram of MR image in Figure 1B. Thresholds t1, t2, and t3 are obtained by triple application of the Otsu threshold

selection method.
B, inverted MR image after application of the upper threshold t1, which does not clearly separate all of the soft tissues from the

lower-intensity classes.
C, Zoomed view of histogram in A.
D, Inverted MR image after application of the upper threshold t3. Soft tissues are effectively removed. What remains are the

low-intensity-classes, including bone structures, air, and CSF.
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from soft-tissue (i.e., some parts of cortical bone were not
segmented).

Finally, Otsu’s algorithm was performed a third time, when
only voxels with intensity less than t1 and greater than t2 were
considered. This yielded a third threshold value, t3. Using the
new value t3 as an upper threshold on the MR images led to
good separation of cortical bone and soft tissues (Fig 2D).
However, some undesired areas with air and CSF were also
segmented. It could be shown that no single threshold unam-
biguously separated bone from other structures in the head
area without the use of additional segmentation steps.

Region Growing.—To improve the quality of bone segmen-
tation on MR images, the second Otsu threshold t2 was used for
initial bone segmentation, followed by region growing up to the
third Otsu threshold, t3. This procedure reduced the effect of
segmenting disconnected non-bone areas (small volumes of air
or CSF) that would have been segmented by direct application
of a third Otsu method.

The described segmentation procedure primarily segmented
bone from soft-tissues. However, it also segmented smaller
regions of CSF and air cavities. Their effect on the registration
assessment algorithm was small (as will be explained later),
since the assessment was not performed on the whole image
volume but only on the subvolume SMR1 corresponding to the
segmented bone on CT.

Because voxels have finite size, partial-volume effects oc-
curred where voxels contain a mixture of two materials, as was
the case for voxels at the border between cortical bone and soft
tissues. Therefore, registration uncertainty could occur for vox-
els at border locations between bone and soft tissue. The extent
of measured misregistration (in millimeters) could be given for
any point in the image for the three spatial directions by
counting the number of adjacent red voxels in the x, y, and
z directions.

Image Data
To evaluate the proposed registration assessment method,

we first performed validation experiments with simulated and
then real CT–MR image pairs.

Because no a priori knowledge of the hard and soft tissue
locations was available for real patient data, we validated the
algorithm by using simulated T1-weighted MR data (with
1-mm section thickness and TR/TE of 18/10) from the MR
imaging simulator of McGill University, Montreal, Canada
(available at www.bic.mni.mcgill.ca/brainweb/). The simulator
provided complete MR imaging volumes of the head at differ-
ent noise levels and intensity inhomogeneities. It also provided
separate volumes of the main tissue classes that make up the

anatomic model, such as bone, background, CSF, gray matter,
and white matter. The bone subvolume was treated as the
segmented bone from the CT data.

The algorithm was also validated with eight patient CT and
MR datasets. Three samples of which are shown in Figure 3,
where green voxels represent safe regions with high registration
accuracy, and red voxels represent unsafe regions with low
registration accuracy.

CT data were obtained from a helical scanner with 1.25-mm
section thickness, 140 kV, and 120 mA (LightSpeed Ultra, GE
Medical Systems, Milwaukee, WI). MR imaging data were of
the T1-weighted type obtained from a 1.5-T unit (Sonata;
Siemens AG, Erlangen, Germany) with TR/TE of 2000/3.9.
Since the data were acquired independent of our study, ap-
proval of the local ethic committee was not needed. The cor-
responding CT–MR datasets in our trials were registered by
using normalized mutual information (12, 13), although other
methods could be used as well.

Software Implementation
The registration assessment algorithm was implemented in

C�� by using classes and routines made available by the
open-source software system ITK (Insight Segmentation and
Registration Toolkit, U.S. National Library of Medicine, Be-
thesda, MD, available at www.itk.org). The processing time was
typically 3 minutes for a CT volume of 512 	 512 	 100 voxels
on a standard desktop computer (Linux kernel version 2.4.20);
this included loading the images to viewing the final result.
Since the registration was done offline, computation time was
not an issue. After the registration assessment was completed,
the user could section the volume in real time in arbitrary
directions and inspect the quality of the registration in the
region of interest in real time.

Results

Validation with Simulated CT–MR Imaging Data
As a first step in the validation process with simu-

lated data, we evaluated the segmentation method for
bone structures on MR images. Subsequently, we
validated the complete registration assessment
algorithm.

Validation of the Segmentation Method for Bone
Structures on MR Images.—To evaluate the segmen-
tation algorithm for bone structures with MR imaging

FIG 3. Three fused CT–MR patient datasets assessed with our algorithm. Green voxels represent safe regions with high registration
accuracy; red voxels represent unsafe regions with low registration accuracy.

A, Patient A.
B, Patient B.
C, Patient C.
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data, we computed the percentage of the bone vol-
ume segmented by the algorithm (Eq 2):

2) rbone �
SMR � Sb

Sb
,

where SMR is the segmented bone volume of the MR
image and Sb is the a priori known bone volume, as
provided by the simulator. The value of rbone is 1 if Sb
is fully contained in SMR, and 0 if the two volumes do
not overlap.

The bone segmentation algorithm was tested on
simulated MR datasets with different levels of noise
and nonuniformity of intensity, as shown in the Table.
For gray-value noise levels from 0% to 7% and in-
tensity nonuniformities from 0% to 20% of the full
intensity scale, the rbone values were close to 99%,
indicating good segmentation of bone structures. For
higher noise and intensity nonuniformity levels the
Otsu-based segmentation algorithm failed. Figure 4
illustrates the segmentation results for a simulated
MR imaging volume with 3% noise and 20% intensity
nonuniformity and displays the corresponding pure
bone volume, as provided by the simulator. As ex-
plained in Methods, the algorithm segmented more
than only pure bone. It also segmented small areas of
CSF and air cavities, which represented false-positive
errors. To evaluate the effect and magnitude of this
error for our application, we validated the registra-
tion assessment algorithm, as described in the next
section.

Validation of the Registration Assessment Re-
sult.—To validate the registration assessment algo-
rithm, we evaluated a set of simulated CT–MR data
pairs, which were intentionally misregistered by in-
ducing a relative translation in horizontal and vertical
directions. Given that a priori knowledge of the bone
location was available for this setup, the assessment
result could be verified for each voxel. Figure 5A
shows for the horizontal misregistration the percent-
age of voxels that were classified correctly or falsely as
safe (high registration accuracy 
 green), respectively
unsafe (low registration accuracy 
 red). Similar re-

sults were obtained for the vertical misregistration,
shown in Figure 5B. The results show that the algo-
rithm was optimistic in the sense that a number of
voxels were classified as safe, although they should
not have been. However, all of the unsafe voxels, with
rare exception (less than 0.07%), were correctly and
consistently classified as unsafe. In other terms, the
algorithm had good predictive value for unsafe voxels
�unsafe � 1 for all examined levels of misregistrations
(Eq 3):

3)

�unsafe �
true unsafe voxels

true unsafe voxels � false unsafe voxels .

On the other hand, the predictive value of correctly
registered voxels �safe, (Eq 4) varied depending on
the level of misregistration, from 1.0 to 0.65.

4) �safe �
true safe voxels

true safe voxels � false safe voxels .

This effect is well explained by the fact that the
segmentation method for bone in MR segmented
bone and also partially segmented some air cavities
and CSF. As a result, a voxel representing bone in the
CT that matches a voxel representing CSF in MR
imaging was not seen as being misregistered.

Evaluation with Real CT–MR Imaging Data
Validating the registration assessment algorithm

on real clinical data was difficult because of the lack
of a prior knowledge of the location of the various
tissues on the image volume. One possibility was to
evaluate the results on a set of CT–MR pairs with
controlled misregistrations. Starting from a well-reg-
istered image pair, we translated the CT dataset lat-
erally by 5 mm and then 10 mm. With the color-coded
results (Fig 6), we confirmed that the apparent area
of misregistration (red) increased in the lateral direc-
tion by approximately 5 and 10 millimeters, consistent
with the first and second translations. To provide a
metric estimate of the registration error at a given
location, the system counted the number of unsafe
voxels in the x, y, and z directions and converted that
number in metric units as an estimate of the registra-
tion error.

Another approach to evaluate the results of the
registration assessment algorithm on real data was as
follows: A pair of CT and MR images were registered
by using mutual information and then processed by
means of the registration assessment algorithm. A
small 3D subvolume (50 	 50 	 50 voxels) was then
extracted from homologous locations of the CT and
MR volumes. This subvolume was locally reregistered
by using mutual information and reprocessed with the
registration assessment algorithm. The local re-regis-
tration yielded better registration for that volume of
interest, as compared with a global registration per-
formed on the whole volume. An example of the
expected improvement in registration accuracy is de-
picted in Figure 7.

Assessment of the bone segmentation algorithm on simulated MR
images at different noise and intensity nonuniformity levels

Noise
(%)*

Intensity
Nonuniformity (%)* rbone (%)†

0 0 99.98
0 20 99.93
3 0 99.74
3 20 99.70
5 0 99.55
5 20 99.45
7 0 99.00
7 20 97.28

9 0 14.96
9 20 13.65

Note.—Segmentation fails above 7% noise.
*Percentages refer to the full intensity scale.
†Percentage of bone voxels that were segmented.

- - - - - - - - - - - - - - - - - - - - - - - - - - -
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Discussion
In fused CT–MR image representations that result

from the combination of gray values of two original
images, it is difficult to assess the registration accu-
racy, even when semitransparency effects or different
colors for each source are used. The CT–MR regis-
tration assessment method presented herein and the
resulting color-code allows the user to instantly assess
the quality of the registration. This information is
crucial because it permits the viewer to identify areas
where the correspondence between the CT and MR

images cannot be trusted. For color-blind users, dif-
ferent colors or patterns can be used for visualization.
The presented registration assessment method does
not in any way account for patient-to-image registra-
tion errors, which may occur during image-guided
surgery.

Although other authors have compared and evalu-
ated the performance of different CT–MR registra-
tion techniques (2, 3, 12), our aim was to provide an
automatic method to locally assess the registration
errors (which are not homogeneously distributed) in

FIG 4. Segmentation results for a simulated MR volume.
A, Segmentation result for bone regions on the MR image (axial, coronal, and sagittal).
B, True bone regions as provided by the MR simulator (axial, coronal, and sagittal).

FIG 5. Validation of the registration assessment results based on simulated CT–MR data shifted purposely. Colored bars represent the
percentage of correctly or falsely classified voxels as: safe (green) or unsafe (red). Results show that the algorithm is optimistic (some
false-safe voxels exist), but there is practically no false detection (� 0.3%) of unsafe voxels.

A, Horizontal shift by 0–5 mm.
B, Vertical shift by 0–5 mm.
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every region of the image without the use of fiducials
or landmarks. Our assessment of the registration ac-
curacy is based on cortical bone tissue only. Soft
tissues and bone marrow are unsuitable for corre-
spondence analysis because they produce unspecific
gray values on CT imaging. However, a well-regis-
tered hard tissue structure strengthens the reliability
of the registration of other parts of the image. For the
segmentation of bone in the MR images, a custom
method based on Otsu’s automatic threshold selec-
tion method was used. Using simulated MR imaging
data, we have shown that this method segments 99%
of the bone for normal noise levels. However, it also
segments some CSF and air cavities, causing some
correspondence errors between the CT and MR im-
aging not to be picked up, leading to an optimistic
registration assessment.

The use of additional T2-weighted sequences could
solve the inability to distinguish between bone and
CSF and might lead to even better assessment results.
In this study, we focused on T1-weighted images be-
cause this is the standard sequence used in ENT
imaging, as it enhances the mucosa and as it (unlike
T2-weighted images) can be used with contrast me-
dium (gadolinium based) to enhance tumors or infec-
tions. Use of fat saturation, which suppresses the
intensity of fat should not affect our segmentation
algorithm, but this has not been tested explicitly.

The bone segmentation algorithm in MR imaging
data is robust to variations in TR and TE settings.
The tests performed well on simulated as well as on
clinical MR imaging data with different TR and TE
indicating that the segmentation is robust to TR and
TE variations of that magnitude. The algorithm, how-
ever, is not directly applicable to T2-weighted images.
In the future, better morphology-oriented and model-
and/or knowledge-based algorithms (10) for bone
segmentation on MR images could further improve
the results.

Voxels representing implanted metallic objects
(e.g., aneurysm clips) would be classified as bone with
both modalities, and in principle, these would not
appear misregistered. However, metallic objects
cause distortions on MR imaging and beam-harden-
ing artifacts, streaks, and flares on CT. These artifacts
cause the algorithm to detect several misregistered
voxels as a result of wrong segmentation on CT and
distortions on MR imaging.

In the patient datasets used for this study, the
registration appeared to be best toward the middle of
the head volume, whereas sections further away from
the center contained more misregistered (red) voxels.
This occurrence is explained by the registration
method, which uses a global optimization algorithm
(12) in which the resulting errors are best averaged in
the center of the volume.

FIG 6. Evaluation of the results of the registration assessment algorithm on real data.
A, Color-coded result of the assessment of a well-registered CT–MR image pair.
B, Same CT–MR pair, with a purposely introduced relative horizontal shift of five voxels.
C, Relative horizontal shift of 10 voxels.

FIG 7. Algorithm evaluation on a CT–MR
image subvolume.

A, Small 3D subvolume extracted from a
larger registered CT–MR image pair. Color-
coded overlay shows the registration as-
sessment result for bone structures.

B, CT and MR subvolumes are reregis-
tered to each other by using a mutual in-
formation algorithm. The reregistered sub-
volumes show an improved registration
assessment result, as the low-accuracy
(red) region is greatly diminished.
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Conclusion

We present a new, automatic, unsupervised, and
patient-specific method for assessing CT–MR regis-
tration based on a correspondence analysis of cortical
bone structures on the original images. The algorithm
was successfully evaluated on simulated and real ra-
diologic images. The color-coded result allows for
immediate assessment of the overall co-registration
quality as one browses through the fused volume
stack and makes it simple to identify regions of the
fused image, which are not reliable. Poor correspon-
dence between CT and MR imaging means that the
user should not trust the registration in this area. The
presented method can potentially reduce the risk of
unknowingly using misregistered CT–MR datasets in
diagnostic or interventional applications.
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